

Asahi KASEI ASAHI KASEI MICRODEVICES

AK7903

DCDC Step-down Converter for NiH2 Battery

GENERAL DESCRIPTION

AK7903 is a DCDC step-down converter with fixed current control type for NiH2 battery. This device detects external resistor current, and controls switching regulator output voltage with fixed current. AK7903 can convert the battery voltage with a built-in general-purpose amplifier, so CPU can monitor battery easily. AK7903 also built-in output voltage detection function (external resistors fail detection), output short protection function, thermal protection circuit, so it can work safely with few radiant heat. AK7903 is the most suitable charger device for portable system which uses NiH2 battery. The AK7903 is available in QFN package (3.0mm x 3.0mm), utilizing less board space than competitive offerings.

FEATURE

■ BLOCK DIAGRAM

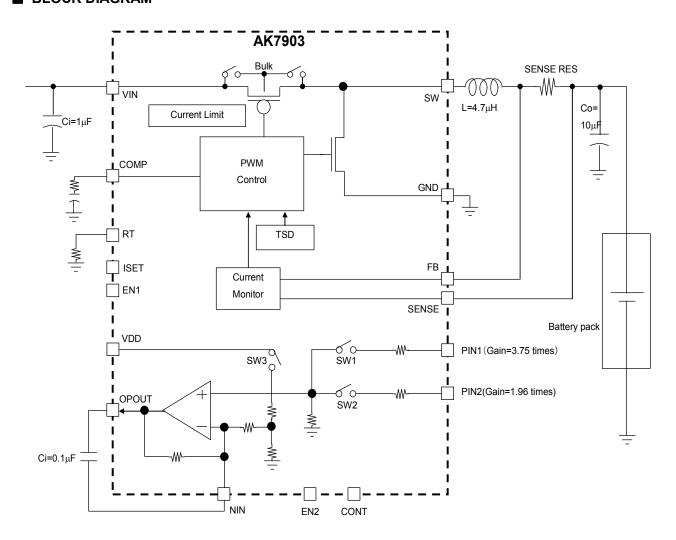
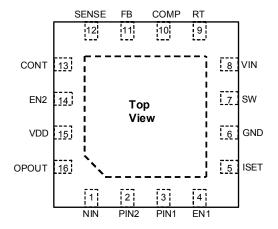



Figure 1. AK7903 Block Diagram

^{*)} The BULK of PMOS connects to the high voltage of VIN or SW.

■ PIN LAYOUT

PIN / FUNCTION

No.	Pin Name	I/O	Protection Diode	Function
1	NIN	I	VDD	OP-AMP Negative Input Pin 1
2	PIN2	I	BULK	OP-AMP Positive Input Pin 2
3	PIN1	I	BULK	OP-AMP Positive Input Pin 1
4	EN1	I	BULK GND	Enable Pin 1
5	ISET	I	BULK 5 GND	Charge Current Setting Pin
6	GND	_		Ground Pin

Pin Name	I/O	Protection Diode	Function
SW	0	BULK 7 GND	Choke Coil Connection Pin
VIN	_		DCDC Power Supply Pin
RT	0	VIN	Frequency Setting Pin (Adjusted by external resistor)
СОМР	О	VIN	Boost Compensation Pin
FB	I	BULK	Output Voltage Detection Pin
SENSE	I	BULK 12 GND	Connect to Current Detection SENSE Resistor
CONT	I	VDD GND	PIN1 or PIN2 Select Pin (PIN1@CONT="L", PIN2 @CONT="H")
EN2	I	VDD VDD GND	OP-AMP Enable Pin
VDD	_		OP-AMP Power Supply Pin
OPOUT	О	VDD VDD GND	OP-AMP Output Pin

ABSOLUTE MAXIMUM RATING

(GND=0V; (Note 1))

Parameter	Symbol	min	max	Units
VIN Pin Voltage	Vin	-0.3	6.5	V
Input Current (FB, SENSE, CONT, EN1, EN2, ISET, RT, COMP)	Iin	-	±10	mA
SW MOS. Peak Current	Ici	-	1.0	A
Junction Temperature	Tj		125	$^{\circ}\mathbb{C}$
Storage Temperature	Tstg	-40	125	$^{\circ}$ C
Power Dissipation (Note 2)	Pd		1700	W

Note 1. All voltage is respect to ground.

Note 2. In case that PCB(size: 76×114 mm, 1.6mm, 4 layer), material is FR4, base on JDEC51-7, and temperature is 25°C, windless.

