

=Preliminary=

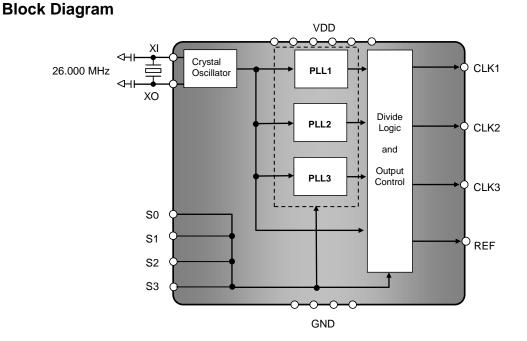
26MHz Clock Source Multi Clock Generator AK8139A

Features

Input:

Crystal input: 26.000MHz

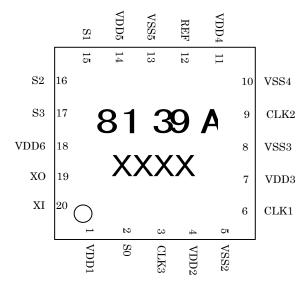
- Configured output frequency from:
 - CLK1 output: 19.200MHz / 8.000MHz / Off
 - CLK2 output: 12.000MHz / 24.000MHz / Off
 - CLK3 output: 32.768kHz
 - REF output: 26.000MHz / Off
- Output stand-by mode
 Soutput only CLK2 output
 - *output only CLK3 output
- Low Jitter Performance
 - Period Jitter:
 25 psec (Typ. / 1 σ) at CLK1, 2, REF
 - Cycle to Cycle Jitter: 30 psec (Typ. / 1 σ) at CLK1, 2, REF
- Low Current Consumption:
 - 7.9uA (Typ.) at Stand-by mode. S1-3="L", no load
 - 5.4mA (Typ.) at 1.8V, S1-3="H", no load
- Supply Voltage:
 1.8V PLL
 1.8V to 3.3V for Output
- Operating Temperature Range:
 - -30°C to +85°C
- Package:


20-pin QFN (Lead free, Halogen free)

Description

The AK8139A is a member of AKM's low power multi clock generator family designed for digital consumer applications. An AKM's original PLL architecture built in the AK8139A offers low power and low jitter performance enabling a system design to simple and save parts cost. The device operates at 1.8V, and the output voltage can be freely set from 1.8V to 3.3V. And it is supported in a small 20-pin QFN package.

Applications


- Tablet PC
- Digital Video Camcorders
- Digital Still Camera
- Portable system
- Mobile Wi-Fi Router

AK8139A

Pin Descriptions

Package: 20-Pin QFN(Top View)

Pin No.	Pin Name	Pin Type	Description	
1	VDD1	PWR	Power Supply 1 1.8V	
2	S0	DI	Clock Output Frequency setting pin, See Table 1	
3	CLK3	DO	Clock output 3, See Table 1	
4	VDD2	PWR	Power Supply 2, for CLK1 and CLK3 1.8V to 3.3V	
5	VSS2	PWR	Ground 2	
6	CLK1	DO	Clock output 1, See Table 1	(1)
7	VDD3	PWR	Power supply 3, for CLK2 1.8V to 3.3V	
8	VSS3	PWR	Ground 3	
9	CLK2	DO	Clock output 2, See Table 1	(1)
10	VSS4	PWR	Ground 4	
11	VDD4	PWR	Power supply 4, for REF 1.8V to 3.3V	
12	REF	DO	REF output, See Table 1	(1)
13	VSS5	PWR	Ground 5	
14	VDD5	PWR	Power Supply 5 1.8V	
15	S1	DI	CLK1 output control pin, See Table 1	
16	S2	DI	CLK2 output control pin, See Table 1	
17	S3	DI	REF output control pin, See Table 1	
18	VDD6	PWR	Power Supply 6 1.8V	
19	XO	AO	Crystal Connection (26.000MHz)	
20	XI	AI	Crystal Connection (26.000MHz)	

(1) Internally pull down by $160k \Omega$ (typ.)

%The heat pad is prepared on its down side of the package. It's needed to connect to ground (VSS).

Ordering Information

Part Number	Marking	Shipping Packaging	Package	Temperature Range
AK8139A	8139A	Tape and Reel	20-pin QFN	-30 to 85 °C

Absolute Maximum Rating

Items	Symbol	Symbol Ratings			
Supply voltage	VDD	-0.3 to 4.6	V		
Input voltage	Vin	VSS-0.3 to VDD+0.3	V		
Input current (any pins except supplies)	l _{iN}	±10	mA		
Storage temperature	Tstg	-55 to 130	°C		

Over operating free-air temperature range unless otherwise noted ⁽¹⁾

Note

(1) Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

ESD Sensitive Device

This device is manufactured on a CMOS process, therefore, generically susceptible to damage by excessive static voltage. Failure to observe proper handling and installation procedures can cause damage. AKM recommends that this device is handled with appropriate precautions.

