

AK4331

Low-Power Advanced 32-bit DAC with HP/SRC

1. General Description

The AK4331 is an advanced 32-bit high sound quality stereo audio DAC with a built-in ground-referenced headphone amplifier. The AK4331 has four types of 32-bit digital filters for better sound quality, achieving low distortion characteristics and wide dynamic range. The AK4331 also has a jitter cleaner with a built-in SRC and a X'tal. The AK4331 is available in a 36-pin CSP package, utilizing less board space than competitive offerings.

2. Features

- 1. High Sound Quality Low Power Advanced 32-bit Stereo DAC
 - 4 types of Digital Filter for Sound Color Selection
 - Short Delay Sharp Roll-off, GD = 5.5 / fs
 - Short Delay Slow Roll-off, GD = 4.5 / fs
 - Sharp Roll-off
 - Slow Roll-off
- 2. Ground-referenced Class-G Stereo Headphone Amplifier
 - Output Power: 70 mW @ 8Ω
 - THD+N: -100 dB
 - S/N: 109 dB
 - Output Noise Level: -114 dBV (Analog Volume = -10 dB)
 - Analog Volume: +4 to -10 dB, 2 dB Step
 - Ground Loop Noise Cancellation
- 3. Low Power Consumption: 4.4 mW (Play back, fs = 48 kHz, External Slave Mode) 5.0 mW (Play back, fs = 48 kHz, PLL Slave Mode)
- 4. Headphone Amplifier Output Pins Comply with IEC61000-4-2 ESD Protection
 - ±8 kV Contact Discharge
- 5. Digital Audio interface
 - Master / Slave Mode
 - Sampling Frequency (Slave Mode / Master Mode):

 8 k 11 025 k 12 k 16 k 22 05 k 24 k 32 k 44 1 k 48 k 6

8 k, 11.025 k, 12 k, 16 k, 22.05 k, 24 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96 k, 128 k, 176.4 k, 192 kHz

- Interface Format: 32/24/16-bit I²S/MSB justified
- 6. Asynchronous Sample Rate Converter
 - Up sample: up to ×6.02
- 7. Stereo Digital Microphone Interface
- 8. Power Management
- 9. PLL
- 10. Jitter Cleaner with a built-in SRC and X'tal Oscillator
- 11. µP Interface: I²C-bus (400 kHz)
- 12. Operation Temperature Range: Ta = -40 to 85 °C
- 13. Power Supply:
 - AVDD (DAC, PLL): 1.7 to 1.9 V
 - CVDD (Headphone Amplifier, Charge Pump): 1.7 to 1.9 V
 - LVDD (LDO2 for Digital Core): 1.7 to 1.9 V (built-in LDO)
 - TVDD (Digital Interface): 1.65 to 3.6 V
- 14. Pin Compatible and Register Backward Compatible with the AK4375A
- 15. Package: 36-pin CSP (2.533 x 2.371 mm, 0.4 mm pitch)

		3. Table of Contents	
1.	Gene	eral Description	1
2.	Featu	Jres	1
3.	Table	e of Contents	2
4.	Block	CDiagram and Functions	4
5.	Pin C	Configurations and Functions	
	5-1.		
	5-2.		6
	5-3.		
	5-4.	5	
		lute Maximum Ratings	
		mmended Operating Conditions	
		rical Characteristics	
	8-1.	DAC Analog Characteristics	
	8-2.	PLL Characteristics	
	8-3.	Charge Pump & LDO Circuit Power-Up Time	
	8-4.	Power Supply Current	
	8-5.	Power Consumptions for Each Operation Mode	
	8-6.	SRC Characteristics	
	8-7.	DAC Sharp Roll-Off Filter Characteristics (SRC Bypass Mode)	
	8-8.	DAC Slow Roll-Off Filter Characteristics (SRC Bypass Mode)	
	8-9.	DAC Short Delay Sharp Roll-Off Filter Characteristics (SRC Bypass Mode)	20
	8-10.	DAC Short Delay Slow Roll-Off Filter Characteristics (SRC Bypass Mode)	22
		DAC Sharp Roll-Off Filter Characteristics (SRC Mode)	
		DAC Slow Roll-Off Filter Characteristics (SRC Mode)	
		DAC Short Delay Sharp Roll-Off Filter Characteristics (SRC Mode)	
		DAC Short Delay Slow Roll-Off Filter Characteristics (SRC Mode)	
		Digital Microphone Filter Characteristics	
		Switching Characteristics	
		Timing Diagram (System Clock)	
	Q-10.	Timing Diagram (System Clock) Timing Diagram (Serial Audio Interface)	30
	8-20	Timing Diagram (I ² C-bus Interface)	31
		Timing Diagram (Reset)	
	8-22	Timing Diagram (Neget)	30
		tional Description	
		System Clock	
	9-2.	Master Counter Synchronization Control	46
	9-3.	PLL	
	9-4.	Crystal Oscillator	
	9-5.	Digital Microphone	
	9-6.	Digital Microphone HPF	
	9-7.	Digital Microphone Mono/Stereo Mode	
	9-8.	Digital Microphone Initialization Cycle	
	9-9.	Side Tone Digital Volume (SVOL)	
	9-10.	DAC Digital Filter	
		Digital Mixing	
	9-12.	Digital Volume	58
	9-13.	Headphone Amplifier Output (HPL/HPR pins)	59
	9-14.	Charge Pump & LDO Circuits	64
	9-15.	Asynchronous Sampling Rate Converter (SRC)	65
	9-16.	SRC Selector Function	66
	9-17.	SRC Clock Change Sequence	67
	9-18.	Soft Mute	68
		Serial Audio Interface	
	9-20.	Serial Control Interface (I ² C-bus)	71
	9-21.	Control Sequence	75

9-22. Register Map	78
9-23. Register Definitions	79
10. Recommended External Circuits	87
11. Package	89
11-1. Outline Dimensions	89
11-2. Material and Lead Finish	89
11-3. Marking	90
12. Ordering Guide	90
13. Revision History	
IMPORTANT NOTICE	

4. Block Diagram and Functions

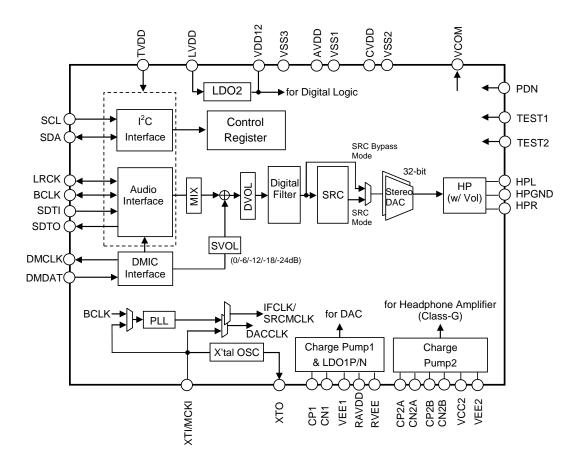
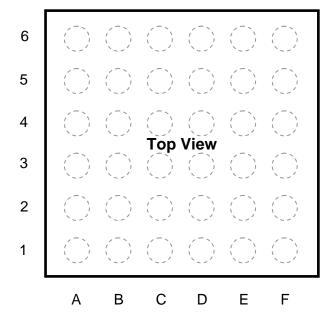



Figure 1. AK4331 Block Diagram

5. Pin Configurations and Functions

5-1. Pin Configurations

36-pin CSP

6	VDD12	LVDD	CN1	CP1	CVDD	CN2B
5	VSS3	SDTI	VEE1	VSS2	CP2B	CN2A
4	TVDD	LRCK	SDA	SCL	CP2A	VEE2
3	MCKI /XTI	BCLK	PDN	TEST1	VCC2	HPR
2	XTO	DMDAT	TEST2	VSS1	HPL	HPGND
1	SDTO	DMCLK	RVEE	RAVDD	AVDD	VCOM
	Α	В	С	D	E	F

Top View

5-2. Pin Function Difference with AK4375A

Pin	AK4375A		AK4331	
No.	Pin Name	Function	Pin Name	Function
A1	XTI	X'tal Oscillator Input Pin Left floating when not in use.	SDTO	Audio Serial Data Output Pin Left floating when not in use.
А3	MCKI	External Master Clock Input Pin Connect to VSS3 when not in use.	MCKI/XTI	External Master Clock Input / X'tal Oscillator Input Pin Connect to VSS3 and set PMOSC bit to "0" when not in use.
B1	TESTO	Test Output Pin Left floating when not in use.	DMCLK	Digital MIC Clock Output Pin Left floating when not in use.
B2	LDO2E	LDO2 Enable pin This pin must be tied "H".	DMDAT	Digital MIC Data Input Pin Connect to VSS1 or AVDD when not in use.
C2	VSS4 Ground4 pin This pin must be tied "L".		TEST2	Test Input pin This pin must be tied "L".

5-3. Pin Functions

No.	Pin Name	I/O	Function	Protection Diode	Power Domain
Powe	r Supply				
E1	AVDD	-	Analog Power Supply Pin	-	AVDD
D2	VSS1	-	Ground 1 Pin	-	-
E6	CVDD	-	Headphone Amplifier / Charge Pump Power Supply Pin	-	CVDD
D5	VSS2	-	Ground 2 Pin	-	-
B6	LVDD	-	Digital Core & LDO2 Power Supply Pin	-	LVDD
A5	VSS3	-	Ground 3 Pin	-	-
A4	TVDD	-	Digital Interface Power Supply Pin	-	TVDD
F1	VCOM	0	Common Voltage Output Pin Connect a 2.2 µF ±50% capacitor between this pin and the VSS1 pin. (Note 2)	AVDD / VSS1	-
A6	VDD12	-	LDO2 (1.2 V) Output Power Supply Pin (Note 1) Connect a capacitor between this pin to the VSS3 pin. (Note 2)	LVDD / VSS3	LVDD

Note 1. Capacitor value connected to the VDD12 pin should be selected from 2.2 μF ±50% to 4.7μF ±50%.

Note 2. Do not connect a load to the VCOM pin and the VDD12 pin.

No.	Pin Name	I/O	Function	Protection Diode	Power Domain
Charg	e Pump & Ll	DO			
D6	CP1	0	Positive Charge Pump Capacitor Terminal 1 Pin Connect a 2.2 µF ±50% capacitor between this pin and the CN1 pin.	CVDD / VSS2	CVDD
C6	CN1	I	Negative Charge Pump Capacitor Terminal 1 Pin Connect a 2.2 µF ±50% capacitor between this pin and the CP1 pin.	CVDD	CVDD
C5	VEE1	0	Charge Pump Circuit Negative Voltage (–CVDD) Output 1 Pin Connect a 2.2 µF ±50% capacitor between this pin and the VSS2 pin. (Note 3)	CVDD / VSS2	-
D1	RAVDD	0	LDO1P (1.5 V) Output Pin (Note 4) Connect a capacitor between this pin and the VSS1 pin. (Note 3)	AVDD / VSS1	-
C1	RVEE	0	LDO1N (-1.5 V) Output Pin (Note 4) Connect a capacitor between this pin and the VSS1 pin. (Note 3)	AVDD / VSS1	-
E3	VCC2	0	Charge Pump Circuit Positive Voltage (CVDD or 1/2 x CVDD) Output Pin Connect a 2.2 µF ±50% capacitor between this pin and the VSS2 pin. (Note 3)	CVDD / VSS2	CVDD
E4	CP2A	0	Positive Charge Pump Capacitor Terminal 2A Pin Connect a 2.2 µF ±50% capacitor between this pin and the CN2A pin.	CVDD / VSS2	CVDD
F5	CN2A	I	Negative Charge Pump Capacitor Terminal 2A Pin Connect a 2.2 µF ±50% capacitor between this pin and the CP2A pin.	CVDD	CVDD
E5	CP2B	0	Positive Charge Pump Capacitor Terminal 2B Pin Connect a 2.2 µF ±50% capacitor between this pin and the CN2B pin.	CVDD / VSS2	CVDD
F6	CN2B	I	Negative Charge Pump Capacitor Terminal 2B Pin Connect a 2.2 μ F $\pm 50\%$ capacitor between this pin and the CP2B pin.	CVDD	CVDD
F4	VEE2	0	Charge Pump Circuit Negative Voltage (–CVDD or –1/2 × CVDD) Output 2 Pin Connect a 2.2 µF ±50% capacitor between this pin and the VSS2 pin. (Note 3)	CVDD / VSS2	-

Note 3. Do not connect a load to the VEE1 pin, VCC2 pin, VEE2 pin, RAVDD pin and the RVEE pin. Note 4. Capacitor value connected to the RAVDD pin and the RVEE pin should be selected from 1.0 μ F ±50% to 4.7 μ F ±50%.

No.	Pin Name	I/O	Function	Protection Diode	Power Domain
Contr	ol Interface			'	ı
D4	SCL	I	I ² C Serial Data Clock Pin	TVDD / VSS3	TVDD
C4	SDA	I/O	I ² C Serial Data Input/Output Pin	TVDD / VSS3	TVDD
Audio	Interface				
A3	MCKI	I	External Master Clock Input Pin (PMOSC bit = "0")	TVDD /	TVDD
Α3	XTI	I	X'tal Oscillator Input Pin (PMOSC bit = "1")	VSS3	1700
A1	SDTO	0	Audio Serial Data Output Pin	TVDD / VSS3	TVDD
A2	хто	0	X'tal Oscillator Output Pin	TVDD / VSS3	TVDD
В3	BCLK	I/O	Audio Serial Data Clock Pin	TVDD / VSS3	TVDD
В4	LRCK	I/O	Frame Sync Clock Pin	TVDD / VSS3	TVDD
B5	SDTI	I	Audio Serial Data Input Pin	TVDD / VSS3	TVDD
Analo	g Output				
E2	HPL	0	Lch Headphone Amplifier Output Pin	CVDD / VEE2	CVDD / VEE2
F3	HPR	0	Rch Headphone Amplifier Output Pin	CVDD / VEE2	CVDD / VEE2
F2	HPGND	I	Headphone Amplifier Ground Loop Noise Cancellation Pin	-	-
Digita	I MIC Interfa	се			
В1	DMCLK	0	Digital MIC Clock Output Pin	AVDD / VSS1	AVDD
B2	DMDAT	I	Digital MIC Data Input Pin	AVDD / VSS1	AVDD
Other	s			•	
C3	PDN	I	Power down Pin "L": Power-Down, "H": Power-Up	TVDD / VSS3	TVDD
D3	TEST1	I	Test Input 1 Pin It must be tied "L".	TVDD VSS3	TVDD
C2	TEST2	I	Test Input 2 Pin It must be tied "L".	TVDD / VSS3	TVDD

Note 5. The SCL pin, SDA pin, MCKI/XTI pin, BCLK pin, LRCK pin, SDTI pin, HPGND pin, DMDAT pin, PDN pin, TEST1 pin and the TEST2 pin must not be allowed to float.

5-4. Handing of Unused Pins

Unused I/O pins must be connected appropriately.

Classification	Pin Name	Setting
Analog	HPL, HPR	Open
	MCKI/XTI, TEST1, TEST2	Connect to VSS3
Digital	DMCLK, SDTO, XTO	Open
	DMDAT	Connect to VSS1 or AVDD

6. Absolute Maximum Ratings

(VSS1 = VSS2 = VSS3 = 0 V; Note 7, Note 8)

Parameter		Symbol	Min.	Max.	Unit
Power	wer Analog		-0.3	4.3	V
Supplies:	Headphone Amplifier / Charge Pump	CVDD	-0.3	4.3	V
(Note 6)	LDO2 for Digital Core	LVDD	-0.3	4.3	V
	Digital Interface	TVDD	-0.3	4.3	V
Input Curre	nt, Any Pin Except Supplies	IIN	-	±10	mA
Digital Input	Voltage 1 (Note 9)	VIND1	-0.3	AVDD+0.3 or 4.3	V
Digital Input	Voltage 2 (Note 10)	VIND2	-0.3	TVDD+0.3 or 4.3	V
Ambient Te	mperature (powered applied)	Та	-40	85	°C
Storage Ter	nperature	Tstg	-65	150	°C

- Note 6. Charge pump 1 & 2 are not in operation. In the case that charge pump 1 & 2 are in operation, the maximum values of AVDD and CVDD become 2.15 V.
- Note 7. All voltages with respect to ground.
- Note 8. VSS1, VSS2 and VSS3 must be connected to the same analog plane.
- Note 9. DMDAT pin

The maximum value of input voltage is lower value between (AVDD+0.3) V and 4.3 V.

Note 10. MCKI/XTI, BCLK, LRCK, SDTI, SCL, SDA, PDN, TEST1, TEST2 pins
The maximum value of input voltage is lower value between (TVDD+0.3) V and 4.3 V.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal Operation is not guaranteed at these extremes.

7. Recommended Operating Conditions

(VSS1 = VSS2 = VSS3 = 0 V; Note 11)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Power	Analog	AVDD	1.7	1.8	1.9	V
Supplies:	Headphone Amplifier / Charge Pump	CVDD	1.7	1.8	1.9	V
(Note 12)	LDO2 for Digital Core	LVDD	1.7	1.8	1.9	V
	Digital Interface	TVDD	1.65	1.8	3.6	V

Note 11. All voltages with respect to ground.

Note 12. Each power up/down sequence is shown below.

<Power-Up>

- 1. PDN pin = "L"
- 2. TVDD, AVDD, LVDD and CVDD are powered up. (AVDD must be powered up before or at the same time of CVDD. The power-up sequence of TVDD and LVDD is not critical.)
- 3. The PDN pin is allowed to be "H" after all power supplies are applied and settled.

<Power-down>

- 1. PDN pin = "L"
- 2. TVDD, AVDD, LVDD and CVDD are powered down. (CVDD must be powered down before or at the same time of AVDD. The power-down sequence of TVDD and LVDD is not critical.)

8. Electrical Characteristics

8-1. DAC Analog Characteristics

(Ta = 25°C; AVDD = CVDD = LVDD = TVDD = 1.8 V; VSS1 = VSS2 = VSS3 = HPGND = 0 V; Signal Frequency = 1 kHz; 24-bit Data; fs = 48 kHz, BCLK = 64fs; Measurement Bandwidth = 20 Hz to 20 kHz, OVL/R = 0 dB, $R_L = 32\Omega$, SELDAIN bit = "0"; unless otherwise specified)

Parameter	Min.	Тур.	Max.	Unit	
Stereo DAC Characteristics:					
Resolution		-	-	32	Bits
Headphone Amplifier Characteristics:	: DAC (Stereo) \rightarrow I	HPL/HPR p	ins		
Output Power					
$0 \text{ dBFS}, R_L = 32\Omega, HPG = 0 \text{ dB}$		-	25	-	mW
$0 \text{ dBFS}, R_L = 32\Omega, HPG = -4 \text{ dB}$		-	10	-	mW
$R_L = 16\Omega$, HPG = 0 dB, THD+N < -60	dB	-	45	-	mW
$R_L = 8\Omega$, HPG = +2 dB, THD+N < -20	dB	-	70	-	mW
Output Level (0 dBFS, $R_L = 32\Omega$, HPG =	-4 dB) (Note 13)	0.52	0.57	0.61	Vrms
THD+N					
0 dBFS, $R_L = 32\Omega$, HPG = -4 dB (Po = 10 mW)	fs = 48 kHz BW = 20 kHz	-	-100	-90	dB
(fs = 96 kHz BW = 40 kHz	-	-97	-	dB
	fs = 192 kHz BW = 40 kHz	-	-97	-	dB
$-60 \text{ dBFS}, R_L = 32\Omega, HPG = -4 \text{ dB}$	fs = 48 kHz BW = 20 kHz	-	-44	-	dB
	fs = 96 kHz BW = 40 kHz	-	-40	-	dB
	fs = 192 kHz BW = 40 kHz	-	-40	-	dB
Dynamic Range -60 dBFS, A-weighted, HPG = -4 dB	-	107	•	dB	
S/N (A-weighted)					
Po = 25 mW, HPG = 0 dB (Data = 0 dB	-	109	-	dB	
Po = 10 mW, HPG = -4 dB (Data = 0 d	99	107	-	dB	
Output Noise Level (A-weighted, HPG = -10 dB)		-	-114	-106	dBV

Note 13. Output level is proportional to AVDD. Typ. 0.57 Vrms × AVDD / 1.8 V @headphone amplifier gain = -4 dB.