Note: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS	

(GND=0V; (Note 1))

Parameter	Symbol	min	typ	max	Units
Power Supply for DCDC	VIN	4.1	-	5.5	V
Power Supply for OP-AMP	VDD	2.8	-	3.2	V
Ambient Temperature	Тор	-30	25	70	${\mathbb C}$

^{*} AKM assumes no responsibility for the usage beyond the conditions in this datasheet.

ANALOG CHARACTERISTICS

(Ta=25°C, VIN=5.0V, VDD=3.0V, GND=0V(Note 3))

Symbol	Parameter Condition		Min	Тур	Max	Unit
	DCI	DC CONVEDTED FIVED CITY	DDENT CID	CUIT		
Vin	Input Voltage	In the case of VIN=3.8V,	4.1		5.5	V
	Shut-down Current	VOUT= 1.8V is guaranteed	(3.8V)	2		A
Iddsdn		EN=L		2	10	uA ℃
Treg	Stop Temperature	Win 5 OM		120		
Ilimt	Current Detection	Vin=5.0V		1000		mA
Vsense	Current Detection Accuracy	R=0.47Ω,Iout=300mA	-5		5	%
Ipre1	Output Current1	R=0.353Ω, ISET= "Low" Vin=4.1 \sim 5.5V, Vout=0.2 \sim 3.5V		400		mA
Ipre2	Output Current 2	R=0.470 Ω , ISET= "Low" Vin=4.1 \sim 5.5V,Vout=0.2 \sim 3.5V		300		mA
Ipre3	Output Current 3	R=0.470Ω, ISET= "High" Vin=4.1 \sim 5.5V,Vout=0.2 \sim 3.5V		80		mA
fosc	Switching Frequency	Freq= 1220kHz	-2		+2	%
Tstart	Start-up Time	The time which from EN= "L→H" to the time which charge current is 90% of the setting current.		20		ms
Effi	Efficiency (Note 4)	Vout=1.8V, Iout=300mA		80		%
		OP-AMP				
VDD	Input Voltage		2.8		3.2	V
	Maximum Output	Load ≥ 10 k Ω (@1/2*VDD)	0.05		VDD-0.05	V
Gain1	Gain 1	PIN1→OPOUT		3.75		倍
Gain2	Gain 2	PIN2→OPOUT		1.96		倍
Opout1	Output Level 1	PIN1= 1.75V		1.95		V
Opout2	Output Level 2	PIN2= 3.5V		2.26		V
IDD1	Power consumption 1	EN2= "H", 無負荷		1.7	4	mA
IDD2	Power consumption 2	EN2= "L", 無負荷		0.1	2	μA
Load _{Cap}	Maximum Load CAP	END 2, MINING		0.12	50	pF
		DIGITAL INPUT/OUT	PUT			
Vil	Low Level Input	Input Pins			0.4	V
Vih	High Level Input	Input Pins	1.2			V
Vimax	Maximum Input	EN2, CONT pins			VDD+0.3	V
Ibias1	Input Bias Current 1	EN1 pin =VIN			5	μΑ
Ibias	Input Bias Current 2	Input Pins			1	uA

Note 3. All the characteristic is supposed that recommend external parts is used.

Note 4. Exclude SENSE resistor consumption.

OPERATION OVERVIEW

■Input and Output

AK7903 is a DCDC converter which power MOSFET is built-in, and input voltage support $4.1V\sim5.5V$; the device is the most suitable charger for NiH2 battery system which used 1 or 2 series NiH2 battery. In the case of charging to 1 cell, the characteristic can be guaranteed even input voltage below 3.8V. AK7903 detects external resister current through FB and SENSE pins, and it regulates switching regulator output voltage in order to maintain DCDC output current fixed. When the SENSE resistor current decreased, DCDC output voltage will be increased, so output current increase with coil current limitation (1.0A @typ). SENSE resistor is recommended less than $0.353\,\Omega$. Use small size SENSE resistor, the charge current is possible not reach set current.

■Protection Functions

AK7903 is built-in over current protection circuit and thermal protection circuit for preventing device be damaged. Protection condition and recovery method is showed at Table 1.