Recommended Operation Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating temperature	Та		-30		85	°C
Supply voltage ⁽¹⁾	VDD	Pin: VDD1, 5, 6	1.7	1.8	2.0	V
Supply voltage	VDDO	Pin: VDD2, 3, 4	1.7	1.8/3.3	3.6	V
Output Load Consistence	Cp1	Pin: CLK1, 2, REF			15	pF
Output Load Capacitance	Cp2	Pin: CLK3			25	pF

Note:

(1) Same voltage has to be applied to VDD1, 5 and 6. A decoupling capacitor for power supply line should be installed close to each VDD pin.

DC Characteristics

All specifications at VDD: over 1.7 to 2.0V, VDDO: over 1.7 to 3.6V, Ta: -30 to +85°C, 26.000MHz Crystal, unless otherwise noted

Parameter Symbo		Conditions	MIN	ТҮР	МАХ	Unit
High level input voltage	High level input voltage VIH		0.7VDD			V
Low level input voltage	V _{IL}	Pin: S0-3			0.3VDD	V
Input leak current	١L	Pin: S0-3	-1	0	+1	μA
High Level output		Pin: CLK1, 2, REF I _{OH} =-4mA (@VDDO=3.6V) I _{OH} =-2.18mA (@VDDO=1.7V)	0.8VDDO			V
Voltage	V _{он}	Pin: CLK3 I _{OH} =-1.2mA (@VDDO=3.6V) I _{OH} =-0.6mA (@VDDO=1.7V)	0.8VDDO			V
Low level output		Pin: CLK1, 2, REF I _{OL} =+4mA (@VDDO=3.6V) I _{OL} =+2.18mA (@VDDO=1.7V)			0.2VDDO	V
Voltage	V _{OL}	Pin: CLK3 I _{OL} =+1.2mA (@VDDO=3.6V) I _{OL} =+0.6mA (@VDDO=1.7V)			0.2VDDO	V
Current consumption 1 ⁽¹⁾	I _{DD1}	No load, Ta=25°C S1-3="L", S0="X"		7.9	12	uA
Current consumption 2	I _{DD2}	No load, Ta=25°C S1-3="H", S0="L"		5.4	9	mA

(1) Average value of intermittent operation.

AC Characteristics

All specifications at VDD: over 1.7 to 2.0V, VDDO: over 1.7 to 3.6V, Ta: -30 to +85°C, 26.000MHz Crystal, unless otherwise noted

Parameter	Symbol	Conditions	MIN	ТҮР	МАХ	Unit
Crystal clock frequency		Pin: XI, XO		26.000		MHz
Frequency accuracy (1)		Pin: CLK1, 2, REF	-10		+10	ppm
Frequency accuracy		Pin: CLK3 ⁽⁴⁾		3.13		ppm
Period jitter (1 σ) ^{(2), (3)}	Jit _{period}	Pin: CLK1, 2, REF		25		ps
	Juperiod	Pin: CLK3		15		ns
Cycle to cycle jitter (1 σ) ^{(2), (3)}	Jit _{cycle}	Pin: CLK1, 2, REF		30		ps
		Pin: CLK1, 2,	45	50	55	%
Output clock duty cycle (2)	DtyCyc	Pin: REF	40	50	60	%
		Pin: CLK3	40	50	60	%
	t _{rise1}	Pin: CLK1, 2, REF Cp1=15pF, 0.2VDDO→0.8VDDO		1.5	4.0	ns
Output clock rise time ⁽²⁾		Pin: CLK3 VDDO=3.0-3.6V, Cp2=25pF, 0.2VDDO→0.8VDDO		7.0	14.0	ns
		Pin: CLK3 VDDO=1.7-2.0V, Cp2=25pF, 0.2VDDO→0.8VDDO		10.0	20.0	ns
		Pin: CLK1, 2, REF Cp1=15pF, 0.8VDDO→0.2VDDO		1.5	4.0	ns
Output clock fall time ⁽²⁾	t _{fall1}	Pin: CLK3 VDDO=3.0-3.6V, Cp2=25pF, 0.8VDDO→0.2VDDO		7.0	14.0	ns
		Pin: CLK3 VDDO=1.7-2.0V, Cp2=25pF, 0.8VDDO→0.2VDDO		10.0	20.0	ns
Output lock time	t _{lock}	Pin: CLK1, 2, REF ⁽⁵⁾			1	ms
	LIOCK	Pin: CLK3 ⁽⁶⁾		30		ms

 Additional value through IC. This value is guaranteed only when using AKM's suggested crystal unit. (Refer to page 8)

(2) Design value.

(3) 10000 sampling or more.

(4) Average value, when operating XO.

(5) Time to settle output into $\pm 0.1\%$ of specified frequency after reaching VDD.

(6) Time to initial setup at powered on.

Clock Output Frequency Selection

The AK8139A generates a range of low-jitter and high-accuracy clock frequencies with three built-in PLLs and provides to up to four assigned outputs. A frequency selection at assigned output pin is configured by pin-setting of S0-3.

The clock output frequency is shown in Table 1.