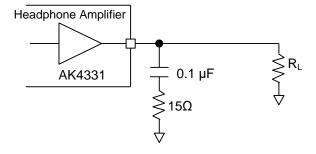


Figure 2. External Circuit for Headphone Amplifier

Parameter	Parameter				Unit
Interchannel Isolation					
0 dBFS, HPG = -4 dB (Po = -4 dB)	10 mW)				
External Impedance = 0.09	Ω (Note 14)	80	100	-	dB
Interchannel Gain Mismatch		-	0	0.8	dB
Load Resistance		7.2	32	-	Ω
Load Capacitance		-	-	500	pF
Load Inductance	-	-	0.375	μH	
PSRR (HPG = -4 dB) (Note 15					
217 Hz		-	85	-	dB
1 kHz		-	85	-	dB
DC-offset (Note 16)					
HPG = 0 dB		-0.15	0	+0.15	mV
HPG = All gain	-0.2	0	+0.2	mV	
Headphone Output Volume C	Characteristics:				
Gain Setting	-10	-	+4	dB	
Step Width	Gain: +4 to -10 dB	1	2	3	dB

Note 14. Impedance between the HPGND pin and the system ground.

Note 16. When there is no gain change and temperature drift after headphone amplifier is powered up.

Parameter	Value	Unit
ESD Immunity	.0	k\/
IEC61000-4-2 Level4, Contact (Note 17)	±8	٨V

Note 17. It is measured at the HPL and HPR pins on an evaluation board (AKD4331-SA Rev.1).

Note 15. PSRR is referred to all power supplies with 100 mVpp sine wave.

8-2. PLL Characteristics

(Ta = -40 to 85° C; AVDD = CVDD = LVDD = 1.7 to 1.9 V; TVDD = 1.65 to 3.6 V; VSS1 = VSS2 = VSS3 = HPGND = 0 V; unless otherwise specified)

Parameter	Min.	Тур.	Max.	Unit
PLL Characteristics				
Reference Clock (Note 15)	76.8	-	768	kHz
PLLCLK Frequency (Note 15)				
44.1 kHz × 256fs × 2	-	22.5792	-	MHz
48.0 kHz × 256fs × 2	-	24.576	-	MHz
Lock Time	-	-	2	msec

8-3. Charge Pump & LDO Circuit Power-Up Time

(Ta = -40 to 85° C; AVDD = CVDD = LVDD = 1.7 to 1.9 V; TVDD = 1.65 to 3.6 V; VSS1 = VSS2 = VSS3 = HPGND = 0 V; unless otherwise specified)

Parameter	Capacitor	Min.	Тур.	Max.	Unit
Block Power-Up Time					
CP1 (Note 18)	-	-	-	6.5	msec
CP2 (Class-G) (Note 18, Note 19)	-	-	-	4.5	msec
LDO1P (Note 20)	1 μF @RAVDD	-	-	0.5	msec
LDO1N (Note 20)	1 μF @RVEE	-	-	0.5	msec
LDO2 (Note 18)	-	-	-	1	msec

- Note 18. Power-up time is a fixed value that is not affected by a capacitor.
- Note 19. Power-up time is a value to $-1/2 \times \text{CVDD}$, since CP2 starts with 1/2VDD Mode as part of Class-G operation.
- Note 20. Power-up time is proportional to a capacitor value. For instance, if a 2.2 µF capacitor is connected to the RAVDD pin, LDO1P power-up time is 1.1 msec at maximum.

8-4. Power Supply Current

(Ta = 25° C; AVDD = CVDD = LVDD = TVDD = 1.8 V; VSS1 = VSS2 = VSS3 = HPGND = 0 V; unless otherwise specified)

Parameter	Min.	Тур.	Max.	Unit
Power Supply Current:				
Power Up (PDN pin = "H", All Circuits Power-Up) (Note	21)			
AVDD + CVDD + LVDD + TVDD	-	4.1	6.1	mA
Power Down (PDN pin = "L") (Note 22)				
AVDD + CVDD + LVDD + TVDD	-	0	10	μA

Note 21. fso/fsi = 48 kHz/48 kHz, MCKI = 256fs, BCLK = 64fs; No data input, R_L = 32 Ω , DAC, Headphone Amplifier, PLL & X'tal & SRC & DMIC Power-Up

Note 22. The DMDAT pin is fixed to AVDD or VSS1 and other digital input pins are fixed to TVDD or VSS3.

8-5. Power Consumptions for Each Operation Mode

(Ta = 25°C; AVDD = CVDD = LVDD = TVDD = 1.8 V; VSS1 = VSS2 = VSS3 = HPGND = 0 V; SRC Bypass Mode, MCKI = 256fs, BCLK = 64fs; No data input, R_L = 32 Ω , X'tal & DMIC OFF)

Table 1. Power Consumption (Typ.) for Each Operation Mode

Mada		Typical Current [mA]				
Mode	AVDD	CVDD	LVDD	TVDD	[mW]	
DAC → Headphone (fs = 48 kHz), External Slave Mode	0.79	1.37	0.27	0.01	4.4	
DAC → Headphone (fs = 96 kHz), External Slave Mode	0.87	1.69	0.36	0.01	5.3	
DAC → Headphone (fs = 192 kHz), External Slave Mode, MCKI = 128fs	0.87	1.69	0.44	0.01	5.4	
DAC → Headphone (fs = 48 kHz), External Slave Mode, DMIC enable	0.79	1.37	0.69	0.01	5.1	
DAC → Headphone (fs = 96 kHz), External Slave Mode, DMIC enable	0.87	1.69	1.16	0.01	6.7	
DAC → Headphone (fs = 48 kHz), PLL Slave Mode	1.06	1.37	0.31	0.01	5.0	
DAC → Headphone (fs = 96 kHz), PLL Slave Mode	1.14	1.69	0.41	0.01	5.9	
DAC → Headphone (fs = 192 kHz), PLL Slave Mode	1.14	1.69	0.49	0.01	6.0	

8-6. SRC Characteristics

(Ta = -40 to 85° C; AVDD = CVDD = LVDD = 1.7 to 1.9 V; TVDD = 1.65 to 3.6 V; VSS1 = VSS2 = VSS3 = 0 V; unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Resolution		-	-	32	Bits
Input Sample Rate	FSI	8	-	192	kHz
Output Sample Rate	FSO	8	-	192	kHz
Ratio between Input and Output Sample Rate	FSO/FSI	0.98	-	6.02	-

8-7. DAC Sharp Roll-Off Filter Characteristics (SRC Bypass Mode)

8-7-1. Sharp Roll-Off Filter (SRC Bypass Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 48 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "0", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital I	Filter (LPF):							
Passband	-0.006 to +0.23 dB	PB	0	-	22.42	kHz		
(Note 23)	-6.0 dB		-	24.02	-	kHz		
Stopband (No	ote 23)	SB	26.2	-	-	kHz		
Passband Rip	pple	PR	-0.006	-	+0.23	dB		
Stopband Atte	enuation (Note 24)	SA	69.8	-	-	dB		
Group Delay	(Note 25)	GD	-	25.8	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency Re	esponse: 0 to 20.0 kHz	FR	-0.12	-	+0.10	dB		

- Note 23. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.467 \times fs$ (@-0.006/+0.23 dB), SB = $0.5465 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 24. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 25. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-7-2. Sharp Roll-Off Filter (SRC Bypass Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6\text{V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 96 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "0", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

	, , , , , , , , , , , , , , , , , , , ,	-,	,	, -		- /		
Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital	Filter (LPF):							
Passband	-0.003 to +0.24 dB	PB	0	-	44.85	kHz		
(Note 26)	–6.0 dB		-	48.04	-	kHz		
Stopband (No	ote 26)	SB	52.5	-	-	kHz		
Passband Ri	pple	PR	-0.003	-	+0.24	dB		
Stopband Att	enuation (Note 27)	SA	69.8	-	-	dB		
Group Delay	(Note 28)	GD	-	25.8	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 40.0 kHz	FR	-1.69	-	+0.11	dB		

- Note 26. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.4672 \times fs$ (@-0.003/+0.24 dB), SB = $0.547 \times fs$. Each frequency response refers to that of 1 kHz
- Note 27. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 28. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-7-3. Sharp Roll-Off Filter (SRC Bypass Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 192 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "0", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital	Filter (LPF):							
Passband	-0.002 to +0.24 dB	PB	0	-	89.74	kHz		
(Note 29)	−6.0 dB		-	96.08	-	kHz		
Stopband (N	ote 29)	SB	104.9	-	-	kHz		
Passband Ri	pple	PR	-0.002	-	+0.24	dB		
Stopband Att	enuation (Note 30)	SA	69.8	-	-	dB		
Group Delay	Group Delay (Note 31)		-	25.8	-	1/fs		
DAC Digital	DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):							
Frequency R	esponse: 0 to 80.0 kHz	FR	-8.23	-	+0.35	dB		

- Note 29. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.4674 × fs (@-0.002/+0.24 dB), SB = 0.5465 × fs. Each frequency response refers to that of 1 kHz.
- Note 30. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 31. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-8. DAC Slow Roll-Off Filter Characteristics (SRC Bypass Mode)

8-8-1. Slow Roll-Off Filter (SRC Bypass Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 48 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "1", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital F	Filter (LPF):							
Passband	-0.07 to +0.005 dB	PB	0	-	8.49	kHz		
(Note 32)	−3.0 dB		-	20.15	-	kHz		
Stopband (No	ite 32)	SB	42.59	•	-	kHz		
Passband Rip	pple	PR	-0.07	-	+0.005	dB		
Stopband Atte	enuation (Note 33)	SA	72.8	-	-	dB		
Group Delay	(Note 34)	GD	-	25.8	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency Re	esponse: 0 to 20.0 kHz	FR	-3.21	-	+0.03	dB		

- Note 32. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.1769 \times fs$ (@-0.07/+0.005 dB), SB = $0.887 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 33. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 34. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-8-2. Slow Roll-Off Filter (SRC Bypass Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 96 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "1", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

	,	- ,	- , ,			- /		
Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital	Filter (LPF):							
Passband	-0.07 to +0.006 dB	PB	0	-	17.02	kHz		
(Note 35)	-3.0 dB		-	40.3	-	kHz		
Stopband (No	ote 35)	SB	85.15	-	-	kHz		
Passband Ri	pple	PR	-0.07	-	+0.006	dB		
Stopband Att	enuation (Note 36)	SA	72.8	-	-	dB		
Group Delay	(Note 37)	GD	-	25.8	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 40.0 kHz	FR	-4.84	-	+0.10	dB		

- Note 35. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.1773 \times fs$ (@-0.07/+0.006 dB), SB = $0.887 \times fs$. Each frequency response refers to that of 1 kHz
- Note 36. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate)
- Note 37. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-8-3. Slow Roll-Off Filter (SRC Bypass Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 192 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "1", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit	
DAC Digital	Filter (LPF):						
Passband	-0.07 to +0.006 dB	PB	0	-	34.17	kHz	
(Note 38)	-3.0 dB		-	80.65	-	kHz	
Stopband (No	ote 38)	SB	170.3	-	-	kHz	
Passband Ri	pple	PR	-0.07	-	+0.006	dB	
Stopband Att	enuation (Note 39)	SA	72.8	-	-	dB	
Group Delay (Note 40)		GD	-	25.8	-	1/fs	
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):							
Frequency R	esponse: 0 to 80.0 kHz	FR	-11.38	-	+0.35	dB	

- Note 38. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.178 \times fs$ (@-0.07/+0.006 dB), SB = $0.887 \times fs$. Each frequency response refers to that of 1 kHz
- Note 39. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 40. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-9. DAC Short Delay Sharp Roll-Off Filter Characteristics (SRC Bypass Mode)

8-9-1. Short Delay Sharp Roll-Off Filter (SRC Bypass Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 48 \text{ kHz}; \text{DASD bit} = "1", \text{DASL bit} = "0", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.009 to +0.232 dB	PB	0	-	22.41	kHz		
(Note 41)	-6.0 dB		-	24.15	-	kHz		
Stopband (No	ote 41)	SB	26.23	-	-	kHz		
Passband Rip	pple	PR	-0.009	-	+0.232	dB		
Stopband Atte	enuation (Note 42)	SA	69.8	-	-	dB		
Group Delay	(Note 43)	GD	-	5.5	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency Re	esponse: 0 to 20.0 kHz	FR	-0.12	-	+0.10	dB		

- Note 41. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.4669 x fs (@-0.009/+0.232 dB), SB = 0.5465 x fs. Each frequency response refers to that of 1 kHz.
- Note 42. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 43. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-9-2. Short Delay Sharp Roll-Off Filter (SRC Bypass Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; AVDD = CVDD = LVDD = 1.7 \text{ to } 1.9 \text{ V}; TVDD = 1.65 \text{ to } 3.6 \text{ V}; VSS1 = VSS2 = VSS3 = HPGND = 0 V; fs = 96 \text{ kHz}; DASD \text{ bit } = "1", DASL \text{ bit } = "0", SELDAIN \text{ bit } = "0", DADFSEL \text{ bit } = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.004 to +0.238 dB	PB	0	-	44.82	kHz		
(Note 44)	-6.0 dB		-	48.32	-	kHz		
Stopband (N	ote 44)	SB	52.5	-	-	kHz		
Passband Ri	pple	PR	-0.004	-	+0.238	dB		
Stopband At	tenuation (Note 45)	SA	69.8	-	-	dB		
Group Delay	(Note 46)	GD	-	5.5	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 40.0 kHz	FR	-1.69	-	+0.11	dB		

- Note 44. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.4669 \times fs$ (@-0.004/+0.238 dB), SB = $0.5465 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 45. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 46. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-9-3. Short Delay Sharp Roll-Off Filter (SRC Bypass Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 192 \text{ kHz}; \text{DASD bit} = "1", \text{DASL bit} = "0", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit			
DAC Digital Filter (LPF):									
Passband	-0.002 to +0.247 dB	PB	0	-	89.68	kHz			
(Note 47)	-6.0 dB		-	96.64	-	kHz			
Stopband (No	ite 47)	SB	104.9	-	-	kHz			
Passband Rip	pple	PR	-0.002	-	+0.247	dB			
Stopband Atte	enuation (Note 48)	SA	69.8	-	-	dB			
Group Delay	(Note 49)	GD	-	5.5	-	1/fs			
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):									
Frequency Re	esponse: 0 to 80.0 kHz	FR	-8.23	-	+0.36	dB			

- Note 47. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.4671 × fs (@-0.002/+0.247 dB), SB = 0.5465 × fs. Each frequency response refers to that of 1 kHz.
- Note 48. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 49. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-10. DAC Short Delay Slow Roll-Off Filter Characteristics (SRC Bypass Mode)

8-10-1. Short Delay Slow Roll-Off Filter (SRC Bypass Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 48 \text{ kHz}; \text{DASD bit} = "1", \text{DASL bit} = "1", \text{SELDAIN bit} = "0", \text{DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.07 to +0.025 dB	PB	0	-	9.82	kHz		
(Note 50)	−3.0 dB		-	20.57	-	kHz		
Stopband (No	ite 50)	SB	42.98	-	-	kHz		
Passband Rip	pple	PR	-0.07	-	+0.025	dB		
Stopband Atte	enuation (Note 51)	SA	75.1	-	-	dB		
Group Delay	(Note 52)	GD	-	4.5	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency Re	esponse: 0 to 20.0 kHz	FR	-2.96	-	+0.04	dB		

- Note 50. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.2045 × fs (@-0.07/+0.025 dB), SB = 0.8955 × fs. Each frequency response refers to that of 1 kHz.
- Note 51. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 52. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-10-2. Short Delay Slow Roll-Off Filter (SRC Bypass Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{ AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{ TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{ VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{ fs} = 96 \text{ kHz}; \text{ DASD bit} = "1", \text{ DASL bit} = "1", \text{ SELDAIN bit} = "0", \text{ DADFSEL bit} = "0")$

	,	. ,						
Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.07 to +0.027 dB	PB	0	-	19.7	kHz		
(Note 53)	-3.0 dB		-	41.16	-	kHz		
Stopband (N	ote 53)	SB	85.97	-	-	kHz		
Passband Ri	pple	PR	-0.07	-	+0.027	dB		
Stopband Att	enuation (Note 54)	SA	75.1	-	-	dB		
Group Delay	(Note 55)	GD	=	4.5	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 40.0 kHz	FR	-4.59	-	+0.10	dB		

- Note 53. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.2052 \times fs$ (@-0.07/+0.027 dB), SB = $0.8955 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 54. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 55. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-10-3. Short Delay Slow Roll-Off Filter (SRC Bypass Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{ AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{ TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{ VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{ fs} = 192 \text{ kHz}; \text{ DASD bit} = "1", \text{ DASL bit} = "1", \text{ SELDAIN bit} = "0", \text{ DADFSEL bit} = "0")$

Parameter		Symbol	Min.	Тур.	Max.	Unit			
DAC Digital Filter (LPF):									
Passband	-0.07 to +0.028 dB	PB	0	-	39.54	kHz			
(Note 56)	−3.0 dB		-	82.37	-	kHz			
Stopband (Note 56)		SB	172	-	-	kHz			
Passband Rip	pple	PR	-0.07	-	+0.028	dB			
Stopband Atte	enuation (Note 57)	SA	75.1	-	-	dB			
Group Delay	(Note 58)	GD	-	4.5	-	1/fs			
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):									
Frequency Re	esponse: 0 to 80.0 kHz	FR	-11.13	-	+0.35	dB			

- Note 56. The passband and stopband frequencies scale with fs (system sampling rate)

 PB = 0.2059 × fs (@-0.07/+0.028 dB), SB = 0.8958 × fs. Each frequency response refers to that of 1 kHz.
- Note 57. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 58. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-11. DAC Sharp Roll-Off Filter Characteristics (SRC Mode)

8-11-1. Sharp Roll-Off Filter (SRC Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 48 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "0", \text{SELDAIN bit} = "1", \text{DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit			
DAC Digital Filter (LPF):									
Passband	-0.004 to +0.199 dB	PB	0	-	22.28	kHz			
(Note 59)	-6.0 dB		-	24.00	-	kHz			
Stopband (No	ote 59)	SB	26.21	-	-	kHz			
Passband Rip	pple	PR	-0.004	-	+0.199	dB			
Stopband Atte	enuation (Note 60)	SA	70.4	-	-	dB			
Group Delay	(Note 61)	GD	-	27.6	-	1/fs			
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):									
Frequency Re	esponse: 0 to 20.0 kHz	FR	-0.12	-	+0.10	dB			

