Am2833/2533

1024-Bit Static Shift Registers

Distinctive Characteristics

- Second source to Signetics 2533
- All inputs are low-level DTL/TTL compatible
- Static operation with single clock input.

FUNCTIONAL DESCRIPTION

The Am2533/2833 is a quasi-static 1024-bit MOS shift register using low-threshold P-channel silicon gate technology.

The device has a single TTL/DTL compatible clock input, Cp. Data in the register is stored in static, cross-coupled latches while the clock is LOW, so that the clock may be stopped indefinitely in the LOW state. When the clock shifts from LOW to HIGH to LOW a dynamic transfer of data occurs from one static latch to the next. The input of the register is a two-input multiplexer with both data inputs available. A select line, S, determines whether data will be accepted from the I₀ input (S = LOW) or the I₁ input (S = HIGH). The register can be placed in the recirculate mode by tying the output, O, to one of the data inputs, and using the select line as a write/recirculate control. The Am2833 is functionally identical to the Am2533 but has superior performance over an extended temperature range.

- 100% reliability assurance testing in compliance with MIL-STD-883.
- DC to 2.0MHz operation with Am2833

MOS-431

Am2833/2533

MAXIMUM RATING (Above which the useful life may be impaired)

Storage Temperature	
Temperature (Ambient) Under Bias	-55°C to +125°C
V _{DD} Supply Voltage	V _{CC} -20V to V _{CC} +0.3V
V _{GG} Supply Voltage	V _{CC} –20 V to V _{CC} +0.3 V
DC Input Voltage	V _{CC} -20V to V _{CC} +0.3V

OPERATING RANGE

Part No.	Temperature	Vcc	V _{GG}	0∨	
Am2833PC/Am2533PC Am2833DC/Am2533DC	0°C to +70°C	5.0V ±5%	-12∨±5%		
Am2833DM	–55°C to +125°C	5.0V ±5%	-12V ±5%	0V	

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

arameters	Description	Test C	conditions	Min.	Typ. (Note 1)	Max.	Units
V _{OH}	Output HIGH Voltage	V _{CC} = MIN., I _{OH} =	2.4	3.5		Volts	
VOL	Output LOW Voltage	V _{CC} = MIN., I _{OL} = 1	I.6mA		0.2	0.4	Volts
ViH	Input HIGH Level	Guaranteed input log HIGH voltage for all	V _{CC} -1 (Note 3)		V _{CC} +0.3	Volts	
VIL	Input LOW Level	Guaranteed input log voltage for all inputs	VGG		0.8	Volts	
46	Input LOW Current	V _{CC} = MAX., V _{IN} =		10	500	nA	
Чн	Input HIGH Current	$T_A = 25^{\circ}C, V_{IN} = V_{CC} - 1.0$ (Note 3)		-150	-300		μΑ
IIT	Peak input transition current (Note 3)	$1.5 \le V_{SS} - V_{1N} \le 4.0, T_A = 25^{\circ}C$				-1.6	mA
Vimax	Voltage at maximum input current	T _A = 25°C		∨ _{SS} −4.0	V _{SS} -3.0	V _{SS} -1.5	v
	· · · · · · · · · · · · · · · · · · ·	f = 1.5MHz	Am2533		16	30	
ICC	V _{CC} Power Supply Current		Am2833PC, DC		16	54	mA
		f = 2.0MHz	Am2833DM		20	70	
I _{GG}	V _{GG} Power Supply	f = 1.5MHz	Am2533		-5.0	-7.5	
		Allizossi C, DC			5.0	-14	mA
	Current				-7.0	-18	

Notes: 1. Typical limits are at $V_{CC} = 5.0V$, $V_{GG} = -12V$, $25^{\circ}C$ ambient. 2. Power supply currents are with inputs and outputs open.

A special input pull-up circuit becomes active at V_{IN} = V_{SS} -3.5V to pull the internal input node up to the MOS threshold. To return the internal node to the LOW state, current must be drawn from the MOS input. This current is maximum at approximately 2.0V.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 05 22

arameters	Description	Test Conditions	Min.	Am2533 Typ.	Max.	Min.	Am2833 Typ. (Note 1)	Max.	Units
arameters	· · · · · · · · · · · · · · · · · · ·		1.5	2.0	1	2.0	3.0		MHz
f _{max}	Maximum Clock Frequency			2.0			0.0		
t _{øpw} L	Clock LOW Time		0.250		~~~	0.200		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	μs
t _{opw} H	Clock HIGH Time		0.350		100	0,250		100	μs
t _r , t _f	Clock Rise and Fall Times				1			1	μs
t _s (I)	Set-up Time, I0 or 11 Input (see definitions)	$t_r = t_f \leq 25 ns$	50			50			ns
t _h (I)	Hold Time, 10 or 11 Input (see definitions)		50			50			ns
t _s (S)	Set-up Time, S Input (see definitions)		80			80			ns
t _h (S)	Hold Time, S Input (see definitions)		50			50			ns
t _{pd}	Delay, Clock to Output LOW or HIGH	RL = 2.9k, CL = 20pF			300			300	ns
tpr, tpf	Output Rise and Fall Times	10% to 90%			150	[150	ns
Cin	Capacitance, Any Input (Note 2)	f = 1 MHz, VIN = VCC		3	5	1	3	5	pF

Notes: 1. Typical limits are at $V_{CC} = 5.0V$, $V_{GG} = -12.0V$ and $T_A = 25^{\circ}C$ 2. This parameter is periodically sampled but not 100% tested. It is guaranteed by design.

Am2833/2533

DEFINITION OF TERMS

STATIC SHIFT REGISTER A shift register that is capable of maintaining stored data without being continuously clocked. Most static shift registers are constructed with dynamic master and static slave flip-flops. The data is stored dynamically while the clock is HIGH and is transferred to the static slaves while the clock is LOW. The clock may be stopped indefinitely in the LOW state, but there are limitations on the time it may reside in the HIGH state.

SET-UP and HOLD TIMES The shift register will accept the data that is present on its input around the time the clock goes from HIGH-to-LOW. Because of variations in individual devices, there is some uncertainty as to exactly when, relative to this clock transition, the data will be stored. The set-up and hold times define the limits on this uncertainty. To guarantee storing the correct data, the data inputs should not be changed between the maximum set-up time before the clock transition. Data changes within this interval may or may not be detected.

5-39