

1024-Bit Static Shift Registers

Complex Digital Integrated Circuits

Distinctive Characteristics

- Second source to Signetics 2533
- All inputs are low-level DTL/TTL compatible
- Static operation with single clock input.
- 100% reliability assurance testing in compliance with MIL-STD-883.
- DC to 2.0MHz operation with Am2833

MAXIMUM RATING	(Above which the useful	life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	55°C to +125°C
V _{DD} Supply Voltage	V _{SS} 20V to V _{SS} +0.3V
V _{GG} Supply Voltage	V _{SS} -20V to V _{SS} +0.3V
DC Input Voltage	V _{SS} 20V to V _{SS} +0.3V

OPERATING RANGE

Part No.	Temperature	Vcc	V _{GG}
Am2533PC/Am2833PC Am2533DC/Am2833DC	0°C to 70°C	5.0V ±5%	12.0∨ ±5%
Am2833DM	-55°C to +125°C	5.0V ±5%	-12.0V ±5%

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

arameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
VOH	Output HIGH Voltage	V _{CC} = MIN., I _{OH} = -100µA		2.4	3.5		Volts
VOL	Output LOW Voltage	VCC = MIN., IOL = 1.6mA	Vcc = MIN., IoL = 1.6mA		0.2	0.4	Volts
VIH Input HIGH Level	Guaranteed input logical	Am2533	V _{CC} -1.8	-	V _{CC} +0.3	Volts	
	HIGH voltage for all inputs	Am2833 (Note 3)	2.0		V _{CC} +0.3	Volts	
v _{iL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs		V _{GG}		0,8	Volts
Ι _{ΓL}	Input LOW Current	VCC = MAX., VIN = OV, TA = 25°C			10	500	nA
ήн	Input HIGH Current	$T_A = 25^{\circ}C, V_{IN} = V_{CC} - 1.0$ (Note 3)		-150	-300	-500	μA
I _{IT}	Peak input transition current (Note 3)	2.5 < V −V _{IN} < 4.0, T _A = 25°C				-1.6	mA
Vimax	Voltage at maximum input current	T _A = 25°C		V _{SS} -4.0	V _{SS} -3.0	V _{SS} -2.5	v
		f = 1.5MHz	Am2533		16	30	
ICC Current	4 - 0 0000	Am2833PC, DC		16	54	mA	
	Current f = 2.0MHz	Am2833DM		20	70		
IGG Current	V. Brune Guardia	f = 1,5MHz	Am2533		5.0	-7.5	
		(- 2 014) -	Am2833PC, DC		5.0	-14	mA
	Current	f = 2.0MHz	Am2833DM		-7.0	-18	1

Notes: 1. Typical limits are at V_{CC} = 5.0V, V_{GG} = -12V, 25°C ambient.
2. Power supply currents are with inputs and outputs open.
3. A special input pull-up circuit becomes active at V_{IN} = V_{SS} -3.5V to pull the internal input node up to the MOS threshold. To return the internal node to the LOW state, current must be drawn from the MOS input. This current is maximum at approximately 2.0V.

arameters	Description	Test Conditions	Min.	Am2533 Typ. (Note 1)	Max.	Min.	Am2833 Typ. (Note 1)	Max.	Units
f _{max}	Maximum Clock Frequency		1,5	2.0		2.0	3.0		MHz
t _{øpw} L	Clock LOW Time		0.250		~	0.200		~	μs
t _{øpw} H	Clock HIGH Time		0.350		100	0.250		100	μs
t _r , t _f	Clock Rise and Fall Times				1			1	μs
t _s (I)	Set-up Time, Ig or I1 Input (see definitions)	t ₇ = tf ≤ 25ns			50			50	ns
t _h (I)	Hold Time, IO or I1 Input (see definitions)				50			50	ns
t _s (S)	Set-up Time, S Input (see definitions)				80			80	пs
t _h (S)	Hold Time, S Input (see definitions)				50			50	ns
t _{pd}	Delay, Clock to Output LOW or HIGH	RL = 2.9k, CL = 20pF			300			300	ns
tpr, tpf	Output Rise and Fall Times	10% to 90%			150			150	ns
Cin	Capacitance, Any Input (Note 2)	f = 1MHz, VIN = VCC		3	5	1	3	5	pF

Notes: 1. Typical limits are at V_{CC} = 5.0V, V_{GC} = -12.0V and T_A = 25°C 2. This parameter is periodically sampled but not 100% tested. It is guaranteed by design.

DEFINITION OF TERMS

STATIC SHIFT REGISTER A shift register that is capable of maintaining stored data without being continuously clocked. Most static shift registers are constructed with dynamic master and static slave flip-flops. The data is stored dynamically while the clock is HIGH and is transferred to the static slaves while the clock is LOW. The clock may be stopped indefinitely in the LOW state, but there are limitations on the time it may reside in the HIGH state.

SET-UP and HOLD TIMES The shift register will accept the data that is present on its input around the time the clock goes from HIGH-to-LOW. Because of variations in individual devices, there is some uncertainty as to exactly when, relative to this clock transition, the data will be stored. The set-up and hold times define the limits on this uncertainty. To guarantee storing the correct data, the data inputs should not be changed between the maximum set-up time before the clock transition and the maximum hold time after the clock transition. Data changes within this interval may or may not be detected.

