Am9150 1024x4 High-Speed Static R/W RAM

DISTINCTIVE CHARACTERISTICS

- 1024 x 4 organization
- High speed 20 ns Max. access time
- Separate data inputs and outputs
- · Memory reset function

- High density SLIM 24-pin 300-MIL package
- Three-state output buffers
- Single +5 V power supply ±10%
- Low-power version

GENERAL DESCRIPTION

The Am9150 is a high-performance, static, n-channel, read/write, random-access memory organized as 1024 x 4. It features single 5 V supply operation, TTL-compatible input and output levels, and separate input and output pins for improved system performance and ease of use.

The Am9150 also incorporates a reset feature which will reset the entire contents of the memory to logical LOW in two cycle times by controlling \overline{R} (RESET) and \overline{S} (\overline{CS}).

The Am9150 has four control signals R, S, W and G. The S input controls read, write and reset operations of the device and provides for easy selection of an individual device when the outputs are tied together. The \overline{W} (\overline{WE}) input controls the normal read and write operations, and the G (OE) controls the state of the outputs.

MODE SELECT TABLE

	Inp	uts						
s ₩		G R		Outputs	Mode			
н	X	X	X	Hi-Z	Not Selected			
L	н	X	L	Hi-Z	Reset*			
L	L	X	н	Hi-Z	Write			
L	н	L	н	Qn - Qa	Read			
L	X	н	н	Q ₀ Q ₃ Hi-Z ,	Output Disable			
High Low	1	*Se	e Res	et cycle descrip	tion.			

X = Don't Care

PRODUCT SELECTOR GUIDE

Part Number		Am9150-20	Am9150-25	Am9150-35	Am9150-45	Am91L50-25	Am91L50-35	Am91L50-45
Maximum Acces	s Time (ns)	20	25	35	45	25	35	45
(May (A)	0°C to +70°C	180	180	180	180	130	130	130
I _{CC} Max. (mA)	-55°C to +125°C	N/A	180	180	180	N/A	N/A	N/A

www.DataSheet.in

Address D	esignators
External	Internal
A ₀	AX ₀
A1	AX1
A ₂	AX2
A ₃	AX3
A ₄	AX4
A5	AX5
A ₆	AYO
A7	AY ₁
A ₈	AY2
Ag	AY ₃

Die Size: 0.93" x 0.163"

www.DataSheet.in

ORDERING INFORMATION

Standard Products

www.DataSheet.in

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number

for this device. Consult MSIS sales department to confirm availability of specific valid combinations, and to obtain additional data on MSIS's standard military grade products.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

A₀ - A₉ Address (Inputs)

The 10 address inputs select one of the 1024 4-bit words in the RAM

Š Chip Select (Input; Active LOW)

An active-LOW input which selects the device for operation. When S is HIGH, the device is deselected and the outputs will be in a high-impedance state.

W Write Enable (input; Active LOW)

 \overline{W} controls read and write operations. When \overline{W} is HIGH and G is LOW, data will be present at the data outputs. When W is LOW, data present on the data inputs will be written into the selected memory location. The data outputs will be in a high-impedance state.

R RESET (Input; Active LOW)

An active-Low pulse on \overline{R} while $A_0 - A_9$ are stable, \overline{S} is LOW, and W and G are HIGH resets the whole memory.

Output Enable (Input; Active LOW) G controls the state of the data outputs in conjunction with S

and W.

Do-D3 Data Input

Data inputs to the RAM.

Data Output $Q_0 - Q_3$

Data outputs from the RAM. The data outputs will be in a high-impedance state when either S or G are HIGH or W is LOW.

Vcc Power Supply +5 Volts

Vss Ground

www.DataSheet.in

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature65 to + 18 Ambient Temperature with	50°C
Power Applied55 to +12	25°C
Supply Voltage with	
Respect to Ground0.5 V to +7	.0 V
Signal Voltages with	
Respect to Ground3.5 V to +7	V 0.
Power Dissipation (Package Limitation)1.	2 W
DC Output Current	mA

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES (Note 2)

Commercial (C) Devices Ambient Temperature Supply Voltage (V _{CC})	(T _A)0 to +70°C +5.0 V ±10%
Military (M) Devices Ambient Temperature Supply Voltage (V _{CC})	(T _A)55 to +125°C +5.0 V ±10%

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter			Am	9150	Am9		
	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit	
^і Он	Output HIGH Current	V _{OH} = 2.4 V		4		-4		mA
^I OL	Output LOW Current	V _{OL} = 0.4 V		12		12		mA
VIH	Input HIGH Voltage		2.2	6.0	2.2	6.0	v	
VIL	Input LOW Voltage			-2.5	0.8	-2.5	0.8	v
l _{iX}	Input Load Current	$GND \le V_1 \le V_{CC}$		- 10	10	- 10	10	μA
loz	Output Leakage Current	$GND \le V_O \le V_{CC}$ Output Disabled		~ 10	10	- 10	10	μA
CI	Input Capacitance	Test Frequency = 1.0 MHz $T_A = 25^{\circ}C$. All Pins at 0 V			5		5	
CO	Output Capacitance	$V_{CC} = 5 V$ (Note 8)		-	7		7	pF
	V _{CC} Operating Supply	Max V _{CC} Š≤V _{II} Output	COM'L.		180		130	
	Current	Open MIL.			180		N/A	mA
los	Output Short Circuit Current	$GND \leq V_O \leq V_{CC}$ (Notes 7, 8)		± 50	±300	±50	±300	mA

Notes: 1. Absolute Maximum Ratings are intended for user guidelines and are not tested.