- Note 59. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.4642 × fs (@-0.004/+0.199 dB), SB = 0.546 × fs. Each frequency response refers to that of 1 kHz.
- Note 60. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 61. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-11-2. Sharp Roll-Off Filter (SRC Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6\text{V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 96 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "0", \text{SELDAIN bit} = "1", \text{DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.001 to +0.202 dB	PB	0	-	44.58	kHz		
(Note 62)	-6.0 dB		-	48.01	-	kHz		
Stopband (N	ote 62)	SB	52.45	-	-	kHz		
Passband Ri	pple	PR	-0.001	-	+0.202	dB		
Stopband At	tenuation (Note 63)	SA	70.2	-	-	dB		
Group Delay	(Note 64)	GD	-	27.6	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 40.0 kHz	FR	-1.72	-	+0.11	dB		

- Note 62. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.4644 \times fs$ (@-0.001/+0.202 dB), SB = $0.5464 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 63. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 64. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-11-3. Sharp Roll-Off Filter (SRC Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 192 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "0", \text{SELDAIN bit} = "1", \text{DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit			
DAC Digital Filter (LPF):									
Passband	0.000 to +0.210 dB	PB	0	-	89.22	kHz			
(Note 65)	−6.0 dB		-	96.02	-	kHz			
Stopband (N	ote 65)	SB	104.92	-	-	kHz			
Passband Ri	pple	PR	0.000	-	+0.210	dB			
Stopband Att	enuation (Note 66)	SA	70.1	-	-	dB			
Group Delay	(Note 67)	GD	-	27.6	-	1/fs			
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):									
Frequency R	esponse: 0 to 80.0 kHz	FR	-8.27	-	+0.35	dB			

- Note 65. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.4647 × fs (@0.000/+0.210 dB), SB = 0.5465 × fs. Each frequency response refers to that of 1 kHz.
- Note 66. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 67. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-12. DAC Slow Roll-Off Filter Characteristics (SRC Mode)

8-12-1. Slow Roll-Off Filter (SRC Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{ AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{ TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{ VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{ fs} = 48 \text{ kHz}; \text{ DASD bit} = "0", \text{ DASL bit} = "1", \text{ SELDAIN bit} = "1", \text{ DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit			
DAC Digital Filter (LPF):									
Passband	-0.07 to +0.011 dB	PB	0	-	8.91	kHz			
(Note 68)	-3.0 dB		-	20.06	-	kHz			
Stopband (Note 68)		SB	42.57	-	-	kHz			
Passband Ri	pple	PR	-0.07	-	+0.011	dB			
Stopband Att	tenuation (Note 69)	SA	73.9	-	-	dB			
Group Delay	(Note 70)	GD	-	27.6	-	1/fs			
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):									
Frequency R	esponse: 0 to 20.0 kHz	FR	-3.21	-	+0.03	dB			

- Note 68. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.1856 \times fs$ (@-0.07/+0.011 dB), SB = $0.887 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 69. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 70. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-12-2. Slow Roll-Off Filter (SRC Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 96 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "1", \text{SELDAIN bit} = "1", \text{DADFSEL bit} = "1")$

			,	.,				
Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.07 to +0.012 dB	PB	0	-	17.88	kHz		
(Note 71)	-3.0 dB		-	40.15	-	kHz		
Stopband (N	ote 71)	SB	85.15	-	-	kHz		
Passband Ri	pple	PR	-0.07	-	+0.012	dB		
Stopband Att	enuation (Note 72)	SA	73.9	-	-	dB		
Group Delay	(Note 73)	GD	-	27.6	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 40.0 kHz	FR	-4.87	-	+0.10	dB		

- Note 71. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.1863 \times fs$ (@-0.07/+0.012 dB), SB = $0.887 \times fs$. Each frequency response refers to that of 1 kHz
- Note 72. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 73. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-12-3. Slow Roll-Off Filter (SRC Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 192 \text{ kHz}; \text{DASD bit} = "0", \text{DASL bit} = "1", \text{SELDAIN bit} = "1", \text{DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit			
DAC Digital Filter (LPF):									
Passband	-0.07 to +0.013 dB	PB	0	-	35.89	kHz			
(Note 74)	−3.0 dB		-	80.34	-	kHz			
Stopband (Note 74)		SB	170.30	•	-	kHz			
Passband Rip	pple	PR	-0.07	-	+0.013	dB			
Stopband Atte	enuation (Note 75)	SA	73.9	-	-	dB			
Group Delay	(Note 76)	GD	-	27.6	-	1/fs			
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):									
Frequency Re	esponse: 0 to 80.0 kHz	FR	-11.42	-	+0.35	dB			

- Note 74. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.1869 \times fs$ (@-0.07/+0.013 dB), SB = $0.887 \times fs$. Each frequency response refers to that of 1 kHz
- Note 75. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 76. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-13. DAC Short Delay Sharp Roll-Off Filter Characteristics (SRC Mode)

8-13-1. Short Delay Sharp Roll-Off Filter (SRC Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 48 \text{ kHz}; \text{DASD bit} = "1", \text{DASL bit} = "0", \text{SELDAIN bit} = "1", \text{DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.004 to +0.198 dB	PB	0	-	22.28	kHz		
(Note 77)	-6.0 dB		-	24.00	-	kHz		
Stopband (Note 77)		SB	26.21	-	-	kHz		
Passband Ri	pple	PR	-0.004	-	+0.198	dB		
Stopband At	tenuation (Note 78)	SA	70.4	-	-	dB		
Group Delay (Note 79)		GD	-	7.3	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency Response: 0 to 20.0 kHz		FR	-0.12	-	+0.10	dB		

- Note 77. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.4642 × fs (@-0.004/+0.198 dB), SB = 0.546 × fs. Each frequency response refers to that of 1 kHz.
- Note 78. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 79. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-13-2. Short Delay Sharp Roll-Off Filter (SRC Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{fs} = 96 \text{ kHz}; \text{DASD bit} = "1", \text{DASL bit} = "0", \text{SELDAIN bit} = "1", \text{DADFSEL bit} = "1")$

	.,	. ,	,		11211 1 , 2 , 12 1 0 2 2 1 1 1 1			
Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.001 to +0.202 dB	PB	0	-	44.58	kHz		
(Note 80)	-6.0 dB		-	48.01	-	kHz		
Stopband (Note 80)		SB	52.44	-	-	kHz		
Passband Ri	pple	PR	-0.001	-	+0.202	dB		
Stopband Att	tenuation (Note 81)	SA	70.4	-	-	dB		
Group Delay (Note 81)		GD	-	7.3	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 40.0 kHz	FR	-1.72	-	+0.11	dB		

- Note 80. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.4644 \times fs$ (@-0.001/+0.202 dB), SB = $0.5463 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 81. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate)
- Note 82. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-13-3. Short Delay Sharp Roll-Off Filter (SRC Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{ AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{ TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{ VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{ fs} = 192 \text{ kHz}; \text{ DASD bit} = "1", \text{ DASL bit} = "0", \text{ SELDAIN bit} = "1", \text{ DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	0.000 to +0.210 dB	PB	0	-	89.22	kHz		
(Note 83)	-6.0 dB		-	96.02	-	kHz		
Stopband (N	Stopband (Note 83)		104.90	-	-	kHz		
Passband R	pple	PR	0.000	-	+0.210	dB		
Stopband At	tenuation (Note 84)	SA	70.4	-	-	dB		
Group Delay	Group Delay (Note 85)		-	7.3	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency R	esponse: 0 to 80.0 kHz	FR	-8.27	-	+0.36	dB		

- Note 83. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.4647 × fs (@0.000/+0.210 dB), SB = 0.5464 × fs. Each frequency response refers to that of 1 kHz.
- Note 84. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 85. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-14. DAC Short Delay Slow Roll-Off Filter Characteristics (SRC Mode)

8-14-1. Short Delay Slow Roll-Off Filter (SRC Mode, fs = 48 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{ AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{ TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{ VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{ fs} = 48 \text{ kHz}; \text{ DASD bit} = "1", \text{ DASL bit} = "1", \text{ SELDAIN bit} = "1", \text{ DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.07 to +0.036 dB	PB	0	-	10.19	kHz		
(Note 86)	-3.0 dB		-	20.48	-	kHz		
Stopband (No	Stopband (Note 86)		42.98	-	-	kHz		
Passband Rip	pple	PR	-0.07	-	+0.036	dB		
Stopband Atte	enuation (Note 87)	SA	76.3	-	-	dB		
Group Delay	Group Delay (Note 88)		oup Delay (Note 88)		-	6.3	-	1/fs
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency Response: 0 to 20.0 kHz		FR	-2.97	-	+0.04	dB		

- Note 86. The passband and stopband frequencies scale with fs (system sampling rate).

 PB = 0.2123 × fs (@-0.07/+0.036 dB), SB = 0.8954 × fs. Each frequency response refers to that of 1 kHz.
- Note 87. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 88. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-14-2. Short Delay Slow Roll-Off Filter (SRC Mode, fs = 96 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{ AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{ TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{ VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{ fs} = 96 \text{ kHz}; \text{ DASD bit} = "1", \text{ DASL bit} = "1", \text{ SELDAIN bit} = "1", \text{ DADFSEL bit} = "1")$

	,	. ,	. , ,		1121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Parameter		Symbol	Min.	Тур.	Max.	Unit			
DAC Digital Filter (LPF):									
Passband	-0.07 to +0.038 dB	PB	0	-	20.45	kHz			
(Note 89)	-3.0 dB		-	40.98	-	kHz			
Stopband (Note 89)		SB	85.80	-	-	kHz			
Passband Ri	pple	PR	-0.07	-	+0.038	dB			
Stopband Att	enuation (Note 90)	SA	73.9	-	-	dB			
Group Delay (Note 91)		GD	-	6.3	-	1/fs			
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):									
Frequency R	esponse: 0 to 40.0 kHz	FR	-4.63	-	+0.10	dB			

- Note 89. The passband and stopband frequencies scale with fs (system sampling rate). PB = $0.2130 \times fs$ (@-0.07/+0.038 dB), SB = $0.8938 \times fs$. Each frequency response refers to that of 1 kHz.
- Note 90. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 91. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-14-3. Short Delay Slow Roll-Off Filter (SRC Mode, fs = 192 kHz)

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; \text{ AVDD} = \text{CVDD} = \text{LVDD} = 1.7 \text{ to } 1.9 \text{ V}; \text{ TVDD} = 1.65 \text{ to } 3.6 \text{ V}; \text{ VSS1} = \text{VSS2} = \text{VSS3} = \text{HPGND} = 0 \text{ V}; \text{ fs} = 192 \text{ kHz}; \text{ DASD bit} = "1", \text{ DASL bit} = "1", \text{ SELDAIN bit} = "1", \text{ DADFSEL bit} = "1")$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
DAC Digital Filter (LPF):								
Passband	-0.07 to +0.039 dB	PB	0	-	41.05	kHz		
(Note 92)	−3.0 dB		-	82.02	-	kHz		
Stopband (No	Stopband (Note 92)		171.96	-	-	kHz		
Passband Rip	pple	PR	-0.07	-	+0.039	dB		
Stopband Atte	enuation (Note 93)	SA	76.2	-	-	dB		
Group Delay (Note 94)		GD	-	6.3	-	1/fs		
DAC Digital Filter (LPF) + DACANA (Headphone Amplifier):								
Frequency Re	esponse: 0 to 80.0 kHz	FR	-11.17	-	+0.35	dB		

- Note 92. The passband and stopband frequencies scale with fs (system sampling rate)

 PB = 0.2138 × fs (@-0.07/+0.039 dB), SB = 0.8956 × fs. Each frequency response refers to that of 1 kHz.
- Note 93. The bandwidth of the stopband attenuation value is from stopband to fs (system sampling rate).
- Note 94. The calculated delay time is resulting from digital filtering. This is the time from the input of MSB for L channel of SDTI to the output of an analog signal. The error of the delay at audio interface is within +1 [1/fs].

8-15. Digital Microphone Filter Characteristics

 $(Ta = -40 \text{ to } 85^{\circ}\text{C}; AVDD = CVDD = LVDD = 1.7 \text{ to } 1.9 \text{ V}; TVDD = 1.65 \text{ to } 3.6 \text{ V}; VSS1 = VSS2 = VSS3 = HPGND = 0 V; fs = 48 \text{ kHz})$

Parameter		Symbol	Min.	Тур.	Max.	Unit		
Passband	+0.18 to -	-0.09 dB	PB	0	-	20.7	kHz	
(Note 95)	-0.87 dB			-	21.6	-	kHz	
	-3.0 dB			-	22.8	-	kHz	
Stopband (No	te 95)		SB	28.4	-	-	kHz	
Passband Ripple		PR	-0.09	-	0.18	dB		
Stopband Atte	enuation		SA	65	-	-	dB	
Group Delay I	Distortion		ΔGD	-	0	-	µsec	
Group Delay	(Ts = 1/fs)	Note 96)	GD	-	12.5	-	1/fs	
Digital MIC HPF: HPFC[1:0] bits = "00"								
Frequency Re (Note 95)	esponse	-3.0 dB	FR	-	29.8	-	Hz	

Note 95. The passband and stopband frequencies scale with "fs" (system sampling rate). Each frequency response refers to that of 1 kHz.

Note 96. The calculated delay time is resulting from digital filtering. This is the time from the 16/24/32-bit data is set to input register to the output of SDTO digital data.

8-16. DC Characteristics

(Ta = -40 to 85° C; AVDD = CVDD = LVDD = 1.7 to 1.9 V, TVDD = 1.65 to 3.6 V; VSS1 = VSS2 = VSS3 = HPGND = 0 V, PMOSC bit = "0")

Parameter	Symbol	Min.	Тур.	Max.	Unit
I/O Pins (Note 97)					
High-Level Input Voltage					
Except for DMDAT pin	VIH1	70%TVDD	-	-	V
DMDAT pin	VIH2	65%AVDD	-	-	V
Low-Level Input Voltage					
Except for DMDAT pin	VIL1	-	-	30%TVDD	V
DMDAT pin	VIL2	-	-	35%AVDD	V
High-Level Output Voltage					
Except for DMCLK pin (lout = $-200 \mu A$)	VOH1	TVDD - 0.2	-	-	V
DMCLK pin (lout = -80μ A)	VOH2	AVDD - 0.4	-	-	V
Low-Level Output Voltage					
Except for SDA pin, DMCLK pin	VOL1			0.2	V
(lout = 200 μA)	VOLI	-	_	0.2	V
DMCLK pin (lout = 80 μA)	VOL2	-	-	0.4	V
SDA pin					
$2 \text{ V} < \text{TVDD} \le 3.6 \text{ V} \text{ (lout = 3 mA)}$	VOL3	-	-	0.4	V
$1.65 \text{ V} \leq \text{TVDD} \leq 2 \text{ V (lout} = 2 \text{ mA)}$	VOL3	-	-	20%TVDD	V
Input Leakage Current (Note 98)	lin	-5	-	+5	μA

Note 97. MCKI/XTI, BCLK, LRCK, SDTI, SDTO, SCL, SDA, PDN, TEST1, TEST2, DMCLK, DMDAT pins.

Note 98. Except for MCKI/XTI pin.

8-17. Switching Characteristics

(Ta = -40 to 85° C; AVDD = CVDD = LVDD = 1.7 to 1.9 V, TVDD = 1.65 to 3.6 V; VSS1 = VSS2 = VSS3 = HPGND = 0 V; CL = 80 pF; unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit
MCKI	- Cyllinder	1411111	. , p.	Maxi	O m
Input Frequency	fMCK	0.256	_	24.576	MHz
Pulse Width Low	tMCKL	0.256 0.4 / fMCK	-	24.570	
			-	-	nsec
Pulse Width High	tMCKH	0.4 / fMCK	-	-	nsec
X'tal Oscillator (XTI pin)	(1.101/	44.0000		04.570	
Input Frequency	fMCK	11.2896	-	24.576	MHz
Audio Interface Timing					
Master Mode					
LRCK Output Timing					
Frequency (When not use Digital MIC)	fs	8		192	kHz
(Note 99)	15	0	-	192	KIIZ
Frequency (When use Digital MIC)	40	8		96	kHz
(Note 100)	fs	0	-	96	KIZ
Duty	LRDuty	-	50	-	%
BCLK Output Timing					
Period (BCKO bit = "0")	tBCK	-	1/(64fs)	-	nsec
(BCKO bit = "1")	tBCK	-	1/(32fs)	-	nsec
Duty	BCKDuty	-	`50 ´	-	%
BCLK "↓" to LRCK Edge	tBLR	-20	-	20	nsec
SDTI Setup Time	tBDS	10	-	-	nsec
SDTI Hold Time	tBDH	10	-	-	nsec
Delay time from BCLK Falling to SDTO	tBOD	-40	-	40	nsec
Slave Mode	I				
LRCK Input Timing					
Frequency (When not use Digital MIC)					
(Note 99)	fs	8	-	192	kHz
Frequency (When use Digital MIC)					
(Note 100)	fs	8	-	96	kHz
Duty	LRDuty	45	50	55	%
BCLK Input Timing	Liteary	10	- 00	- 00	70
Frequency (When not use Digital MIC)				12.288	
(Note 101)	fBCK	0.256	-	or 512fs	MHz
Frequency (When use Digital MIC)				6.144	
(Note 102)	fBCK	0.256	-	or 512fs	MHz
Pulse Width Low	tBCKL	0.4 / tBCK	_	01 31215	neoc
Pulse Width Low Pulse Width High	tBCKL	0.4 / tBCK	_	_	nsec
BCLK "↑" to LRCK Edge	tBLR	20		_	nsec
			-	-	nsec
LRCK Edge to BCLK "↑"	tLRB	20	-	-	nsec
SDTI Setup Time	tBDS	10	-	-	nsec
SDTI Hold Time	tBDH	10	-	-	nsec
Delay time from BCLK Falling to SDTO	tBOD	-	-	40	nsec

Note 99. Supported sampling rate are 8 k, 11.025 k, 12 k, 16 k, 22.05 k, 24 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96 k, 128 k, 176.4 k and 192 kHz.

Note 100. Supported sampling rate are 8 k, 11.025 k, 12 k, 16 k, 22.05 k, 24 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k and 96 kHz.

Note 101. The maximum value is lower frequency between "12.288 MHz" and "512fs".

Note 102. The maximum value is lower frequency between "6.144 MHz" and "512fs".

