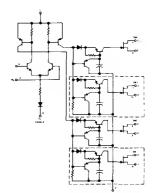


AH0120, AH0130, AH0140, AH0150, AH0160 Series Analog Switches General Description

The AH0100 series represents a complete family of junction FET analog switches. The inherent flexibility of the family allows the designer to tailor the device selection to the particular application. Switch configurations available include dual DPST, dual SPST, DPDT, and SPDT. $r_{ds(ON)}$ ranges from 10 ohms through 100 ohms. The series is available in both 14 lead flat pack and 14 lead cavity DIP. Important design features include:

- TTL/DTL and RTL compatible logic inputs
- Up to 20V p-p analog input signal
- r_{ds(ON)} less than 10Ω (AH0140, AH0141, AH0145, AH0146)
- Analog signals in excess of 1 MHz
- "OFF" power less than 1 mW

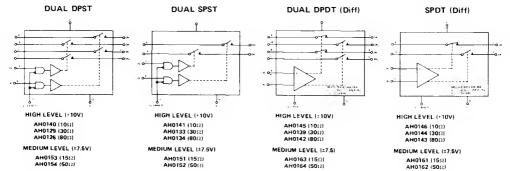
Schematic Diagrams



wore borred the portions are not applicable to the iteat 5+51

Logic and Connection Diagrams

- Gate to drain bleed resistors eliminated
- Fast switching, t_{ON} is typically .4 μ s, t_{OFF} is 1.0 μ s
- Operation from standard op amp supply voltages, ±15V, available (AH0150/AH0160 series)
- Pin compatible with the popular DG 100 series.


The AH0100 series is designed to fulfill a wide variety of analog switching applications including commutators, multiplexers, D/A converters, sample and hold circuits, and modulators/demodulators. The AH0100 series is guaranteed over the temperature range -55° C to $+125^{\circ}$ C; whereas, the AH0100C series is guaranteed over the temperature range -25° C to $+85^{\circ}$ C.

DPDT (diff.) and SPDT (diff.)

Note Dotted line portions are not applicable to the SPDT (differential)

Drder any of the devices below using the part number with a D or F suffix. See Packages 14 and 23

Absolute Maximum Ratings

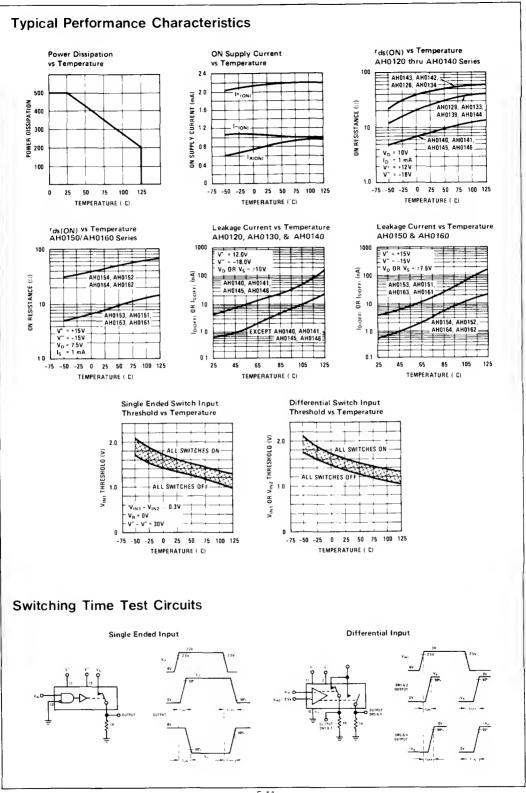
		High Level	Medium Level
Total Supply Voltage (V ⁺ – V ⁻)		36V	34V
Analog Signal Voltage (V ⁺ - V _A	or V _A – V ⁻)	30V	25∨
Positive Supply Voltage to Refe	rence (V ⁺ – V _R)	25V	25V
Negative Supply Voltage to Ref	erence (V _B - V ⁻)	22∨	22∨
Positive Supply Voltage to Inpu	25V	25V	
Input Voltage to Reference (Vir	v - V _R)	±6V	±6V
Differential Input Voltage (VIN	±6V	±6V	
Input Current, Any Terminal	30 m A	30 mA	
Power Dissipation		S	ee Curve
Operating Temperature Range	AH0100 Series	–55°C to	→ +125°C
	AH0100C Series	~25°C 1	to +85°C
Storage Temperature Range	-65°C to +150°C		
Lead Temperature (Soldering, 1	0 sec)		300° C

Electrical Characteristics for "HIGH LEVEL" Switches (Note 1)