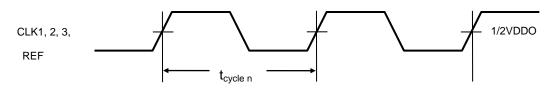
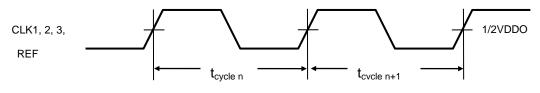

Se	etting Pir	n Conditi	on	Crystal Frequency (MHz)	Clock Output Frequency 32.768 [kHz] another [MHz]				
S0	S1	S2	S 3	XI, XO	CLK1	CLK2	REF	CLK3	
Х	L	L	L	26.000	L	L	L	32.768	
Х	L	L	Н	26.000	L	L	26.000	32.768	
L	L	Н	L	26.000	L	24.000	L	32.768	
L	Н	L	L	26.000	19.200	L	L	32.768	
L	L	Н	Н	26.000	L	24.000	26.000	32.768	
L	Н	L	Н	26.000	19.200	L	26.000	32.768	
L	Н	Н	L	26.000	19.200	24.000	L	32.768	
L	Н	Н	Н	26.000	19.200	24.000	26.000	32.768	
Н	L	Н	L	26.000	L	12.000	L	32.768	
Н	Н	L	L	26.000	8.000	L	L	32.768	
Н	L	Н	Н	26.000	L	12.000	26.000	32.768	
Н	Н	L	Н	26.000	8.000	L	26.000	32.768	
Н	Н	Н	L	26.000	8.000	12.000	L	32.768	
Н	Н	Н	Н	26.000	8.000	12.000	26.000	32.768	

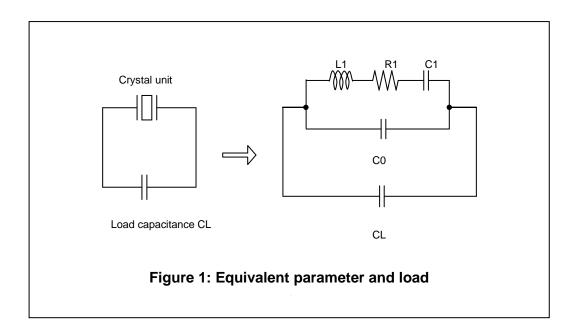
Table 1: CLK1, 2, 3, REF Output Frequency


Period Jitter and Cycle to Cycle jitter

1. Period jitter: The deviation in cycle time of a signal with respect to the ideal period over a random sample of cycles. pairs.

 $Jit_{period} = t_{cycle n} - 1/f0$: where fo is the nominal output frequency and *t*cycle n is any cycle within the sample measured on controlled edges

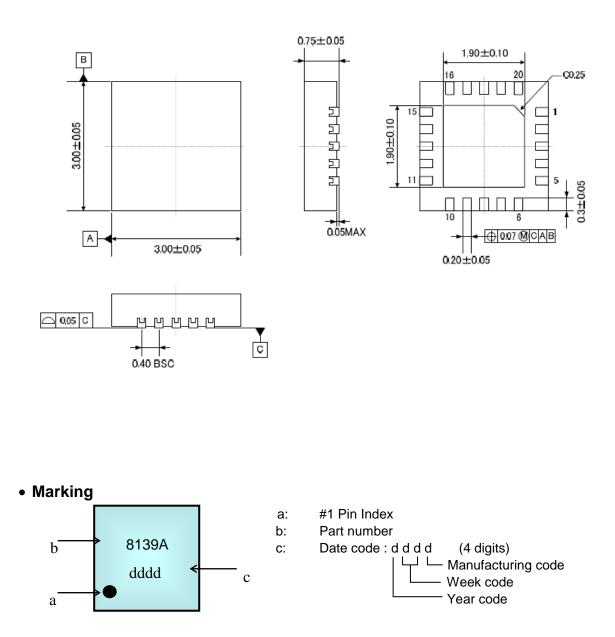
2. Cycle to cycle jitter: The variation in cycle time of a single between adjacent cycles, over a random sample of adjacent cycle pairs.


 $Jit_{cycle n} = |t_{cycle n} - t_{cycle n+1}|$: where $t_{cycle n+1}$ and $t_{cycle n+1}$ are any two adjacent cycles measured on controlled edges.

Crystal Unit

NDK NX2520SA

Item	Symbol	MIN.	TYP.	MAX.	Unit	Remark
Nominal frequency	fO		26.000		MHz	CL=8pF
Equivalent resistance	R1		29.0	60	Ω	
Shunt capacitance	CO		0.87		pF	±20%
Motional capacitance	C1		2.40		fF	±20%
Motional inductance	L1		15.6		mH	±20%
Drive Level			30	100	uW	



Typical Connection Diagram


Package Information

Preliminary

Mechanical data

• RoHS Compliance

All integrated circuits form Asahi Kasei Microdevices Corporation (AKM) assembled in "lead-free" packages* are fully compliant with RoHS.

(*) RoHS compliant products from AKM are identified with "Pb free" letter indication on product label posted on the anti-shield bag and boxes.

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

 It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.