Parameter	Symbol	Min.	Тур.	Max.	Unit
Digital MIC Interface Timing: C _L = 100 pF					
DMCLK Output Timing					
Period	tSCK	-	1/(64fs)	-	nsec
Rising Time	tSRise	-	-	10	nsec
Falling Time	tSFall	-	-	10	nsec
Duty Cycle	dSCK	45	50	55	%
Audio Interface Timing (DMCLK, DMDAT pins)					
DMDAT Setup Time	tDMS	50	-	-	nsec
DMDAT Hold Time	tDMH	0	-	-	nsec
Control Interface Timing (I ² C-bus mode): (Note 103)					
SCL Clock Frequency	fSCL	-	-	400	kHz
Bus Free Time Between Transmissions	tBUF	1.3	-	-	µsec
Start Condition Hold Time (prior to first clock pulse)	tHD:STA	0.6	-	-	µsec
Clock Low Time	tLOW	1.3	-	-	µsec
Clock High Time	tHIGH	0.6	-	-	µsec
Setup Time for Repeated Start Condition	tSU:STA	0.6	-	-	µsec
SDA Hold Time from SCL Falling (Note 104)	tHD:DAT	0	-	-	µsec
SDA Setup Time from SCL Rising	tSU:DAT	0.1	-	-	µsec
Rise Time of Both SDA and SCL Lines	tR	-	-	0.3	µsec
Fall Time of Both SDA and SCL Lines	tF	-	-	0.3	µsec
Setup Time for Stop Condition	tSU:STO	0.6	-	-	µsec
Capacitive Load on Bus	Cb	-	-	400	pF
Pulse Width of Spike Noise Suppressed by Input Filter	tSP	0	-	50	nsec
Power-Down & Reset Timing					
PDN Accept Pulse Width (Note 105)	tPDN	1	-	-	msec
PDN Reject Pulse Width (Note 105)	tRPD	-	-	50	nsec
PMDMx bit = "1" to SDTO Valid (Note 106)					
ADRST[1:0] bits = "00"	tPDV	-	1059	-	1/fs
ADRST[1:0] bits = "01"	tPDV	-	267	-	1/fs
ADRST[1:0] bits = "10"	tPDV	-	2115	-	1/fs
ADRST[1:0] bits = "11"	tPDV	-	531	-	1/fs

Note 103. I²C-bus is a registered trademark of NXP B.V.

Note 104. Data must be held long enough to bridge the 300 nsec-transition time of SCL.

Note 105. The AK4331 will be reset by bringing the PDN pin = "L". The PDN pin must held "L" for longer period than or equal to tPDN (Min.). The AK4331 will not be reset by the "L" pulse shorter than or equal to tRPD (Max.).

Note 106. This is the time from PMDMx bit = "1" to the output of SDTO digital data.

8-18. Timing Diagram (System Clock)

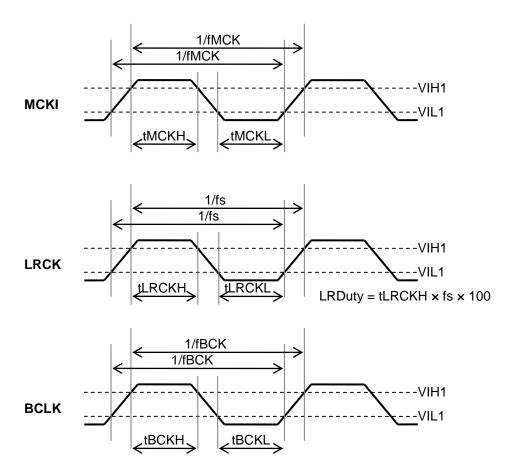


Figure 3. System Clock (Slave Mode)

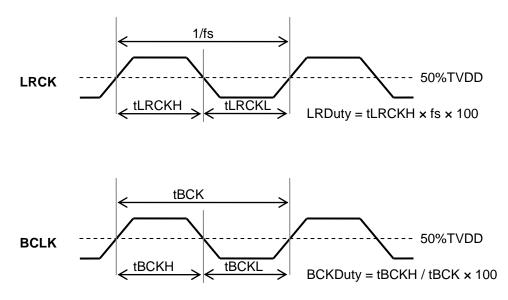


Figure 4. System Clock (Master Mode)

8-19. Timing Diagram (Serial Audio Interface)

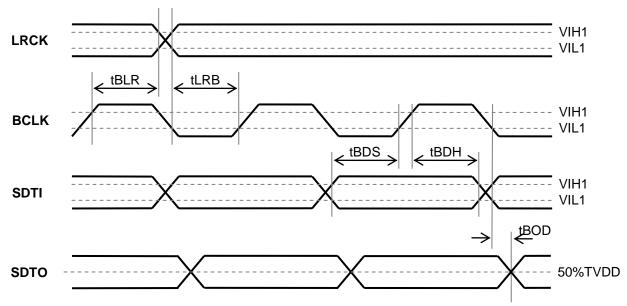


Figure 5. Serial Data Interface (Slave Mode)

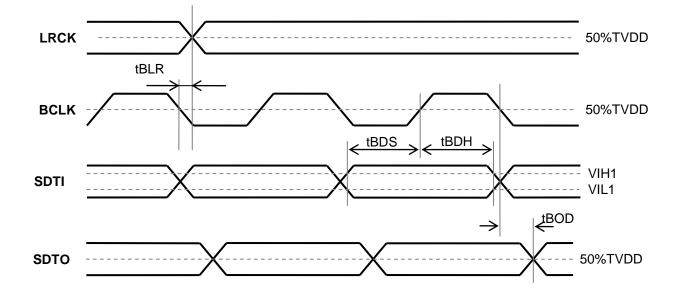
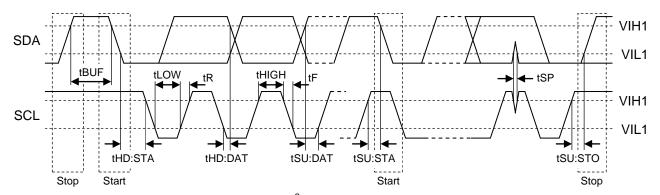
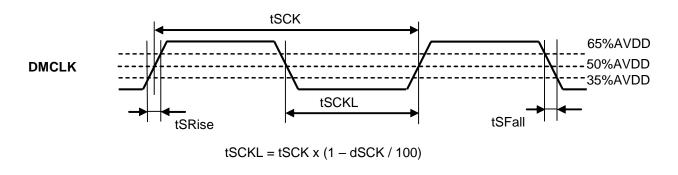


Figure 6. Serial Data Interface (Master Mode)

8-20. Timing Diagram (I²C-bus Interface)




Figure 7. I²C-bus Mode Timing

8-21. Timing Diagram (Reset)

Figure 8. Power Down and Standby

8-22. Timing Diagram (Digital Microphone Interface)

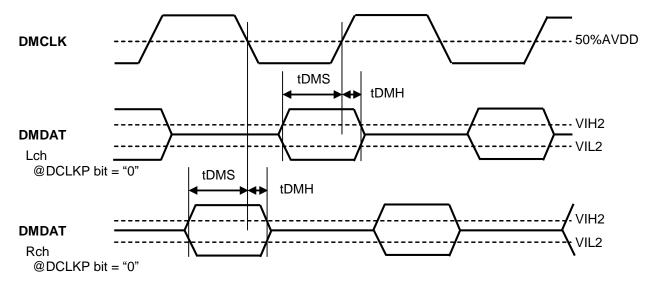


Figure 9. Digital Microphone Interface Timing

9. Functional Description

9-1. System Clock

The SRC, DAC, Headphone Amplifier and Audio Interface blocks are operated by a clock generated by PLL, an external MCKI or a clock generated by X'tal oscillator. The sampling frequency and master clock frequency are set by registers shown in Table 2.

Table 2. Setting Registers for Master Clock Frequency and Sampling Frequency

	SRC Path Mode				
System Clock	SRC Bypass	SRC Mode			
	Mode	FSI	FSO		
Master Clock Frequency	HPMD[1:0] bits, CM[1:0] bits (Table 5)	CM[1:0] bits (Table 7)	HPMD[1:0] bits, CM2[1:0] bits (Table 9)		
Sampling	FS[4:0] bits	FS[4:0] bits	FS2[4:0] bits		
Frequency	(Table 6)	(Table 8)	(Table 10)		

The AK4331 can be operated in both master and slave modes. Clock mode of the LRCK pin and the BLCK pin can be selected by MS bit. When using master mode, the LRCK pin and the BCLK pin should be pulled down or pulled up with an external resistor (about 100 k Ω) because both pins are floating state until MS bit becomes "1".

Table 3. Master / Slave Mode Select

MS bit	LRCK pin, BCLK pin	
0	Slave Mode	(default)
1	Master Mode	

Master / slave mode switching is not allowed while the AK4331 is in normal operation. The SRC, DAC and headphone amplifier must be powered down and PMTIM bit must be "0" before master / slave mode is switched. Furthermore, PLL and charge pump must also be powered down in case that sampling frequency is changed or SRCMCLK / DACCLK is stopped.

<MS bit Setting Sequence Example>

- 1. SRC, DAC, Headphone Amplifier (PLL, Charge Pump) Power-Down
- 2. Clock Mode of ACPU Setting (In case clock mode of ACPU is master, switch to slave.)
- 3. MS bit Selection
- 4. Clock Mode of ACPU Setting (In case clock mode of ACPU is slave, switch to master.)
- 5. SRC, DAC, Headphone Amplifier (PLL, Charge Pump) Power-Up

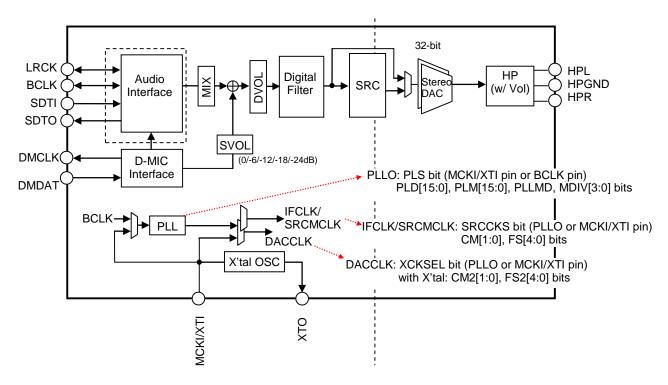


Figure 10. Internal configure diagram of AK4331

Table 4. Setting of Clock Select (x: Do not Care, S: Slave, M: Master)

Mode	MS bit	PMOSC bit	PMPLL bit	PLS bit	PMSRC / SELDAIN bits	SRCCKS bit	XCKSEL bit	M/S	MCKI /XTI pin	LRCK BCLK pins	PLL Clock Source	SRC CLK	DAC CLK
1	0	0	0	Х	0	1	1	S	MCLK	In	(PLL Disable)	(Bypass)	MCKI
2	0	0	1	0	0	0	0	S	MCLK	In	MCKI	(Bypass)	PLLO
3	0	0	1	1	0	0	0	S	VSS3	In	BCLK	(Bypass)	PLLO
4	0	0	1	1	1	0	0	S	VSS3	In	BCLK	PLLO	PLLO
5	0	1	1	1	1	0	1	S	X'tal	In	BCLK	PLLO	XTI
6	0	1	0	Х	1	1	1	S	X'tal	In	(PLL Disable)	XTI	XTI
7	1	0	0	Х	0	1	1	М	MCLK	Out	(PLL Disable)	(Bypass)	MCKI
8	1	0	1	0	0	0	0	М	MCLK	Out	MCKI	(Bypass)	PLLO
9	1	1	0	Х	0	1	1	М	X'tal	Out	(PLL Disable)	(Bypass)	XTI
10	1	1	1	0	0	0	0	М	X'tal	Out	XTI	(Bypass)	PLLO
11	1	0	0	Х	1	1	1	М	MCLK	Out	(PLL Disable)	MCKI	MCKI
12	1	0	1	0	1	0	0	М	MCLK	Out	MCKI	PLLO	PLLO
13	1	1	0	Х	1	1	1	М	X'tal	Out	(PLL Disable)	XTI	XTI
14	1	1	1	0	1	0	0	М	X'tal	Out	XTI	PLLO	PLLO

Note 107. Operation is only guaranteed with clock combinations in Table 4.

<Salve Mode: MS bit = "0">

1. SRC Bypass Mode (SELDAIN bit = "0")
DAC, Charge Pump, Headphone Amplifier: HPMD[1:0] bits, CM[1:0] bits, FS[4:0] bits

2. SRC Mode (SELDAIN bit = "1")
SRC (FSI): CM[1:0] bits, FS[4:0] bits
SRC (FSO), DAC, Charge Pump, Headphone Amplifier: HPMD[1:0] bits, CM2[1:0] bits, FS2[4:0] bits
(DAC and Headphone Amplifier are operated by a X'tal)

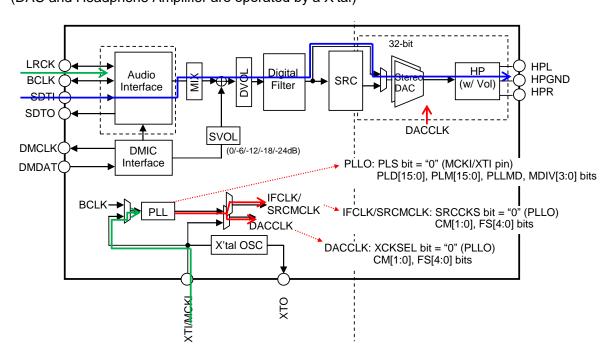


Figure 11. Example of Clock and Data Flow (Mode 2)

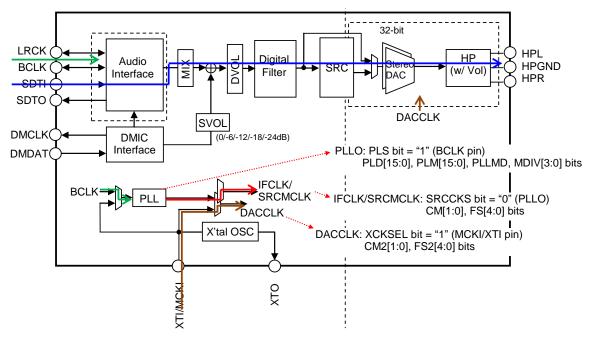


Figure 12. Example of Clock and Data Flow (Mode 5)

<Master Mode: MS bit = "1">

1. SRC Bypass Mode (SELDAIN bit = "0")
DAC, Charge Pump, Headphone Amplifier: HPMD[1:0] bits, CM[1:0] bits, FS[4:0] bits

2. SRC Mode (SELDAIN bit = "1")
SRC (FSI): CM[1:0] bits, FS[4:0] bits
SRC (FSO), DAC, Charge Pump, Headphone Amplifier: HPMD[1:0] bits, CM2[1:0] bits, FS2[4:0] bits
(DAC and Headphone Amplifier are operated by a X'tal)

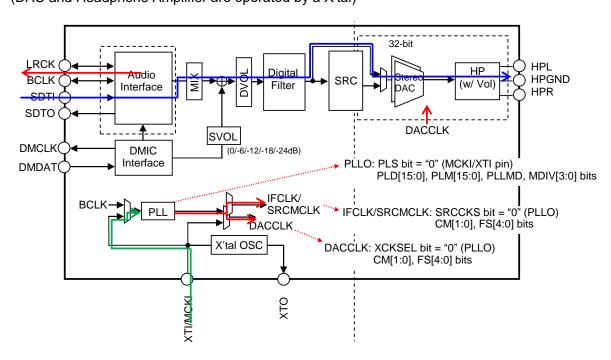


Figure 13. Example of Clock and Data Flow (Mode 8)

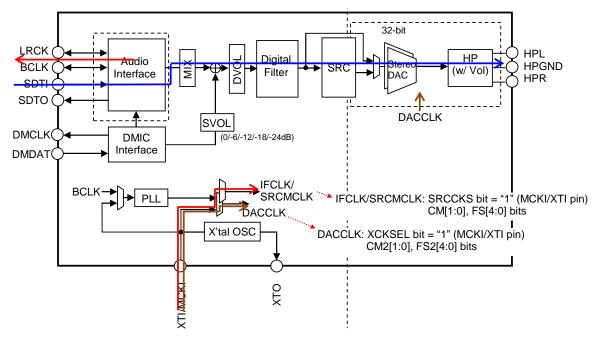


Figure 14. Example of Clock and Data Flow (Mode 11)

< Master Clock Frequency and Sampling Frequency Setting (SRC Bypass Mode) >

Table 5. Setting of Master Clock Frequency (SRC Bypass Mode)

					<u> </u>	
HPMD1 bit	HPMD0 bit	CM1 bit	CM0 bit	Master Clock Frequency	Sampling Frequency Range	
0	0	0	0	256fs	8 to 48 kHz	(default)
1	1	0	0	256fs	64 to 96 kHz	
0	0	0	1	512fs	8 to 48 kHz	
0	0	1	0	1024fs	8 to 24 kHz	
1	1	1	1	128fs	128 to 192 kHz	

lt)

Table 6. Setting of Sampling Frequency (SRC Bypass Mode, N/A: Not available)

FS4 bit	FS3 bit	FS2 bit	FS1 bit	FS0 bit	Sampling Frequency	
0	0	0	0	0	8 kHz	(default)
0	0	0	0	1	11.025 kHz	
0	0	0	1	0	12 kHz	
0	0	1	0	0	16 kHz	
0	0	1	0	1	22.05 kHz	
0	0	1	1	0	24 kHz	
0	1	0	0	0	32 kHz	
0	1	0	0	1	44.1 kHz	
0	1	0	1	0	48 kHz	
0	1	1	0	0	64 kHz	
0	1	1	0	1	88.2 kHz	
0	1	1	1	0	96 kHz	
1	0	0	0	0	128 kHz	
1	0	0	0	1	176.4 kHz	
1	0	0	1	0	192 kHz	
		Others		N/A		

^{*} Depending on setting of PLL's divider, the sampling frequency may differ. Please set PLD[15:0] and PLM[15:0] bits precisely.

< Master Clock Frequency and Sampling Frequency Setting (SRC Mode) >

<FSI>

Table 7. Setting of Master Clock Frequency (SRC Mode: FSI)

			- 1	/
CM1 bit	CM0 bit	Master Clock Frequency	Sampling Frequency Range	
0	0	256fs	8 to 96 kHz	(default)
0	1	512fs	8 to 48 kHz	
1	0	1024fs	8 to 24 kHz	
1	1	128fs	128 to 192 kHz	

Table 8. Setting of Sampling Frequency (SRC Mode, N/A: Not available)

FS4 bit	FS3 bit	FS2 bit	FS1 bit	FS0 bit	Sampling Frequency	
0	0	0	0	0	8 kHz	(default)
0	0	0	0	1	11.025 kHz	
0	0	0	1	0	12 kHz	
0	0	1	0	0	16 kHz	
0	0	1	0	1	22.05 kHz	
0	0	1	1	0	24 kHz	
0	1	0	0	0	32 kHz	
0	1	0	0	1	44.1 kHz	
0	1	0	1	0	48 kHz	
0	1	1	0	0	64 kHz	
0	1	1	0	1	88.2 kHz	
0	1	1	1	0	96 kHz	
1	0	0	0	0	128 kHz	
1	0	0	0	1	176.4 kHz	
1	0	0	1	0	192 kHz	
		Others	N/A			

^{*} Depending on setting of PLL's divider, the sampling frequency may differ. Please set PLD[15:0] and PLM[15:0] bits precisely.