PARAMETER SYM		DEVICE TYPE				CONDITIONS		LIMITS		
	SYMBOL	DUAL DPST	DUAL SPST	DPDT DIFF)	SPDT (DIFF)	V* = 12 0V, V ⁻ = ~1	8.0V, V _R = 0.0V	түр	мах	UNITS
Logic "1" Input Current	IINION		AL C	•02 •5		Note 2	T _A - 25 C Over Temp Range	20	60 120	μΑ μΑ
Logic 0" Input Current	IN OFFI		All Ci	reu ts		Note 2	T _A 25 [°] C Ovei Temp Range	01		μΑ μΑ
Positive Supply Current Switch ON	L [*] (ON)		A, C	100-15		One Driver ON Note 2	T _A 25 C Over Temp Range	22	3.0 3 3	mA mA
Negative Supply Current Switch ON	1 ⁻ 0N		All C	rea H		One Driver ON Note 2	T _A 25 C Over Temp Range	-10	-18 -20	mA mA
Reference Input (Enable) ON Current	I _{B(GN)}		All C	ucaits		One Driver ON Note 2	T _A 25°C Over Temp Range	-10	-1_4 -1_6	mA mA
Positive Supply Current Switch OFF	I' UFF	All Circuits				V _{IN1} V _{IN2} 0.8V	T _A 25°C Over Temp Range	10	10 25	μΑ μΑ
Negative Supply Current Switch OFF	IT-GERI		All C	ircuits		V _{IN1} V _{iN2} 0.8V	T _A - <u>25 C</u> Over ⊺emp Range	-10	- 10 - 25	μΑ μΑ
Reference Input (Enable) OFF Current	IBIOFF"	All Circuits				V _{IN1} - V _{IN2} 0.8V	T _A - 25° C Over Temp Range	-10	- 10 - 25	μA μA
Switch ON Resistance	Tis ONI	AH0126	AH0134	AH0142	AH0143	V _D 10V I _D 1mA	T _A = 25°C Over Temp. Range	45	80 150	Ω Ω
Switch ON Resistance	rds "N	AH0129	AH0133	AH0139	AH0144	V _D 10V 4 _D 1mA	T _A 25 [°] C Over Temp Range	25	30 60	Ω Ω
Switch ON Resistance	rds GNI	AH0140	AH0141	AH0145	AH0146	V _D 10V I _F 1 mA	T _A - 25 C Over Temp Range	-8	10 20	$\frac{\Omega}{\Omega}$
Driver Leakage Current	(1 ₀ + 1 ₅) _{ON}		AH C	ircuits		V _D = V _S = -10V	T _A - 25°C Over Temp Range	01	1 100	nA nA
Switch Leakage Current	ISIOFFI OR	AH0126 AH0129	AH0134 AH0133	AH0142 AH0139	AH0143 AH0144	V _{D5} - +20V	T _A - 25°C Over Temp Range	08	1 100	nA nA
Switch Leakage Current	I _{SIOFFI} OR I _{DIOFFI}	AH0140	AH0141	AH0145	AH0146	V _{D5} - ±20V	T _A = 25°C Over Temp Range	4	10 10	nA µA
Switch Turn ON Time	ton	AH0126 AH0129	AH0134 AH0133	AH0142 AH0139	AH0143 AH0144	See Test V _A ±10V		05	08	μs
Switch Turn-ON Time	t _{on}	AH0140	AH0141	AH0145	AH0146	See Test Circuit $V_A = \pm 10V$ $T_A = 25^{\circ}C$		08	10	μs
Switch Turn OFF Time	toff	AH0126 AH0129	AH0134 AH0133	AH0142 AH0139	AH0143 AH0144	See Test Circuit V₄ ±10V T₄ = 25°C		0 9	16	μs
Switch Turn OFF Time	t _{off}	AH0140	AH0141	AH0145	AH0146	See Test V _A = ±10V		1,1	2.5	μs

Note 1: Unless otherwise specified, these limits apply for -55° C to $+125^{\circ}$ C for the AH0100 series and -25° C to $+85^{\circ}$ C for the AH0100C series. All typical values are for T_A = 25^{\circ}C.

Note 2: For the OPST and Oual OPST, the ON condition is for V_{1N} = 2.5V, the OFF condition is for V_{1N} = 0.8V. For the differential switches and SW1 and 2 ON, V_{1N2} = 2.5V, V_{1N1} = 3.0V. For SW3 and 4 ON, V_{1N2} = 2.5V, V_{1N1} = 2.0V.