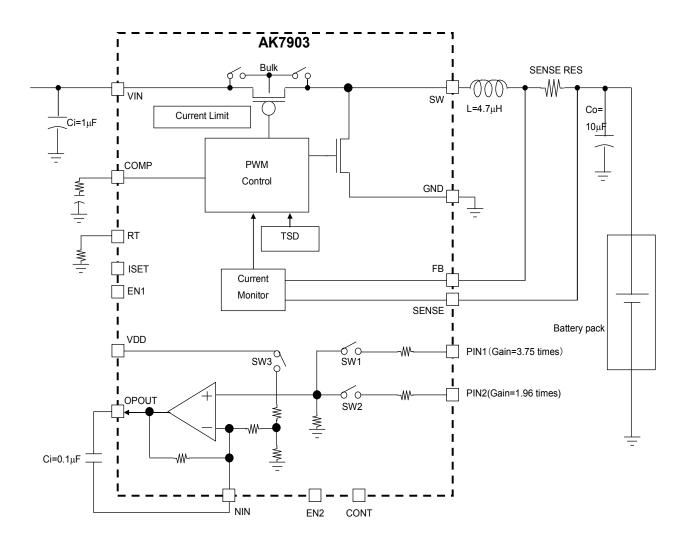
Protection Function	Working Condition	Device Condition	Recovery Condition
Current Limit (Including Output Short to Ground)	Coil current 1.0A	PMOS= OFF in the case that coil current > 1.0A. It will be judged at every cycle.	Auto recovery when left condition is cancelled.
Thermal Shut-Down	Chip temperature exceed $120^{\circ}C(typ)$	Switching Stop	Auto recovery when chip temperature below 100° C(typ).

Table 1. Protection Function

■ Output PMOS Bulk Control

AK7903 controls output PMOS bulk, so is the most suitable construction for system environment.

■ Gain Switching for OP-AMP


Table 2 shows OP-AMP gain setting.

EN2	CONT	SW1	SW2	SW3	オペアンプ
0	0 or 1	OFF	OFF	OFF	Power-down
1	0	ON	OFF	ON	Gain=3.75 times
1	1	OFF	ON	ON	Gain=1.96 times

Table 2. OP-AMP gain setting

SYSTEM DESIGN AND RECOMMENDED PARTS

Recommend Parts:

Component	Symbol	Value	Type	Dimensions	Supplier
Capacitance	Ci	4.7uF	C1608JB1E105K	1608 type (25v)	TDK
Inductance	L	4.7uH	LTF5022	$5.0 \times 5.2 \times 2.2$	TDK
Capacitance	Co	10uF	C2012JB1C106K	2012 type	TDK

^{*)} Excellent DC bias characteristic of Ci is recommended. Low value of Ci is possible to effect stability of AK7903.

PACKAGE

(a) Package Information UQFN 16pin (unit: mm)

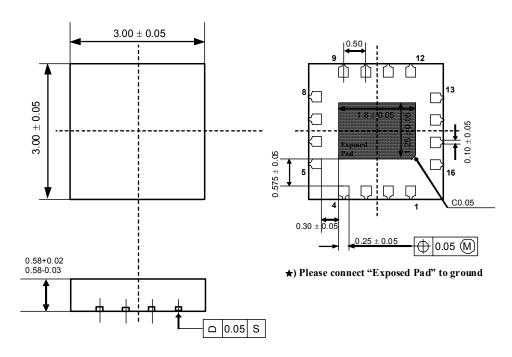


Figure 3 Package Information

(b)Recommend Food Pattern

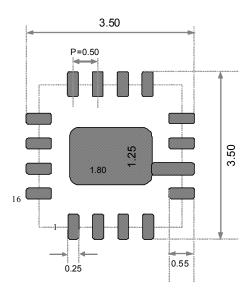
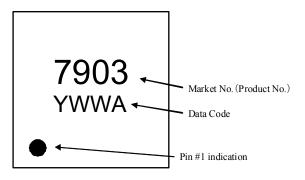



Figure 4. Recommend food pattern

MARKING

YWWA: Date code (4 digit)

Y: Product Year (A.D.) last No(Ex. "2009" \rightarrow "9")

WW: Product Week

A: Product Manage Code

REVISION HISTORY

Date	Revision	Reason	Page	Contents
(YY/MM/DD)				
10/06/03	00	First Edition		

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.

 When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei EMD Corporation (AKEMD) or authorized distributors as to current status of the products.
- AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official
 approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
 or strategic materials.
- AKEMD products are neither intended nor authorized for use as critical components_{Note1)} in any safety, life support, or other hazard related device or system_{Note2)}, and AKEMD assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKEMD. As used here:
 - Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
 - Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any and all claims arising from the use of said product in the absence of such notification.