<FSO>

Table 9. Setting of Master Clock Frequency (SRC Mode: FSO)

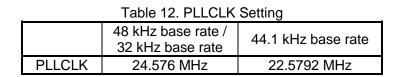
HPMD1	HPMD0	CM21	CM20	Master Clock	Sampling Frequency	
bit	bit	bit	bit	Frequency	Range	
0	0	0	0	256fs	8 to 48 kHz	(default)
1	1	0	0	256fs	64 to 96 kHz	
0	0	0	1	512fs	8 to 48 kHz	
0	0	1	0	1024fs	8 to 24 kHz	
1	1	1	1	128fs	128 to 192 kHz	

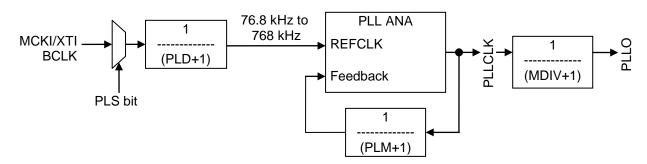
Table 10. Setting of Sampling Frequency (SRC Mode: FSO, N/A: Not available)

				<i>,</i> ,		_ ′
FS24 bit	FS23 bit	FS22 bit	FS21 bit	FS20 bit	Sampling Frequency	
0	0	0	0	0	8 kHz	(default)
0	0	0	0	1	11.025 kHz	
0	0	0	1	0	12 kHz	
0	0	1	0	0	16 kHz	
0	0	1	0	1	22.05 kHz	
0	0	1	1	0	24 kHz	
0	1	0	0	0	32 kHz	
0	1	0	0	1	44.1 kHz	
0	1	0	1	0	48 kHz	
0	1	1	0	0	64 kHz	
0	1	1	0	1	88.2 kHz	
0	1	1	1	0	96 kHz	
1	0	0	0	0	128 kHz	
1	0	0	0	1	176.4 kHz	
1	0	0	1	0	192 kHz	
		Others		N/A		

^{*} Depending on setting of PLL's divider, the sampling frequency may differ. Please set PLD[15:0] and PLM[15:0] bits precisely.

9-2. Master Counter Synchronization Control


Internal master counter starts when setting PMTIM bit = "1". Phase difference can be controlled within 4/64fs by asserting PMTIM bit when using multiple AK4331's. In case of using PLL output (PLLO) as system clock, set PMTIM bit to "1" in 2 msec or more after setting PMPLL bit to "1". In case of using external clock as system clock, supply a stable clock and set PMTIM bit to "1". All power management bits except for PMOSC and PMPLL bits (PMCP1, PMCP2, PMLDO1P, PMLDO1N, PMSRC, PMSM, PMDA, PMHPL, PMHPR, PMDML and PMDMR bits) must be "0" when PMTIM bit = "0".


Table 11. Master Counter Power Control

		_
PMTIM bit	Master Counter Status	
0	Disable	(default)
1	Enable	

9-3. PLL

The PLL generates a PLLO which can be used as operation clock for the Digital Interface (IFCLK), the SRC (SRCMCLK) and the DAC (DACCLK). The oscillation frequency PLLCLK should be set in the range from 22.5792 to 24.576 MHz (Table 12 shows setting of 48 kHz, 44.1 kHz and 32 kHz base rates). Refer to Table 19 and Table 20 for PLL setting examples. Reference clock of PLL (REFCLK) should be set in the range from 76.8 kHz to 768 kHz.

REFCLK = PLL Source / (PLD+1) PLLCLK = REFCLK × (PLM+1) PLLO= PLLCLK / (MDIV+1)

Figure 15. PLL Block Diagram

9-3-1. Power Management (PMPLL)

PLL can be powered down by a control register setting.

Table 13. PLL Power Control

PMPLL bit	PLL Status	
0	Power-Down	(default)
1	Power-Up	

9-3-2. Input Clock Select Function

The PLL has a function that selects the input clock. The clock source pin is selected by PLS bit. PLS bit must be set at PMTIM bit = "0".

Table 14. PLL Clock Source Select

PLS bit	Clock Source	
0	MCKI/XTI pin	(default)
1	BCLK pin	

9-3-3. PLL Reference Clock Divider

The PLL can set the dividing number of the reference clock in 16-bit. The input clock is used as PLL reference clock by dividing by (PLD + 1). PLD[15:0] bits must be set at PMTIM bit = "0".

Table 15. PLL Reference Clock Divider

PLD[15:0] bits	Dividing Number	
0000H	1	(default)
0001H to FFFFH	1 / (PLD + 1)	

Note 108. The reference clock divided by PLD should be set in the range from 76.8 kHz to 768 kHz.

9-3-4. PLL Feedback Clock Divider

The dividing number of feedback clock can be set freely in 16-bit. PLLCLK is divided by (PLM +1) and used as PLL feedback clock. PLM[15:0] bits must be set at PMTIM bit = "0".

Table 16. PLL Feedback Clock Divider

PLM[15:0] bits	Dividing Number	
0000H	Clock Stop	(default)
0001H to FFFFH	1 / (PLM + 1)	

9-3-5. PLL Internal Mode Setting

PLLMD bit controls PLL internal mode. Set PLLMD bit by referring to Table 19 and Table 20. PLLMD bit must be set at PMPLL bit = "0".

Table 17. PLL Internal Mode Setting

PLLMD bit	Reference Clock	
0	≥ 256 kHz	(default)
1	< 256 kHz	

9-3-6. PLLCLK Divider Setting

MDIV[3:0] bits control PLLCLK divider. MDIV[3:0] bits must be set at PMTIM bit = "0".

Table 18. PLLCLK Divider Setting

		<u></u> -9
MDIV[3:0] bits	Divide by	
0H	1	(default)
1H to FH	1 / (MDIV + 1)	

Note 109. When set each registers as following, divider value is set to 1.5 at MDIV[3:0] bits = 0H.

- < SRC Bypass Mode (SELDAIN bit = "0"), SRCCKS bit = "0" and XCKSEL bit = "0" >
- CM[1:0] bits = "10", FS[4:0] bits = "00100" (1024fs, fs = 16 kHz)
- CM[1:0] bits = "01", FS[4:0] bits = "01000" (512fs, fs = 32 kHz)
- CM[1:0] bits = "00", FS[4:0] bits = "01100" (256fs, fs = 64 kHz)
- CM[1:0] bits = "11", FS[4:0] bits = "10000" (128fs, fs = 128 kHz)
- < SRC Mode (SELDAIN bit = "1") and SRCCKS bit = "0" >
- CM[1:0] bits = "10", FS[4:0] bits = "00100" (1024fs, fs = 16 kHz)
- CM[1:0] bits = "01", FS[4:0] bits = "01000" (512fs, fs = 32 kHz)
- CM[1:0] bits = "00", FS[4:0] bits = "01100" (256fs, fs = 64 kHz)
- CM[1:0] bits = "11", FS[4:0] bits = "10000" (128fs, fs = 128 kHz)
- < SRC Mode (SELDAIN bit = "1") and XCKSEL bit = "0" >
- CM2[1:0] bits = "10", FS2[4:0] bits = "00100" (1024fs, fs = 16 kHz)
- CM2[1:0] bits = "01", FS2[4:0] bits = "01000" (512fs, fs = 32 kHz)
- CM2[1:0] bits = "00", FS2[4:0] bits = "01100" (256fs, fs = 64 kHz)
- CM2[1:0] bits = "11", FS2[4:0] bits = "10000" (128fs, fs = 128 kHz)

9-3-7. PLL Setting Examples

Table 19. PLL Setting Example (PLL reference source: MCKI)

C	LKIN			PLL	Condition	า	•	Sampling
Source	Frequency	PLD+1	REFCLK	PLM+1	PLLMD	PLLCLK	MDIV+1	Frequency
	[Hz]		[Hz]		bit	[Hz]	(Note 110)	[Hz]
MCKI	9,600,000	25	384,000	64	0	24,576,000	0	48,000
IVICIXI	9,000,000	23	364,000	04	U	24,370,000	O	32,000
	19,200,000	25	768,000	32	0	24,576,000	0	48,000
	19,200,000	23	700,000	32	U	24,370,000	0	32,000
	12,288,000	16	768,000	32	0	24,576,000	0	48,000
	12,200,000	10	700,000	32	U	24,570,000	0	32,000
	24,576,000	32	768,000	32	0	24,576,000	0	48,000
	24,570,000	52	700,000	32	U	24,570,000	0	32,000
	12,000,000	125	96,000	256	1	24,576,000	0	48,000
	12,000,000	120	30,000	200	1	24,070,000	0	32,000
	24,000,000	125	192,000	128	1	24,576,000	0	48,000
	24,000,000	120	132,000	120	ı	24,570,000	O	32,000
	9,600,000	125	76,800	294	1	22,579,200	0	44,100
	19,200,000	125	153,600	147	1	22,579,200	0	44,100
	11,289,600	16	705,600	32	0	22,579,200	0	44,100
	22,579,200	32	705,600	32	0	22,579,200	0	44,100

Note 110. At the case of CM[1:0] bits and CM2[1:0] bits are set to "01" (512fs).

Table 20. PLL Setting Example (PLL reference source: BCLK)

	LKIN				Condition	1	- 	Sampling
Source	Frequency	PLD+1	REFCLK	PLM+1	PLLMD	PLLCLK	MDIV+1	Frequency
	[Hz]		[Hz]		bit	[Hz]	(Note 110)	[Hz]
BCLK	256,000	1	256,000	96	0	24,576,000	5	8,000
(32fs)	352,800	1	352,800	64	0	22,579,200	3	11,025
	512,000	1	512,000	48	0	24,576,000	2	16,000
	705,600	1	705,600	32	0	22,579,200	1	22,050
	768,000	1	768,000	32	0	24,576,000	1	24,000
	1,024,000	2	512,000	48	0	24,576,000	0	32,000
	1,411,200	2	705,600	32	0	22,579,200	0	44,100
	1,536,000	2	768,000	32	0	24,576,000	0	48,000
BCLK	384,000	1	384,000	64	0	24,576,000	5	8,000
(48fs)	529,200	3	176,400	128	1	22,579,200	3	11,025
	768,000	1	768,000	32	0	24,576,000	2	16,000
	1,058,400	3	352,800	64	0	22,579,200	1	22,050
	1,152,000	3	384,000	64	0	24,576,000	1	24,000
	1,536,000	2	768,000	32	0	24,576,000	0	32,000
	2,116,800	3	705,600	32	0	22,579,200	0	44,100
	2,304,000	3	768,000	32	0	24,576,000	0	48,000
BCLK	512,000	1	512,000	48	0	24,576,000	5	8,000
(64fs)	705,600	1	705,600	32	0	22,579,200	3	11,025
	1,024,000	2	512,000	48	0	24,576,000	2	16,000
	1,411,200	2	705,600	32	0	22,579,200	1	22,050
	1,536,000	2	768,000	32	0	24,576,000	1	24,000
	2,048,000	4	512,000	48	0	24,576,000	0	32,000
	2,822,400	4	705,600	32	0	22,579,200	0	44,100
	3,072,000	4	768,000	32	0	24,576,000	0	48,000

9-4. Crystal Oscillator

The clock for the MCKI/XTI pin can be generated by two methods. PMOSC bit must be set to "1" when using a crystal oscillator.

1) X'tal Mode (PMOSC bit = "1")

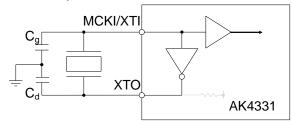


Figure 16. X'tal Mode

Note 111. The capacitor value is dependent on the crystal oscillator.

 C_d = C_g = 20.0 pF (Max.), RI (Equivalent Series Resistance) = 80Ω (Max.) @ 24.576 MHz C_d = C_g = 21.5 pF (Max.), RI (Equivalent Series Resistance) = 60Ω (Max.) @ 19.2 MHz C_d = C_g = 30.6 pF (Max.), RI (Equivalent Series Resistance) = 200Ω (Max.) @ 11.2896 MHz

2) External Clock Mode (PMOSC bit = "0")

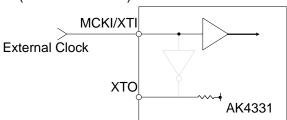


Figure 17. External Clock Mode

Note 112. Do not input a clock more than TVDD.

3) OFF Mode (Not Using the MCKI/XTI pin and the XTO pin (PMOSC bit = "0"))

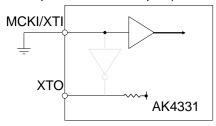


Figure 18. OFF Mode

9-5. Digital Microphone

1. Connection to Digital Microphone

The same power supply as AVDD must be provided to the digital microphone. The Figure 19 and Figure 20 show mono/stereo connection examples. The AK4331 provides DMCLK to a digital microphone by converting IFCLK to 64fs with a built-in decimation filter. Accordingly, the digital microphone generates 1-bit data by $\Delta\Sigma$ Modulators and transmits to the DMDAT pin of the AK4331. PMDML/R bits control power-up/down of the digital block (Decimation Filter and HPF). The DCLKE bit controls ON/OFF of the output clock from the DMCLK pin. When the AK4331 is powered up (PDN pin = "H"), external pull-down resistor (R) should be connected to the DMDAT pin to avoid floating state.

Note that the digital microphone sampling frequency is 96 kHz at maximum and interface does not support quad speed mode (fs ≥ 128 kHz).

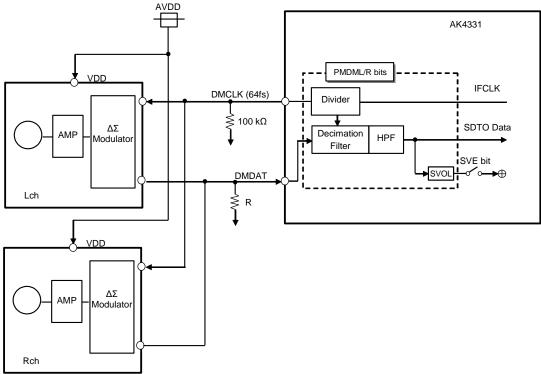


Figure 19. Connection Example of Stereo Digital Microphone

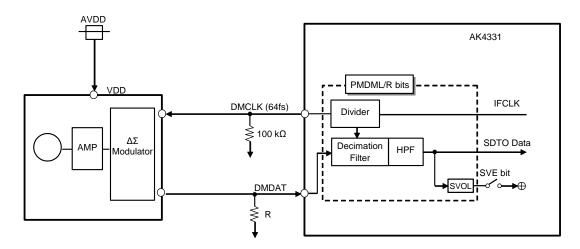


Figure 20. Connection Example of Mono Digital Microphone

2. Interface

The input data channel of the DMDAT pin is set by DCLKP bit. When DCLKP bit = "1", L channel data is input to the Decimation Filter if DMCLK signal = "H", R channel data is input if DMCLK signal = "L". When DCLKP bit = "0", R channel data is input to the Decimation Filter if DMCLK signal = "H", L channel data is input if DMCLK signal = "L". The DMCLK pin outputs "L" when DCLKE bit = "0", and only supports 64fs. The output data through "the Decimation and Digital Filters" is the negative full-scale with the 0% 1's density of 1-bit output data and positive full-scale with the 100% 1's density of 1-bit output data. DCLKP bit must be set at PMDML/R bits = "0".

Table 21. Data Input/Output Timing with Digital Microphone

DCLKP bit	DMCLK pin = "H"	DMCLK pin = "L"	
0	Rch	Lch	(default)
1	Lch	Rch	

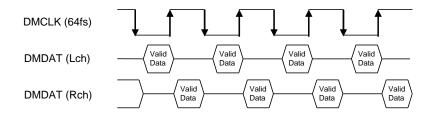


Figure 21. Data Input/Output Timing with Digital Microphone (DCLKP bit = "0")

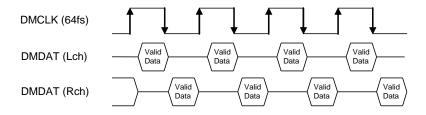


Figure 22. Data Input/Output Timing with Digital Microphone (DCLKP bit = "1")

9-6. Digital Microphone HPF

A digital High Pass Filter (HPF) is integrated for DC offset cancellation of the digital microphone input. The cut-off frequencies are set by HPFC[1:0] bits (Table 22). It is proportional to the sampling frequency (fs) and default is 29.8 Hz (@fs = 48 kHz). HPFADN bit controls the ON/OFF of the HPF (Recommend HPF enable). HPFC[1:0] bits must be set at PMDML/R bits = "0".

Table 22. Digital Microphone HPF Cut-Off Frequency

HPFC1 bit	HPFC0 bit	С	ut-Off Frequer	ncy
HEFCI DIL	HPFC0 bit	fs = 8 kHz	fs = 48 kHz	fs = 96 kHz
0	0	4.97 Hz	29.8 Hz	59.9 Hz
0	1	2.49 Hz	14.9 Hz	29.8 Hz
1	0	19.9 Hz	119.4 Hz	238.7 Hz
1	1	39.8 Hz	238.7 Hz	477.5 Hz

(default)

9-7. Digital Microphone Mono/Stereo Mode

PMDML and PMDMR bits set On/Off and mono/stereo operation of the digital microphone.

Table 23. Digital Microphone Mono/Stereo Select

PMDMR bit	PMDML bit	SDTO Rch data	SDTO Lch data
0	0	AII "0"	All "0"
0	1	DMIC Lch Input Signal	DMIC Lch Input Signal
1	0	DMIC Rch Input Signal	DMIC Rch Input Signal
1	1	DMIC Rch Input Signal	DMIC Lch Input Signal

(default)

9-8. Digital Microphone Initialization Cycle

Initialization cycle of the digital microphone starts by setting PMDML and PMDMR bits to "1" from "0". The initialization cycle is set by ADRST[1:0] bits (Table 24). The outputs data of the DMDAT pin will become a data corresponds to analog input signal and settle after the initialization cycle is finished. ADRST[1:0] bits must be set at PMDML/R bits = "0".

Note 113. The initial data of the digital microphone has an offset that depends on the usage environment such as microphone, and the cut-off frequency of HPF. Set the initialization cycle longer or discard the initial data of the digital microphone if this offset causes a problem.

Table 24. Digital Microphone Initialization Cycle

_					
			Digital MIC Initialization Cycle		
ADRST1 bit	ADRST0 bit	Cycle	fs = 8 kHz	fs = 48 kHz	fs = 96 kHz
0	0	1059/fs	132.4 msec	22 msec	11 msec
0	1	267/fs	33.4 msec	5.6 msec	2.8 msec
1	0	2115/fs	264.4 msec	44.1 msec	22 msec
1	1	531/fs	66.4 msec	11.1 msec	5.5 msec

9-9. Side Tone Digital Volume (SVOL)

The AK4331 has a side tone volume control (5 levels, 6 dB step, L/R channels common). The volume can be set by SV[2:0] bits and the attenuation range of the output data is from 0 to -24 dB. The volume is changed immediately by setting these bits. SVE bit can control whether adding a signal of the side tone block or not. SV[2:0] bits and SVE bit must be set when PMDML/R bits = "0".

Table 25. Side Tone Control

		_
SVE bit	Side Tone Addition	
0	Disable	(default)
1	Enable	

t)

Table 26. Side Tone Volume Setting (N/A: Not available)

0 <u>201 </u>	name County (1471
SV[2:0] bits	Gain
000	0 dB
001	−6 dB
010	−12 dB
011	–18 dB
100	−24 dB
Others	N/A

9-10. DAC Digital Filter

DAC has four types of digital filter. The filter mode of DAC can be selected by DASD and DASL bits. The default setting is DASL = DASD bits = "0" (Sharp Roll-Off Filter). DASD bit and DASL bit must be set at PMSRC bit = "0" and PMDA bit = "0". And DADFSEL bit coordinate digital filter. In case of SRC Bypass Mode, DADFSEL bit must be set to "0". In case of SRC Mode, DADFSEL bit must be set to "1".