2. For test and correlation purposes, ambient temperature is defined as the "instant-ON" case temperature.

For less and correlation purposes, ambient temperature is defined as the "instant-ON" case temperature.
Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. Output timing reference is 1.5 V.
The internal write time of the memory is defined by the overlap of \$LOW and \$W LOW. Both signals must be LOW to initiate a write and either signal can terminate a write yogning HIGH. The data input setup and hold timing is referenced to the rising edge of the signal that terminates the write, \$R\$ must be HIGH.

5. Transition is measured at 1.5 V on the inputs to V_{OH} - 500 mV and V_{OL} + 500 mV on the outputs using the load shown in B. under Switching Test Circuits. 6. W and R are HIGH for read cycle.

7. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

8. This parameter is not tested, but guaranteed by characterization.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

	Parameter Symbol				Am9150-20		Am9150-25 Am91L50-25		Am9150-35 Am91L50-35		Am9150-45 Am91L50-45		
No.	Standard	Alternate	Parameter Description			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
EAD	CYCLE			•									
1	TAVAV	tRC	Read Cycle Time (Note 6)		20		25		35		45	ŀ	n\$
2	TAVQV	taa	Address Access Time	·		20		25		35		45	ns
3	TSLOV	tACS	Chip Select Access Time			10		15		20	1	25	ns
4	TGLQV	tOE	Output Enable Access T			10		15		20		25	ns
5	TSLQX	1 _{CLZ}	Chip Select LOW to Out Low-Z (Notes 5, 8)		0		0		0		0		ns
6	TSHQZ	tснz	Chip Select HIGH to Ou Hi-Z (Notes 5, 8)	tput in	0	15	0	20	0	25	0	30	ns
7	TGLQX	tolz	Output Enable LOW to C Low-Z (Note 5, 8)	Output in	0		0		0		0		ns
8	TGHQZ	tонz	Output Enable HIGH to (Hi-Z (Notes 5, 8)	Output in	0	15	0	20	0	25	0	30	ns
9	TAXQX	tона	Output Hold after	COM'L.	3	ļ	3		3	1	3	ļ	ns
			Address Change MIL.		1		1	1	1		1	1	
WRITE	CYCLE												
10	TAVAV	twc	Write Cycle Time (Note	4)	20	1	25		35	T	45		ns
11	TSLWH	tcw	Chip Select LOW to Write Enable HIGH		10		15		20		30		ns
12	TAVWH	taw	Address Valid to End of Write		15		20		30		40		ns
13	TAVWL	tas	Address Valid to Beginning of Write		5		5		5		5		ns
14	TWLWH	twp	Write Pulse Width		10		15		20		30		ns
15	TWHAX	twn	Address Hold after End of Write		5		5		5		5		ns
16	TDVWH	t _{DW}	Data in Valid to Write Enable HIGH		10		15		20		30		ns
17	TWHDX	t _{DH}	Data Hold after End of Write		5		5		5		5		ns
18	TWLQZ	twz	Write Enable LOW to Output in Hi-Z (Notes 5, 8)		0	15	0	20	0	25	0	30	n
19	TWHQX	tow	Write Enable HIGH to C Low-Z (Notes 5, 8)	Dutput in	0		0		0		0		
RESET	T CYCLE												
20	TAVAV	TRAC	Reset Cycle Time		40		50		70		90		n
21	TAVRL	[†] RSA	Address Valid to Beginr Reset	ning of	0		0		0		0		n
22	TWHRL	^t RSW	Write Enable HIGH to E of Reset	Beginning	0		0		0		0		n
23	TSLRL	tRSCS	Chip Select LOW to Beginning of Reset		0		0		0		0		ⁿ
24	TRLRH	t _{RP}	Reset Pulse Width		20		20		30	_	40		<u>n</u>
25	TRHSX	^t RHCS	Chip Select Hold after End of Reset		0		0		0		0		n
26	TRHWL	tehw.	Write Enable Hold after Reset		20		30		40	_	50		n
27	TRHAX	^t RHA	Address Hold after End		20		30		40		50	-	<u> </u>
28	TRLQZ	tRHZ	(Notes 5, 8)			15	0	20	0	25	0	35	
29	TRHQX	^t RLZ	Reset HIGH to Output in Low-Z (Notes 5, 8)		0		0		0	1			n

Notes: See notes following DC Characteristics table.

www.DataSheet.in AIRSIJU

RESET CYCLE

The reset cycle is initiated by \overline{R} going LOW for a time $\ge t_{RP}$, and is terminated by holding \overline{R} HIGH for a time $\ge t_{RHA}$. The addresses to the device must be stable during the RESET cycle time. The entire contents of the RAM will be reset to ZERO regardless of the address chosen during the cycle. The control \overline{S} must be $\leq V_{IL}$ maximum, and \overline{W} must be $\geq V_{IH}$ minimum and it is recommended that \overline{G} be $\geq V_{IH}$ minimum.

The reset cycle is normally associated with current spikes, both at V_{CC} and GND as shown in the graph. To attenuate the current spikes, an external bypass capacitor (high frequency, 0.1 μ F) for each Am9150 socket is recommended.

Typical ICC and IGND During a Reset Cycle

www.DataSheet.in

Л

SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

Read Cycle

SWITCHING WAVEFORMS (Cont'd.)

Write Cycie

Reset Cycle

www.DataSheet.in

4