

Dual BTL Power Driver AM2088AH/ATH

The AM2088AH/ATH is specially developed for the application of compact disc players and is capable of driving focus, tracking and sled functions and spindle motors.

Applications

CD-audio, VCD, and DVD-player

• Features

- 1) No external component.
- 2) High output current.
- 3) Single power supply.
- 4) Low output offset voltage.
- 5) ESD protection on all pins.

- 6) DIP16 package for AM2088AH, SO16 package for AM2088ATH
- 7) Build-in thermal shutdown

Absolute maximum ratings (T_a=25°C)

Parameter	Symbol	Limits	Unit
Supply voltage	V _P	16	V
Peak output current	IORM	* 0.5	A
Power dissipation	Pd	1.4 (A type) 1.1 (AT type)	W
Operate Temp range	Topr	-40 ~ +85	°C
Storage Temp range	Tstg	-55 ~ +150	°C

* For 1 channel output.

Quick references (Ta=25℃)

Parameter	Symbol	min	typ	max	Unit
Supply voltage	V _P	5		14	V V
Internal voltage gain	Gv	12	13	14	dB
Quiescent current @ 9V V _P	I _{DDQ}			24	mA
Slew rate	S _R			k O	V/us
Input current				300	nA
	·	•		· ·	

AMtek

• Electrical characteristics (unless otherwise specified, Ta=25°C, V_P=9V, R_L=8Ω)

Parameter	Symbol	Conditions	Limit			Unit
	Symbol		Min	Тур	Max	
Supply voltage	Vp		5		14	V
Output peak current	I _{PEAK}			500		mA
Repetitive output current	IORM	For each channel(*1)		320		mA
Total quiescent current	I _P	(a) $V_P = 9V$			24	mA
Output voltage swing	V _{OPP}		6.5	7.5		V
Voltage gain	Gv		12	13	14	dB
Input bias current	Ibias			100	300	nA
Bandwidth	B_W			-	100	KHz
Power supply rejection ratio	PSRR	(a) $V_{\rm P} = 5V$	38		-	dB
Common mode rejection ratio	CMRR			100		dB
Common mode input range	V _{I(COM)}		0	-	V _P -3.2	V
Channel separation	α			50		dB
Input impedance	ZI			100		KΩ
Channel unbalance	$\left \Delta G_V\right $				1	dB
Slew rate	S _R				1	V/us

*1. However, due to the power dissipation issue, it is not allowed for both channels to operate at this condition at the same moment.

AM2088AH/ATH

Motor Driver ICs

Block Diagram

AMtel

• Pin description

PIN No	Pin Name	Function	
1	IN1-	Negative input 1	
2	IN1+	Positive input 1	
3	N.C.	Not connected	
4	N.C.	Not connected	
5	VP	Supply voltage	
6	IN2+	Positive input 2	
7	IN2-	Negative input 2	
8	N.C.	Not connected	
9	OUT2+	Positive output 2	
10	GND2	Ground 2	
11	N.C.	Not connected	
12	OUT2-	Negative output 2	
13	OUT1-	Negative output 1	
14	GND1	Ground 1	
15	N.C.	Not connected	
16	OUT1+	Positive output 1	

• Pin Assignment

Functional description

The AM2088AH/ATH is dual power driver circuits in a BTL configuration, intended for use as a power driver for servo systems with a single supply. It is particularly designed for **compact disc players** and is capable of driving focus, tracking, sled functions and spindle motors.

Because of the BTL configuration, the device can supply bi-directional DC current in the load, with only a single supply voltage. The voltage gain is fixed by internal feedback at 13 dB and the device operate in a supply voltage ranges $5 \sim 14$ V. The differential input can handle common mode input voltage from ground level up to VP-3.2V.

AM2088AH/ATH Motor Driver ICs

Application information