Table 27. DAC Digital Filter Setting (SRC Bypass Mode)

DADFSEL bit	DASD bit	DASL bit	DAC Filter Mode Setting
0	0	0	Sharp Roll-Off Filter
0	0	1	Slow Roll-Off Filter
0	1	0	Short Delay Sharp Roll-Off Filter
0	1	1	Short Delay Slow Roll-Off Filter

(default)

Table 28. DAC Digital Filter Setting (SRC Mode)

DADFSEL bit	DASD bit	DASL bit	DAC Filter Mode Setting
1	0	0	Sharp Roll-Off Filter
1	0	1	Slow Roll-Off Filter
1	1	0	Short Delay Sharp Roll-Off Filter
1	1	1	Short Delay Slow Roll-Off Filter

9-11. Digital Mixing

The AK4331 has digital mixing circuits for each L channel and R channel. They can mix the data digitally and convert the polarity. The inverted data by this polarity conversion is calculated in 2's complement format. MDACL/R bits, RDACL/R bits, LDACL/R bits and INVL/R bits must be set at PMSRC bits = "0" and PMDA bit = "0".

Table 29. DAC L/R Channel Input Signal Select

MDACL bit MDACR bit	RDACL bit RDACR bit	LDACL bit LDACR bit	DAC Lch Input Data DAC Rch Input Data
0	0	0	MUTE
0	0	1	Lch
0	1	0	Rch
0	1	1	Lch + Rch
1	0	0	MUTE
1	0	1	Lch / 2
1	1	0	Rch / 2
1	1	1	(Lch + Rch) / 2

Table 30. DAC L/R Channel Input Signal Polarity Select

INVL bit INVR bit	Output Data	
0	Normal	(default)
1	Inverting	

9-12. Digital Volume

The AK4331 has a 32-level digital volume in front of DAC for each L and R channel. The volume is changed from +3 dB to -12 dB in 0.5 dB step including Mute. The volume change is executed immediately by setting registers.

When OVOLCN bit is "1", the OVL[4:0] bits control L channel level and OVR[4:0] bits control R channel level. When OVOLCN bit = "0", the OVL[4:0] bits control both L channel and R channel attenuation levels. In this case, the setting of OVR[4:0] bits is ignored. OVL/R[4:0] bits must be set at PMSRC bits = "0" and PMDA bit = "0".

Table 31. Digital Volume Setting

	Digital volume Se
OVL[4:0] bits OVR[4:0] bits	Volume (dB)
1FH	+3.0
1EH	+2.5
1DH	+2.0
1CH	+1.5
1BH	+1.0
1AH	+0.5
19H	0.0
18H	-0.5
17H	-1.0
16H	-1.5
15H	-2.0
14H	-2.5
13H	-3.0
12H	-3.5
11H	-4.0
10H	-4.5
0FH	-5.0
0EH	-5.5
0DH	-6.0
0CH	-6.5
0BH	-7.0
0AH	-7.5
09H	-8.0
08H	-8.5
07H	-9.0
06H	-9.5
05H	-10.0
04H	-10.5
03H	-11.0
02H	-11.5
01H	-12.0
00H	MUTE

9-13. Headphone Amplifier Output (HPL/HPR pins)

Headphone amplifiers are operated by positive and negative power that is supplied from internal charge pump circuit. The VEE2 pin output the negative voltage generated by the internal charge pump circuit from CVDD. This charge pump circuit is switched between VDD mode and 1/2VDD mode by the output level of the headphone amplifiers. The headphone amplifier output is single-ended and centered on HPGND (0 V). Therefore, a capacitor for AC-coupling is not necessary. The minimum load resistance is 7.2 Ω . The output power is 10 mW (@ 0 dBFS, R_L = 32 Ω , AVDD = CVDD = 1.8 V and HPG = -4 dB) and 25 mW (@ 0 dBFS, R_L = 32 Ω , AVDD = CVDD = 1.8 V and HPG = 0 dB). Ground loop noise cancelling function for headphone amplifier is available by connecting the HPGND pin to the ground of the jack.

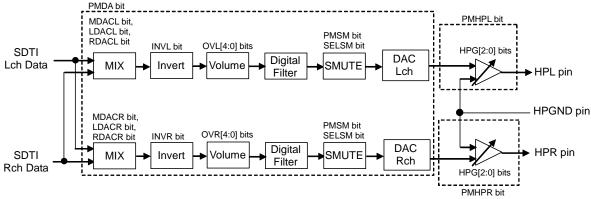


Figure 23. DAC & Headphone Amplifier Block Diagram (SRC Bypass Mode)

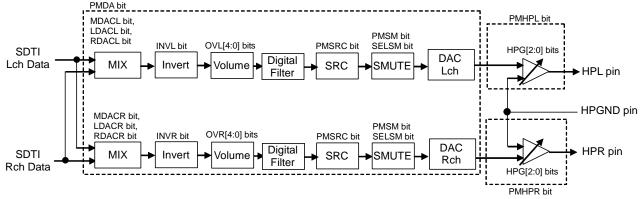


Figure 24. DAC & Headphone Amplifier Block Diagram (SRC Mode)

Table 32. Charge Pump Mode Setting (N/A: Not available)

CPMODE1 bit	CPMODE0 bit	Mode	Operation Voltage	
0	0	Class-G Operation Mode	Automatic Switching	(default)
0	1	VDD Operation Mode	±VDD	
1	0	1/2VDD Operation Mode	±1/2VDD	
1	1	N/A	N/A	

< Class-G Mode Switching Level >

A switching threshold level of VDD and 1/2VDD modes can be set by LVDSEL[1:0] bits. LVDSEL[1:0] bits should be set before PMHPL bit or PMHPR bit is set to "1".

```
LVDSEL bits = "00" (default: Assuming connecting a 16\Omega headphone)
```

VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 16 Ω) 1/2VDD \rightarrow VDD: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_L = 16 Ω)

LVDSEL bits = "01" (Assuming connecting a 32Ω headphone or more)

VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 32 Ω) 1/2VDD \rightarrow VDD: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_L = 32 Ω)

LVDSEL bits = "10" (Assuming connecting a 11Ω headphone)

VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 11 Ω) 1/2VDD \rightarrow VDD: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_L = 11 Ω)

LVDSEL bits = "11" (Assuming connecting a 8Ω headphone)

VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 8 Ω) 1/2VDD \rightarrow VDD: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_L = 8 Ω)

When the charge pump operation mode is changed to VDD mode from 1/2VDD mode, an internal counter for holding VDD mode starts (Table 33). The charge pump changes to 1/2VDD mode if the output signal level is lower than the switching level and 1/2VDD mode detection time that is set by LVDTM[2:0] bits is passed after VDD mode hold time is finished.

Table 33. VDD Mode Holding Period Setting (x: Do not Care)

VDDTM[3:0]	VDD Mode Holding Period					
bits		8 kHz	48 kHz	96 kHz	192 kHz	
0000	1024/fs	128 msec	21.3 msec	10.7 msec	5.3 msec	(default)
0001	2048/fs	256 msec	42.7 msec	21.3 msec	10.7 msec	
0010	4096/fs	512 msec	85.3 msec	42.7 msec	21.3 msec	
0011	8192/fs	1024 msec	170.7 msec	85.3 msec	42.7 msec	
0100	16384/fs	2048 msec	341.3 msec	170.7 msec	85.3 msec	
0101	32768/fs	4096 msec	682.7 msec	341.3 msec	170.7 msec	
0110	65536/fs	8192 msec	1365.3 msec	682.7 msec	341.3 msec	
0111	131072/fs	16384 msec	2730.7 msec	1365.3 msec	682.7 msec	
1xxx	262144/fs	32768 msec	5461.3 msec	2730.7 msec	1365.3 msec	

When the output voltage becomes less than class-G mode switching level, the internal detection counter for 1/2VDD mode which is set by LVDTM[2:0] bits starts. This counter is reset when the output voltage exceeds class-G mode switching level. The charge pump operation mode is changed to 1/2VDD from VDD if the detection counter of 1/2VDD mode is finished and also the VDD mode hold period is passed.

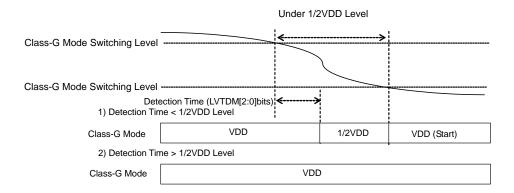


Figure 25. Transition to 1/2VDD Mode from VDD Mode

Table 34. 1/2VDD Detection Period (Minimum frequency that is not detected)

	· ' '					
LVDTM[2:0]		1/2VD	D Mode Detec	tion Time /		
bits		Minimum F	requency that	is Not Detecte	ed	
Dita		8 kHz	48 kHz	96 kHz	192 kHz	
000	64/fs	8 msec	1.3 msec	0.67 msec	0.33 msec	(default)
000	04/15	62.5 Hz	375 Hz	750 Hz	1500 Hz	(uelauli)
001	128/fs	16 msec	2.7 msec	1.3 msec	0.67 msec	
001	120/15	31.3 Hz	187.5 Hz	375 Hz	750 Hz	
010	256/fs	32 msec	5.3 msec	2.7 msec	1.3 msec	
010	250/15	15.6 Hz	93.8 Hz	187.5 Hz	375 Hz	
011	512/fs	64 msec	10.7 msec	5.3 msec	2.7 msec	
011	312/15	7.8 Hz	46.9 Hz	93.8 Hz	187.5 Hz	
100	1024/fs	128 msec	21.3 msec	10.7 msec	5.3 msec	
100	1024/18	3.9 Hz	23.4 Hz	46.9 Hz	93.8 Hz	
101	2048/fs	256 msec	42.7 msec	21.3 msec	10.7 msec	
101	2040/15	2.0 Hz	11.7 Hz	23.4 Hz	46.9 Hz	
110	4096/fs	512 msec	85.3 msec	42.7 msec	21.3 msec	
110	4090/15	1.0 Hz	5.9 Hz	11.7 Hz	23.4 Hz	
111	8192/fs	1024 msec	170.7 msec	85.3 msec	42.7 msec	
111	0192/18	0.5 Hz	2.8 Hz	5.9 Hz	11.7 Hz	

< Headphone Amplifier Volume Circuit >

The output level of the headphone amplifier can be controlled by HPG[2:0] bits. The volume setting is common for both L and R channels and ranges from +4 dB to -10 dB in 2 dB step (Table 35). When the volume is changed, zero cross detection is executed independently for L and R channels. Zero cross timeout period is set by HPTM[2:0] bits (Table 36).

The headphone amplifier volume should be changed with an interval of zero cross timeout period after setting HPG[2:0] bits once. If the volume is changed continuously without the interval, the gain setting at the next zero crossing point will be applied.

Table 33. Headphone Ampliner volume Settil					
HPG[2:0] bits	Volume (dB)				
111	+4				
110	+2				
101	0	(default)			
100	-2				
011	-4				
010	-6				
001	-8				
000	_10				

Table 35. Headphone Amplifier Volume Setting

Table 36. Headphone Volume Zero Cross Timeout Setting (x: Do not care)

HPTM[2:0]	Zero Crossing Timeout Period				
bits		8 kHz	48 kHz	96 kHz	192 kHz
000	128/fs	16 msec	2.7 msec	1.3 msec	0.67 msec
001	256/fs	32 msec	5.3 msec	2.7 msec	1.3 msec
010	512/fs	64 msec	10.7 msec	5.3 msec	2.7 msec
011	1024/fs	128 msec	21.4 msec	10.7 msec	5.3 msec
1xx	2048/fs	256 msec	42.7 msec	21.4 msec	10.7 msec

(default)

< Headphone Amplifier External Circuit >

It is necessary to put an oscillation prevention circuit (0.1 μ F ±20% capacitor and 15 Ω ±20% resistor) because there is a possibility that the headphone amplifier oscillates.

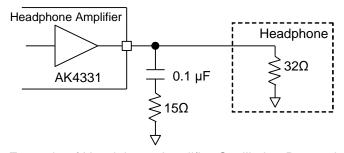


Figure 26. Example of Headphone Amplifier Oscillation Prevention Circuit

< Power-Up/Down Sequence of Headphone Amplifier >

After releasing DAC power-down state by PMDA bit, the headphone amplifier should be powered up by PMHPL/R bits. A wait time from DAC power-up to headphone power-up is not necessary.

PMDA bit releases a power-down of the digital block of DAC, PMHPL or PMHPR bit powers up the analog block of the DAC and the headphone amplifier. Then, initialization cycle of the headphone amplifier is executed. The gain setting (HPG[2:0] bits) should be made before PMHPL bit or PMHPR bit is set to "1". Do not change the gain setting (HPG[2:0] bits) during the headphone initialization cycle. The gain setting can be changed after the headphone initialization cycle is finished. A wait time from the gain setting to PMHPL bit or PMHPR bit = "1" is not necessary.

When the AK4331 is powered down, the headphone amplifier should be powered down first. The DAC should be powered down next. A wait time from a headphone power-down to a DAC power-down is not necessary.

When the headphone amplifier is powered down, the HPL pin and the HPR pin are pulled down to HPGND via the internal pull-down register. The pulled-down resistor is 4Ω (Typ.) @ HPLHZ = HPRHZ bits = "0". The HPL pin and the HPR pin are also pulled down to HPGND via 95 k Ω (Typ.) if HPLHZ bit and HPRHZ bit are set to "1".

Table 37. Headphone Output Status (x: Do not Care)

		1
PMHPL bit PMHPR bit	HPLHZ bit HPRHZ bit	Headphone Amplifier Status
0	0	Pull-down by 4Ω (Typ.)
0	1	Pull-down by 95 kΩ (Typ.)
1	Х	Normal Operation

When the HPL pin and the HPR pin are connected to analog signal pins of an external device by Wire-OR, CP1, CP2, LDO1P and LDO1N should be powered up. Do not input a negative voltage to the HPL pin and the HPR pin when CP1, CP2, LDO1P and LDO1N are powered down.

To avoid pop noise, HPG[2:0] bits setting should be same at power-up and power-down of headphone.

The power-up time of headphone amplifier is shown in Table 38. The HPL and HPR pins output 0 V (HPGND) when the headphone amplifier is powered up. The power-down is executed immediately.

Table 38. Headphone Power-Up Time

Sampling Frequency [kHz]	Power-Up Time (Max)
8/12/16/24/32/48/64/96/128/192	23.9 msec
11.025/22.05/44.1/88.2/176.4	25.9 msec

< Over Current Protection Circuit >

If the headphone amplifier is in an overcurrent state, such as when output pins are shorted, the headphone amplifier limits the operation current. The headphone amplifier returns to a normal operation state if all causes are cleared.

9-14. Charge Pump & LDO Circuits

The charge pump circuits are operated by CVDD power supply voltage. CVDD is used to generate positive and negative voltage. The power-up/down sequence of charge pump and LDO circuits are as follows. CP1 should be powered up before LDO1P/N are powered up. CP2 should be powered up after LDO1P/N are powered up.

Power-Up Sequence: CP1 \rightarrow LD01P, LD01N \rightarrow CP2 Power-Down Sequence: CP2 \rightarrow LD01P, LD01N \rightarrow CP1

LDO1P and LDO1N have an overcurrent protection circuit. When overcurrent flows in a normal operation, the LDO1P and LDO1N circuits limit the operation current. If the overcurrent state is cleared, the overcurrent protection will be off and the LDO1P and LDO1N circuits will return to normal operation.

LDO2 has an overvoltage protection circuit. This overvoltage protection circuit powers the LDO2 down when the power supply becomes unstable by an instantaneous power failure, etc. during operation. The LDO2 circuit will not return to a normal operation until being reset by the PDN pin ("L" \rightarrow "H") after removing the problems.

The charge pump and the LDO1 circuits, except for the LDO2, can be powered up again while they are in power-down state.

Table 39. Input/Output Voltage and Operation Block of the Charge Pump

Charge Pump	Power Management bit	Input Voltage	Output Voltage (Typ.)	Operation Block
CP1	PMCP1	CVDD	−1.8 V	LDO1N, DAC
CP2 (Class-G)	PMCP2	CVDD	±1.8 V / ±0.9 V	Headphone

Table 40. Input/Output Voltage and Operation Block of the LDO

LDO	Power Management bit	Power Supply	Output Voltage (Typ.)	Operation Block
LDO1P	PMLDO1P	AVDD / VSS1	+1.5 V	VREF+ for DAC, Headphone
LDO1N	PMLDO1N	VSS1 / CP1 Output	–1.5 V	VREF- for DAC, Headphone
LDO2	-	LVDD / VSS3	+1.2 V	Digital Core

9-15. Asynchronous Sampling Rate Converter (SRC)

The AK4331 has a stereo asynchronous SRC before the DAC block. The SRC supports an 8 kHz to 192 kHz audio source (FSI) and an 8 kHz to 192 kHz sampling rate output (FSO). Available sample rate ratio (FSO/FSI) is 0.98 to 6.02. PMSRC bit controls power up/down of the SRC.

Examples of supported sampling rate are shown below.

Table 41. Up-Sampling Examples

rabio i ii op dampinig znampioo						
FSO	FSI	FSO/FSI				
192 kHz	48 kHz	4.00				
96 kHz	48 kHz	2.00				
48 kHz	48 kHz	1.00				
48 kHz	44.1 kHz	1.09				
48 kHz	32 kHz	1.50				
48 kHz	24 kHz	2.00				
48 kHz	16 kHz	3.00				
48 kHz	12 kHz	4.00				
48 kHz	8 kHz	6.00				
192 kHz	44.1 kHz	4.35				
44.1 kHz	44.1 kHz	1.00				
44.1 kHz	32 kHz	1.38				
44.1 kHz	24 kHz	1.84				
44.1 kHz	16 kHz	2.76				
44.1 kHz	12 kHz	3.68				
44.1 kHz	8 kHz	5.51				
16 kHz	16 kHz	1.00				
16 kHz	8 kHz	2.00				
8 kHz	8 kHz	1.00				

SRC input clock (SRCMCLK) is 128fs, 256fs, 512fs or 1024fs. SRCCKS bit selects SRC clock source between the MCKI/XTI pin and PLLO, and XCKSEL bit selects output clock for SRC (DACCLK) between the MCKI/XTI pin and PLLO. The SRC can be bypassed by setting SELDAIN bit = "0".

Table 42. SRC Power Management

PMSRC bit	SRC Status	
0	Power-Down	(default)
1	Power-Up	

Table 43. DAC and Charge Pump Clock Mode Setting

	<u> </u>	-
XCKSEL bit	DAC and Charge Pump Clock Mode	
0	PLLO	(default)
1	MCKI/XTI pin	

Table 44. SRC Clock Mode Setting

1 4016 77. 0110	Table 44. Site clock wode Setting				
SRCCKS bit	SRC Clock Mode				
0	PLLO	(default)			
1	MCKI/XTI pin				

Note 114. SRCCKS bit and XCKSEL bit must be same value at SRC Bypass Mode (SELDAIN bit = "0").

< Jitter Cleaner Function >

The sound quality and characteristics may degrade if a clock with large jitter is input to the DAC from the host processor. The AK4331 maximizes DAC performance and the sound quality by the internal SRC with an external low jitter crystal oscillator. When the AK4331 is operated by a clock from the external crystal oscillator, the master clock is set by CM2[1:0] bits and the sampling frequency is set by FS2[4:0] bits.

9-16. SRC Selector Function

The DAC input data can be selected between the input data of the SDTI pin and the SRC output data by SELDAIN bit. SELDAIN bit must be set at PMSRC bit = "0".

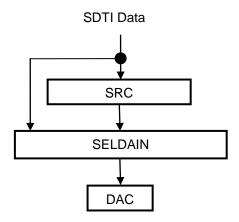


Figure 27. Input Selector for DAC

Table 45. DAC Data Path Setting

SELDAIN bit	DAC	
0	SRC Bypass Mode	(default)
1	SRC Mode	

9-17. SRC Clock Change Sequence

When changing the system clock of SRC, the SRC should be reset by setting PMSRC bit to "0". The SRC output is "0" while PMSRC bit = "0". A data output becomes available within 20 msec from setting PMSRC bit to "1" (up to 156/fso, when the input clock is stabilized) after changing the system clock. Until then the SRC outputs "0". Set PMTIM bit to "1" and SRC settings should be finished before setting PMSRC bit to "1".

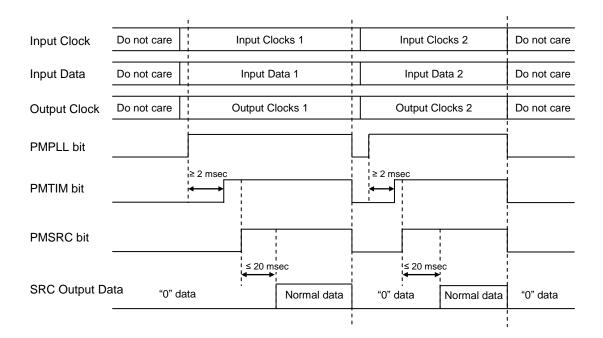


Figure 28. Sequence of Changing SRC System Clock

9-18. Soft Mute

AK4331 has a soft mute operation block. PMSM bit and SELSM bit must be set to "1" when using a soft mute block.

Table 46. Soft Mute	Block Power	Management ((N/A: Not available)	١

I	PMSM bit	SELSM bit	Soft Mute Block	
ĺ	0	0	Power-Down	(default)
ĺ	1 1		Power-Up	
	Others		N/A	

1. Manual Mode

When SMUTE bit is changed to "1", the output signal is attenuated to $-\infty$ ("0") in 1024/FSO cycle (SMT[1:0] bits = "00"). When the SMUTE bit is returned to "0", the mute is cancelled and the output attenuation gradually changes to 0 dB in 1024/FSO cycle. If the soft mute is cancelled within 1024/FSO, the attenuation is discontinued and the attenuation level returns to 0 dB by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.

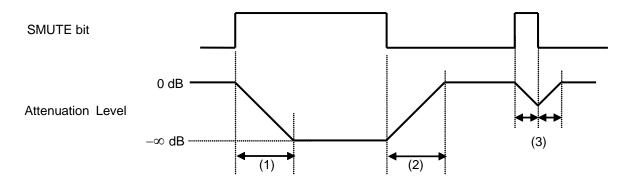


Figure 29. Soft Mute Manual Mode

- (1) SMUTE bit = "0" \rightarrow "1": The output signal is attenuated to $-\infty$ ("0") in 1024/FSO cycle (SMT[1:0] bits = "00")
- (2) SMUTE bit = "1" \rightarrow "0": The attenuation level of the output signal returns to 0 dB from $-\infty$ ("0") in 1024/FSO cycle (SMT[1:0] bits = "00")
- (3) If the soft mute is cancelled within 1024/FSO, the attenuation is discontinued and the attenuation level returns to 0 dB by the same cycle.

Table 47. Soft Mute Cycle Setting

SMT1 bit	SMT0 bit	Period	FSO = 48 kHz	FSO = 96 kHz	FSO = 192 kHz	
0	0	1024/FSO	21.3 msec	10.7 msec	5.3 msec	(default)
0	1	2048/FSO	42.7 msec	21.3 msec	10.7 msec	
1	0	4096/FSO	85.3 msec	42.7 msec	21.3 msec	
1	1	8192/FSO	170.7 msec	85.3 msec	42.7 msec	

2. Semi-Auto Mode

The AK4331 enters Semi-Auto mode by setting SAUTO bit to "1". In this mode, the soft mute is cancelled automatically in 160/fso after setting PMSM bit and SELSM bit to "1" and the AK4331 will be able to output the data. When power-down state is released (PMSM bit = SELSM bit = "0" \rightarrow "1"), the soft mute function is ON if the SMUTE bit is "1".

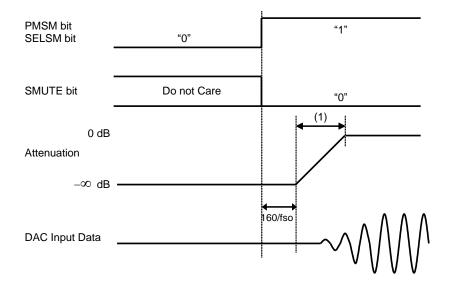


Figure 30. Soft Mute Semi-Auto Mode (SRC Bypass Mode)

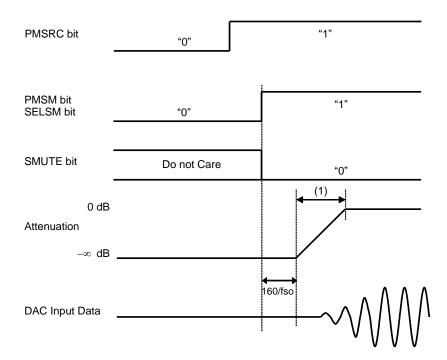


Figure 31. Soft Mute Semi-Auto Mode (SRC Mode)

(1) The attenuation level is returns to 0 dB in 1024/fso cycle (SMT[1:0] bits = "00").

9-19. Serial Audio Interface

The serial audio interface format is set by DIF bit and its data length is controlled by DL[1:0] bits. In case that the input data length is less than the value which set by DL[1:0] bits, unused lower bits are filled with "0". When using master mode, DL[1:0] bits is set in accordance with the setting of BCKO bit. DIF bit and DL[1:0] bits must be set at PMTIM bit = "0".

Table 48. Digital Audio Interface Format Setting

DIF bit	Digital Interface Format]
0	I ² S Compatible	(default)
1	MSB justified	

Table 49. Data Length Setting (x: Do not Care, N/A: Not available)

DI 1 bit	DL0 bit	Data Langth	BCLK Frequency		
DLIBIL	DLU DIL	Data Length	Slave Mode	Master Mode	
0	0	24-bit linear	≥ 48fs	N/A	(default)
0	1	16-bit linear	≥ 32fs	32fs (BCKO bit = "1")	
1	х	32-bit linear	≥ 64fs	64fs (BCKO bit = "0")	

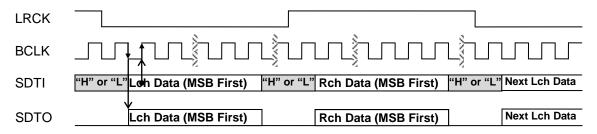


Figure 32. I²S Compatible Format (DIF bit = "0")

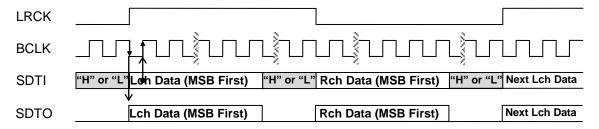


Figure 33. MSB justified format (DIF bit= "1")

9-20. Serial Control Interface (I²C-bus)

The AK4331 supports the fast-mode I²C-bus (Max: 400 kHz). Pull-up resistors at the SDA and SCL pins must be connected to (TVDD + 0.3) V or less voltage.

1. WRITE Operation

Figure 34 shows the data transfer sequence for the I²C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 40). After the START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W). The most significant seven bits of the slave address are fixed as "0010000". If the slave address matches that of the AK4331, the AK4331 generates an acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 41). A R/W bit value of "1" indicates that the read operation is to be executed, and "0" indicates that the write operation is to be executed.

The second byte consists of the control register address of the AK4331. The format is MSB first 8 bits (Figure 36). The data after the second byte contains control data. The format is MSB first, 8 bits (Figure 37). The AK4331 generates an acknowledge after each byte is received. Data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 40).

The AK4331 can perform more than one byte write operation per sequence at address from 00H to 17H. After receipt of the third byte the AK4331 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 17H prior to generating a stop condition, the address counter will "roll over" to 00H and the previous data will be overwritten.

The data on the SDA line must remain stable during the HIGH period of the clock. HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW (Figure 42) except for the START and STOP conditions.

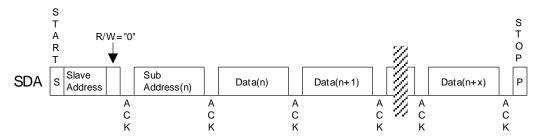


Figure 34. Data Transfer Sequence in I²C-bus Mode

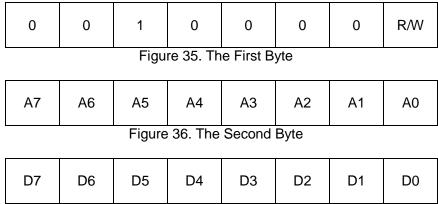


Figure 37. The Third Byte

2. READ Operation

Set the R/W bit = "1" for the READ operation of the AK4331. After transmission of data, the master can read the next address's data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds 17H prior to generating stop condition, the address counter will "roll over" to 00H and the data of 00H will be read out.

The AK4331 supports two basic read operations: Current Address READ and Random Address READ.

2-1. Current Address READ

The AK4331 has an internal address counter that maintains the address of the last accessed word incremented by one. Therefore, if the last access (either a read or write) were to address "n", the next Current READ operation would access data from the address "n+1". After receipt of the slave address with R/W bit "1", the AK4331 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4331 ceases the transmission.

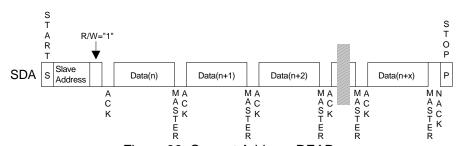


Figure 38. Current Address READ

2-2. Random Address READ

The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit "1", the master must first perform a "dummy" write operation. The master issues a start request, a slave address (R/W bit = "0") and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit "1". The AK4331 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4331 ceases the transmission.

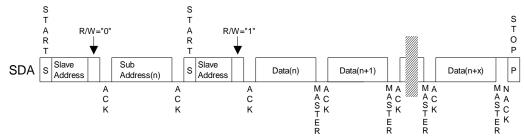


Figure 39. Random Address READ

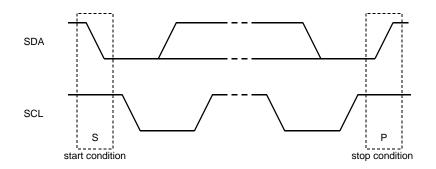


Figure 40. Start Condition and Stop Condition

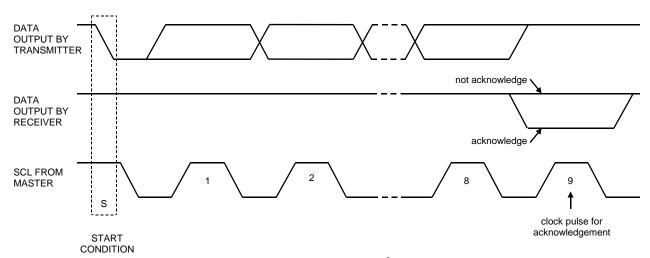


Figure 41. Acknowledge (I²C-bus)

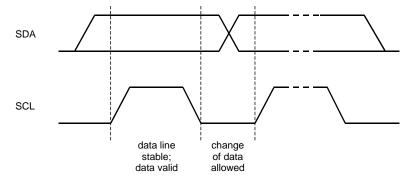


Figure 42. Bit Transfer (I²C-bus)

9-21. Control Sequence

Figure 43 shows power-up sequence of DAC and headphone amplifier.

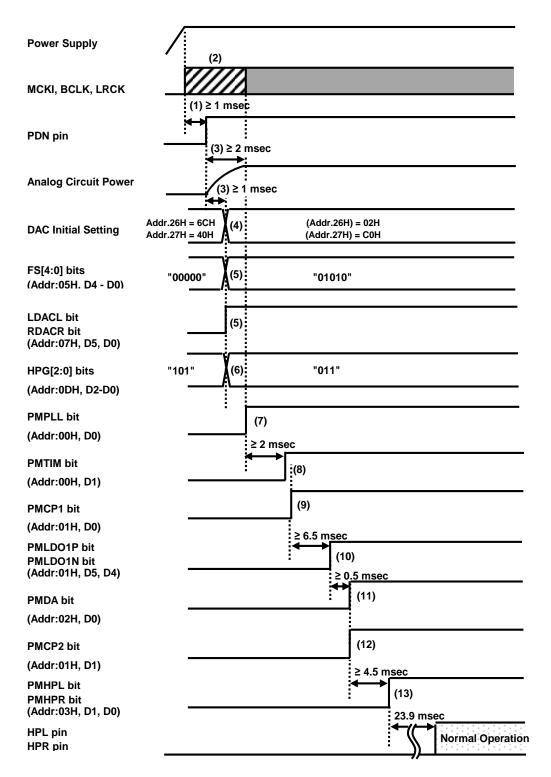


Figure 43. Power-Up Sequence Example of DAC and Headphone Amplifier

- < Power-Up Sequence Example >
- (1) Set the PDN pin from "L" to "H" after turning on all power supplies. In this case, 1 msec or more "L" time is needed for a certain reset.
- (2) After all power supplies are On, MCKI, BCLK and LRCK should be input before powering up PLL or CP1.
- (3) Set the PDN pin = "H" to release the power-down. Register access will be valid in 1 msec at maximum. However, a wait time of 2 msec is needed to access PMTIM bit and power management bits of the analog circuit (PMCP1 bit, PMCP2 bit, PMLDO1P bit, PMLDO1N bit, PMDA bit, PMHPL bit, PMHPR bit and PMPLL bit) until the analog circuit is powered up.
- (4) Set DAC initial settings. (Write 02H data into Address 26H and write C0H data into Address 27H)
- (5) Set sampling frequency (FS[4:0] bits) and the input signal path of the DAC. (LDACL bit = RDACR bit = "0" → "1")
- (6) Set headphone amplifier volume by HPG[2:0] bits.
- (7) In case of using PLL, power-up PLL (PMPLL bit = "0" → "1") and wait 2 msec for PLL output stabilization.
- (8) Start internal master counter. (PMTIM bit = "0" → "1")
 PMCP1 bit, PMCP2 bit, PMLDO1P bit, PMLDO1N bit, PMDA bit, PMHPL bit and PMHPR bit must be powered up after PMTIM bit = "1".
- (9) Power-up CP1 (PMCP1 bit = "0" → "1") and wait 6.5 msec (Note 115) for CP1 output voltage stabilization.
- (10) Power-up LDO1P and LDO1N (PMLDO1P bit = PMLDO1N bit = "0" \rightarrow "1") and wait 0.5 msec (Note 115) for each LDO output voltage stabilization.
- (11) Power-up DAC (PMDA bit = "0" \rightarrow "1")
- (12) Power-up CP2 (PMCP2 bit = "0" → "1") and wait 4.5 msec (Note 115) for CP2 output voltage stabilization.
- (13) Power-up headphone amplifier (PMHPL bit = PMHPR bit = "0" → "1")

 The power-up time of headphone amplifier is 23.9 msec (@ fs = 48 kHz). The HPL pin and the HPR pin output 0 V until the headphone amplifier is powered up.

Note 115. Refer to "8-3. Charge Pump & LDO Circuit Power-Up Time"

Figure 44 shows power-down sequence of headphone amplifier and DAC.

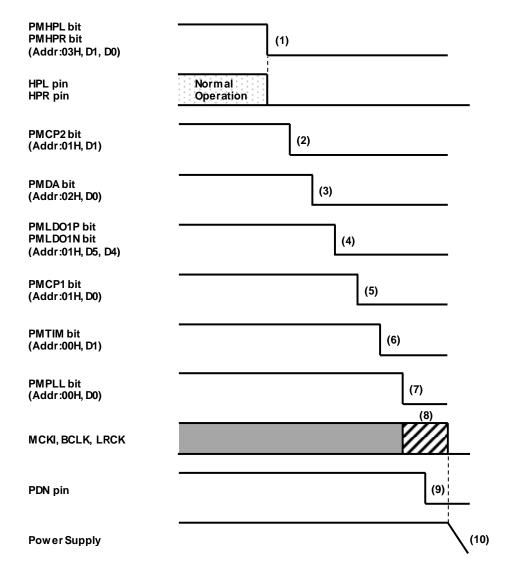


Figure 44. Power-Down Sequence Example of Headphone Amplifier and DAC

< Power-Down Sequence Example >

- (1) Power-down headphone amplifier (PMHPL bit = PMHPR bit = "1" → "0"). When the headphone amplifier is powered down, the HPL pin and the HPR pin are pulled down to HPGND via the internal pull-down register.
- (2) Power-down CP2 (PMCP2 bit = "1" \rightarrow "0").
- (3) Power-down DAC (PMDA bit = "1" \rightarrow "0").
- (4) Power-down LDO1P, LDO1N (PMLDO1P bit = PMLDO1N bit = "1" \rightarrow "0").
- (5) Power-down CP1 (PMCP1 bit = "1" \rightarrow "0").
- (6) Stop internal master counter. (PMTIM bit = "1" → "0")
 PMCP1 bit, PMCP2 bit, PMLDO1P bit, PMLDO1N bit, PMDA bit, PMHPL bit and PMHPR bit must be powered off before PMTIM bit = "0".
- (7) In case of using PLL, power-down PLL. (PMPLL bit = "1" \rightarrow "0")
- (8) Stop MCKI, BCLK and LRCK supply before turning off each of power supplies.
- (9) Set the PDN pin from "H" to "L".
- (10) Turn off each of power supplies.

9-22. Register Map

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Power Management 1	0	0	0	PMOSC	0	0	PMTIM	PMPLL
01H	Power Management 2	0	0	PMLDO1N	PMLDO1P	0	0	PMCP2	PMCP1
02H	Power Management 3	PMSRC	0	PMSM	SELSM	0	0	0	PMDA
03H	Power Management 4	0		LVDTM[2:0]		CPMO	DE[1:0]	PMHPR	PMHPL
04H	Output Mode Setting	LVDSE	EL[1:0]		VDDT	M[3:0]		HPRHZ	HPLHZ
05H	Clock Mode Select	0	CM	[1:0]			FS[4:0]		
06H	Digital Filter Select	DASD	DASL	DADFSEL	0	0	0	0	0
07H	DAC Mono Mixing	INVR	MDACR	RDACR	LDACR	INVL	MDACL	RDACL	LDACL
08H	SRC Clock Select	0	CM2	2[1:0]			FS2[4:0]		
09H	Soft Mute Setting	0	0	0	0	SMT	[1:0]	SAUTO	SMUTE
0AH	SRC Setting	0	XCKSEL	0	0	0	0	SELDAIN	0
0BH	Lch Output Volume	OVOLCN	0	0			OVL[4:0]		
0CH	Rch Output Volume	0	0 0 0 OVR[4:0]						
0DH	HP Volume Control		HPTM[2:0]		1	0		HPG[2:0]	
0EH	PLL CLK Source Select	0	0	0	PLLMD	0	0	0	PLS
0FH	PLL Ref CLK Divider 1				PLD[15:8]			
	PLL Ref CLK Divider 2				PLD	[7:0]			
11H	PLL FB CLK Divider 1				PLM[15:8]			
12H	PLL FB CLK Divider 2				PLM	[7:0]			
13H	SRC CLK Source Select	0	0	0	0	0	0	0	SRCCKS
14H	PLLCLK Divider	0	0	0	0		MDI\	/[3:0]	
15H	Audio Interface Format	D	EVICEID[2:	0]	MS	BCKO	DIF	DL[1:0]
16H	Digital MIC	PMDMR	PMDML	DCLKE	DCLKP	0	0	ADRS	T[1:0]
17H	Side Tone Volume Control		SV[2:0]		SVE	0	HPF(C[1:0]	HPFADN
26H	DAC Adjustment 1	T8	T7	T6	T5	T4	T3	T2	T1
27H	DAC Adjustment 2	T16	T15	T14	T13	T12	T11	T10	T9
29H	Mode Control	0	0	0	0	0	0	HPMI	D[1:0]

Note 116. PDN pin = "L" resets the registers to their default values.

Note 117. The bits defined as "0" must contain a "0" value.

Note 118. The bits defined as "1" must contain a "1" value.

Note 119. Writing access to 18H to 25H, 28H, 2AH to FFH is prohibited.

9-23. Register Definitions

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Power Management 1	0	0	0	PMOSC	0	0	PMTIM	PMPLL
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMPLL: PLL Power Management

0: Power-Down (default)

1: Power-Up

PMTIM: Synchronization Control Power Management

0: Disable (default)

1: Enable

PMOSC: Crystal Oscillator Power Management

0: Power-Down (default)

1: Power-Up

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
01H	Power Management 2	0	0	PMLDO1N	PMLDO1P	0	0	PMCP2	PMCP1
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMCP1: Charge Pump 1 Power Management

0: Power-Down (default)

1: Power-Up

PMCP2: Charge Pump 2 Power Management

0: Power-Down (default)

1: Power-Up

PMLDO1P: LDO1P Power Management

0: Power-Down (default)

1: Power-Up

PMLDO1N: LDO1N Power Management

0: Power-Down (default)

1: Power-Up

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
02H	Power Management 3	PMSRC	0	PMSM	SELSM	0	0	0	PMDA
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PMDA: DAC Power Management

0: Power-Down (default)

1: Power-Up

PMSM, SELSM: Soft Mute Power Management (Table 46)

"0, 0": Power-Down (default)

"1, 1": Power-Up

PMSRC: SRC Power Management

0: Power-Down (default)

1: Power-Up

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
03H	Power Management 4	0	LVDTM[2:0]			CPMO	DE[1:0]	PMHPR	PMHPL
	R/W	R/W	R/W			R/	W	R/W	R/W
	Default	0		000		0	0	0	0

PMHPL/R: Headphone Amplifier L/R Channel Power Management

0: Power-Down (default)

1: Power-Up

CPMODE[1:0]: Charge Pump Mode Control (Table 32)

Default: "00" (Automatic Switching Mode)

LVDTM[2:0]: Class-G 1/2VDD Mode Detection Time Setting (Table 34)

Default: "000" (64/fs)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
04H	Output Mode Setting	LVDSE	EL[1:0]	VDDTM[3:0]				HPRHZ	HPLHZ
	R/W R/W				R/		R/W	R/W	
	Default	0	0		00	00		0	0

HPRHZ/HPLHZ: GND Switch Setting for Headphone Amplifier Output

0: Pull-Down by 4Ω (Typ.) (default)

1: Pull-Down by 95 k Ω (Typ.)

VDDTM[3:0]: Class-G VDD Hold Time Setting (Table 33)

Default: "0000" (1024/fs)

LVDSEL[1:0]: Switching Threshold between VDD Mode and 1/2VDD Mode of CP2

00: VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 16 Ω)

1/2VDD \rightarrow VDD: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_L = 16 Ω)

(Default: Assuming when connecting a 16Ω Headphone)

01: VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 32 Ω)

1/2VDD \rightarrow VDD: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_L = 32 Ω)

(Assuming when connecting a 32Ω Headphone or more)

10: VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 11 Ω)

1/2VDD \rightarrow VDD: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_L = 11 Ω)

(Assuming when connecting a 11Ω Headphone)

11: VDD \rightarrow 1/2VDD: < 1.05 mW at both channels (@CVDD = 1.8 V, R_L = 8 Ω)

 $1/2VDD \rightarrow VDD$: ≥ 1.05 mW at either channel (@CVDD = 1.8 V, R_I = 8 Ω)

(Assuming when connecting a 8Ω Headphone)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
05H	Clock Mode Select	0	CM	[1:0]	FS[4:0]				
	R/W	R/W	R/	W	R/W				
	Default	0	0	0	00000				

FS[4:0]: Sampling Frequency Setting (Table 6 @SRC Bypass Mode, Table 8 @SRC Mode)
Default: "00000" (fs = 8 kHz)

CM[1:0]: Master Clock Frequency Setting (Table 5 @SRC Bypass Mode, Table 7 @SRC Mode) Default: "00" (256fs)

Ad	dr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
06	H Digital Filter Select	DASD	DASL	DADFSEL	0	0	0	0	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

DADFSEL: Digital Filter Setting for DAC Compensation (Table 27, Table 28)

0: In case of SRC Bypass Mode (default)

1: In case of SRC Mode

DASD, DASL: DAC Digital Filter Mode Setting (Table 27, Table 28)

Default: "0, 0" (Sharp Roll-Off Filter)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
07H	DAC Mono Mixing	INVR	MDACR	RDACR	LDACR	INVL	MDACL	RDACL	LDACL
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

MDACL, RDACL, LDACL: DAC L Channel Input Signal Select (Table 29)

Default: "0, 0, 0" (MUTE)

MDACR, RDACR, LDACR: DAC R Channel Input Signal Select (Table 29)

Default: "0, 0, 0" (MUTE)

INVL/R: DAC Input Signal Polarity Select

0: Normal (default)

1: Inverting

Addr	Register Name	D7	D6 D5		D4	D3	D2	D1	D0
08H	SRC Clock Select	0	CM2	[1:0]			FS2[4:0]		
	R/W	R/W	R/	W	R/W				
	Default	0	0	00			00000		

FS2[4:0]: Sampling Frequency Setting for SRC Output (Table 10)

Default: "00000" (fs = 8 kHz)

CM2[1:0]: Master Clock Frequency Setting for SRC Output (Table 9)

Default: "00" (256fs)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
09H	Soft Mute Setting	0	0	0	0	SMT	[1:0]	SAUTO	SMUTE
	R/W	R/W	R/W	R/W	R/W	R/	W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

SMUTE: Soft Mute Enable 0: Disable (default)

1: Enable

SAUTO: Semi-Auto Mode Enable

0: Disable (default)

1: Enable

SMT[1:0]: Soft Mute Cycle Setting (Table 47)

Default: "00", 1024/FSO

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0AH	SRC Setting	0	XCKSEL	0	0	0	0	SELDAIN	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

SELDAIN: DAC Input Data Select (Table 45)
Default: "0" (SDTI pin; SRC Bypass Mode)

XCKSEL: DAC and Charge Pump Operation Clock (Table 43)

0: PLLO (default)
1: MCKI/XTI pin

Addr	Register Name	D7	D6	D5	D4 D3 D2 D1 D0					
0BH	Lch Output Volume	OVOLCN	0	0	OVL[4:0]					
0CH	Rch Output Volume	0	0	0			OVR[4:0]			
	R/W	R/W	R/W	R/W	R/W					
	Default	0	0	0	19H					

OVL[4:0]: DAC L Channel Digital Volume Control; +3 dB to -12 dB & Mute, 0.5 dB step (Table 31) OVR[4:0]: DAC R Channel Digital Volume Control; +3 dB to -12 dB & Mute, 0.5 dB step (Table 31) Default: 19H (0 dB)

OVOLCN: Digital Volume Control

0: Dependent (default)

1: Independent

OVL[4:0] bits control digital volume of both L and R channels when OVOLCN bit = "0". In this case, the value of OVL[4:0] bits will not be written to OVR[4:0] bits.

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0DH HP Volume Control		HPTM[2:0]		1	0		HPG[2:0]	
R/W	R/W			R/W	R/W	R/W		
Default		011	•	1	0		101	

HPG[2:0]: Headphone Amplifier Analog Volume Control; +4 dB to -10 dB, 2 dB step (Table 35) Default: "101" (0 dB)

HPTM[2:0]: Zero Cross Time Output Period Setting for Analog Volume of Headphone Amplifier (Table 36)

Default: "011" (1024/fs)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
0EH	PLL CLK Source Select	0	0	0	PLLMD	0	0	0	PLS
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

PLS: PLL Clock Source Select (Table 14)

Default: "0" (MCKI/XTI pin)

PLLMD: PLL Internal Mode Setting (Table 17)

Default: "0"

Addr	Register Name	D7	D7 D6 D5 D4 D3 D2 D1 D0								
0FH	PLL Ref CLK Divider 1		PLD[15:8]								
10H	PLL Ref CLK Divider 2				PLD	[7:0]					
	R/W				R/	W					
	Default	0000H									

PLD[15:0]: PLL Reference Clock Divider Setting (Table 15)

Default: 0000H

Addr	Register Name	D7									
11H	PLL FB CLK Divider 1		PLM[15:8]								
12H	PLL FB CLK Divider 2				PLM	[7:0]					
	R/W				R/	W					
	Default		0000H								

PLM[15:0]: PLL Feedback Clock Divider Setting (Table 16)

Default: 0000H

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
13H	SRC CLK Source Select	0	0	0	0	0	0	0	SRCCKS
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	0	0	0	0	0	0	0

SRCCKS: SRC Clock Source Select (Table 44)

0: PLLO (default)
1: MCKI/XTI pin

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
14H	PLLCLK Divider	0	0	0	0	MDIV[3:0]			
	R/W	R/W	R/W	R/W	R/W	R/W			
	Default	0	0	0	0	0H			

MDIV[3:0]: PLLCLK Divider Setting (Table 18)

Default: 0H (Divided by 1)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
15H	Audio Interface Format	D	EVICEID[2:	:0]	MS	BCKO	DIF	DL[1:0]
	R/W		R			R/W	R/W	R/	W
	Default		111			0	0	0	0

DL[1:0]: Data Length Setting (Table 49)

Default: "00" (24-bit linear)

DIF: Digital Audio Interface Format Setting (Table 48)

0: I²S Compatible (default)

1: MSB justified

BCKO: BCLK Output Frequency

0: 64fs (Default)

1: 32fs

MS: Master/Slave Mode Setting (Table 3)

0: Slave Mode (default)

1: Master Mode

DEVICEID[2:0]: Device ID

Default: "111" (AK4375: "000", AK4375A: "001", AK4376/A: "010", AK4377: "011", AK4331: "111")

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
16H	Digital MIC	PMDMR	PMDML	DCLKE DCL		0	0	ADRS	ST[1:0]
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
	Default		0	0	0	0	0	0	0

ADRST[1:0]: Digital Microphone Initialization Cycle Setting (Table 24)

Default: "00" (1059/fs)

DCLKP: Data Latching Edge Select (Table 21)

0: L channel data is latched on the DMCLK rising edge ("↑"). (default)

1: L channel data is latched on the DMCLK falling edge ("\p").

DCLKE: DMCLK pin Output Clock Control

0: "L" Output (default)

1: 64fs Output

PMDML/R: Input Signal Select with Digital Microphone Power Management (Table 23)

0: Power-Down (default)

1: Power-Up

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
17H	Side Tone Volume Control		SV[2:0]		SVE	0	HPF(C[1:0]	HPFADN
	R/W		R/W			R/W	R/	W	R/W
	Default		000		0	0	0	0	0

HPFADN: Digital Microphone HPF Control

0: On (default)

1: Off

HPFC[1:0]: Cut-off frequency of Digital Microphone HPF (Table 22)

Default: "00" (29.8 Hz @fs = 48 kHz)

SVE: Side Tone Additional Control (Table 25)

0: Disable (default)

1: Enable

SV[2:0]: Side Tone Volume Control; 0 dB to -24 dB, 6 dB step (Table 26)

Default: "000" (0 dB)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
26H	DAC Adjustment 1	T8	T7	T6	T5	T4	T3	T2	T1
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Default	0	1	1	0	1	1	0	0

* 02H data must be written to DAC Adjustment 1 (Addr. 26H) before analog blocks (CP1, CP2, LDO1, DAC, headphone amplifier and PLL) are powered up.

Addr Register Name	D7	D6	D5	D4	D3	D2	D1	D0
27H DAC Adjustment 2	T16	T15	T14	T13	T12	T11	T10	T9
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	1	0	0	0	0	0	0

* C0H data must be written to DAC Adjustment 2 (Addr. 27H) before analog blocks (CP1, CP2, LDO1, DAC, headphone amplifier and PLL) are powered up.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
29H	Mode Control	0	0	0	0	0	0	HPMI	D[1:0]
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Default		0	0	0	0	0	0	0	0

HPMD[1:0]: Headphone Amplifier Operation Mode Setting (N/A: Not available) (Table 5, Table 9)

00: In case of fs = 8 to 48 kHz (SRC Bypass Mode) / FSO = 8 to 48 kHz (SRC Mode) (default)

01: N/A 10: N/A

11: In case of fs = 64 to 192 kHz (SRC Bypass Mode) / FSO = 64 to 192 kHz (SRC Mode)

10. Recommended External Circuits

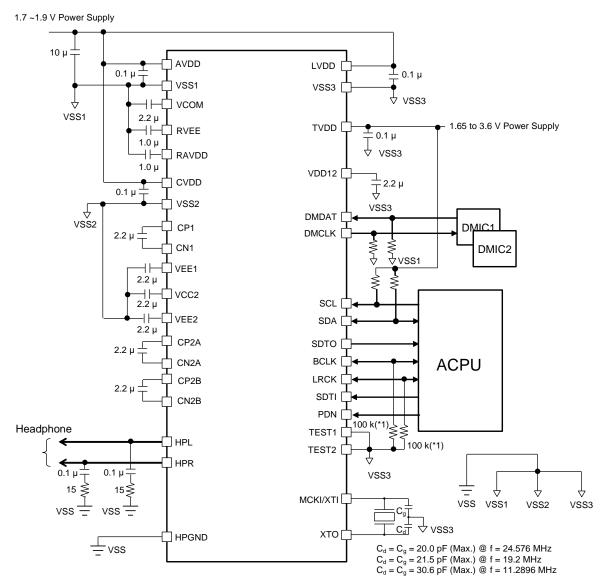


Figure 45. System Connection Diagram (When using X'tal Oscillator and Digital Microphone)

^{*1:} When the AK4331 is in master mode, a pull-down resistor (e.g. $100 \text{ k}\Omega$) is needed.

1. Grounding and Power Supply Decoupling

The AK4331 requires careful attention to power supply and grounding arrangements. The PDN pin should be held "L" when power supplies are tuning on. AVDD should be powered up before or at the same time of CVDD. Power-up sequence of TVDD and LVDD is not critical. The PDN pin is allowed to be "H" after all power supplies are applied and settled. To power down the AK4331, set the PDN pin to "L" and power down CVDD before or at the same time of AVDD. Power-down sequence of LVDD and TVDD is not critical.

To avoid pop noise on analog output when power-up/down, the AK4331 should be operated along the following recommended power-up/down sequence.

1) Power-up

- The PDN pin should be held "L" when power supplies are turning on. The AK4331 can be reset by keeping the PDN pin "L" for 1 msec or longer after all power supplies are applied and settled. Then release the reset by setting the PDN pin to "H".

2) Power-down

- Each of power supplies can be powered OFF after the PDN pin is set to "L".

VSS1, VSS2 and VSS3 of the AK4331 should be connected to the analog ground plane. System analog ground and digital ground should be connected together near where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as close the power supply pins as possible. Especially, the small value ceramic capacitor is to be closest.

2. Voltage Reference

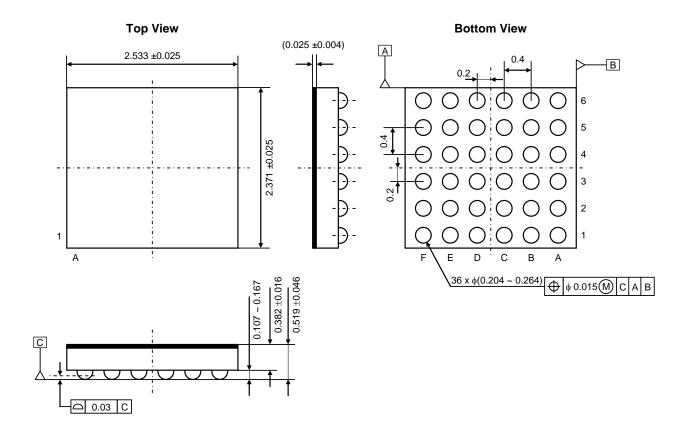
VCOM is a signal ground of this chip. A $2.2~\mu F$ ceramic capacitor attached between the VCOM pin eliminates the effects of high frequency noise. No load current is allowed to be drawn from the VCOM pin. All signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK4331.

3. Charge Pump and LDO Circuits

Capacitors for CP1 block (connected between the CP1 pin and the CN1 pin, between the VEE1 pin and the VSS2 pin) and for CP2 block (connected between the CP2A pin and the CN2A pin, between the CP2B pin and the CN2B pin, between the VCC2 pin and the VSS2 pin, between the VEE2 pin and the VSS2 pin) should be low ESR $2.2~\mu$ F $\pm 50\%$.

Capacitors for LDO1P block (connected between the RAVDD pin and the VSS1 pin) and for LDO1N block (connected between the RVEE pin and the VSS1 pin) should be low ESR from 1.0 μ F ±50% to 4.7 μ F ±50%.

These capacitors must be connected as close as possible to the pins. No load current may be drawn from the Positive / Negative Power Output pin (VEE1, RAVDD, RVEE, VCC2 and VEE2 pins).

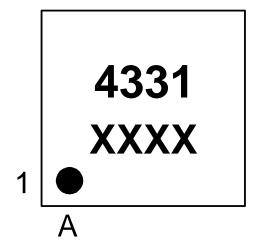

4. Analog Outputs

Headphone outputs are single-ended and centered at HPGND (0 V). They should be directly connected to a headphone without AC coupling.

11. Package

11-1. Outline Dimensions

36-pin CSP (Unit: mm)



11-2. Material and Lead Finish

Package molding compound: Epoxy Resign, Halogen Free

Solder ball material: SnAgCu

11-3. Marking

XXXX: Date code (4 digits)
Pin #A1 indication

12. Ordering Guide

AK4331ECB –40 to 85°C 36-pin CSP (0.4 mm pitch) AKD4331 Evaluation board for AK4331

13. Revision History

Date (Y/M/D)	Revision	Reason	Page	Contents
18/07/12	00	First Edition		

I٨	1DC)BI	ΓΔΝ	JT.	NI	$\cap T$	ICE
ш	virt	ᇧ	יואו	N I	יעו	()I	$I \cup I \subseteq$

- 0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.