5

Electrical Characteristics for "MEDIUM LEVEL" Switches (Note 1)

PARAMETER		DEVICE TYPE				CONDITIONS			LIMITS	
	SYMBOL	DUAL DPST	DUAL SPST	DUAL DPDT	SPDT (DIFF)	V ⁺ = +15.0V, V ⁻ =	- 15V, V _R = 0V	TYP	мах	UNITS
Logic 11" Input Current	(INION)		AH C	Orcuits		Note 2	T _A - 25°C Over Tempi Range	20	60 120	- <u>μ</u> Α μΑ
Logic 10 Input Current	INCOFF		All C	Dircuits		Note 2	T _A - 25 C Over Temp Range	01	01	μA μA
Positive Supply Current Switch ON	LIONI		All C	Dircuits		One Driver ON Note 2	T _A 25 C Over Temp Range	22	<u>30</u> <u>3.3</u>	mA
Negative Supply Current Switch ON	IT _{ION}		All Ci	ircuits		One Driver ON Note 2	T _A 25 C Over Temp Range	-10	-18	$\frac{mA}{mA}$
Reference Input (Enable) ON Current	IALON		AII C	ircuits		One Driver ON Note 2	T _A - 25 C Over Temp Range	-10	$-\frac{14}{-16}$	mA mA
Positive Supply Current Switch OFF	1'OFF'	All Circuits				V _{IN1} V _{N2} = 0.8V	T _A 25 C Over Temp Range	10	10	
Negative Supply Current Switch OFF	I OFFI		Ali C	ircuits		V _{IN1} V _{IN2} 0.8V	T _A 25 C Over Temp Range	-10	- 10	<u>Ащ</u>
Reference Input (Enable) OFF Current	I BLOFF,	All Circuits				V _{IN1} V _{IN2} 0.8V	T _A - 25 C Over Temp Range	-10	- 10	μΑ
Switch ON Resistance	r _{ds ON1}	AH0153	AH0151	AH0163	AH0161	V _D 75V I _D 1mA	T _A - 25 C Over Temp Range	10	15 30	$-\frac{\Omega}{\Omega}$
Switch ON Resistance	^r astON+	AH0154	AH0152	AH0164	AH0162	V _D 75V I _D 1mA	T _A 25 C Over Temp Range	45	50 100	<u>Ω</u>
Driver Leakage Current	(10 + 15)0N	All Circuits				V _D V ₅ -75V	T _A - 25 C Over Temp Range	01	2	- nA
Switch Leakage Current	I _{DIOFE} , OR I _{SIOFE}	AH0153	AH0151	AH0163	AH0161	V _{DS} +15∨	T _A 25'C Over Temp Range	5	10	nA µA
Switch Leakage Current	ID OFF OR	AH0154	AH0152	AH0164	AH0162	V _{D5} ±150V	T _A 25 C Over Temp Range	10	20	nA DA
Switch Turn-ON Time	ton	AH0153	AH0151	AH0163	AH0161	See Test V _A +7 Т _А 25	Circuit 5V	08	10	μs
Switch Turn-ON Time	t _{on}	AH0154	AH0152	AH0164	AH0162	See Test Circuit V _A 175V T _A 25 C		05	08	μs
Switch Turn-OFF Time	t _{off}	AH0153	AH0151	AH0163	AH0161	See Test Circuit V _A −t75V T _A −25 C		11	2 5	μs
Switch Turn-OFF Time	toff	AH0154	AH0152	AH0164	AH0162	See Test V _A 17 T _A 25	5V	09	15	μs

Note 1: Unless otherwise specified, these limits apply for -55° C to $+125^{\circ}$ C for the AH0100 series and -25° C to $+85^{\circ}$ C for the AH0100C series. All typical values are for T_A = 25^{\circ}C.

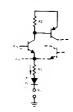
Note 2: For the DPST and Dual DPST, the ON condition is for V_{1N} = 2.5V; the OFF condition is for V_{1N} = 0.8V. For the differential switches and SW1 and 2 ON, V_{1N2} = 2.5V, V_{1N1} = 3.0V. For SW3 and 4 ON, V_{1N2} = 2.5V, V_{1N1} = 2.0V.

AH0120, AH0130, AH0140, AH0150, AH0160 Series

5

5-11

Applications Information


1. INPUT LOGIC COMPATIBILITY

A. Voltage Considerations

In general, the AH0100 series is compatible with most DTL, TTL, and RTL logic families. The ON-input threshold is determined by the V_{BE} of the input transistor plus the V_f of the diode in the emitter leg, plus I x R₁, plus V_R . At room temperature and $V_R = 0V$, the nominal ON threshold is $0.7V \pm 0.7V \pm 0.2V$, = 1.6V. Over temperature and manufacturing tolerances, the threshold may be as high as 2.5V and as low as 0.8V. The rules for proper operation are:

 $V_{IN} - V_R > 2.5V$ All switches ON

 $V_{1N} - V_R \leq 0.8V$ All switches OFF

B. Input Current Considerations

 $l_{\rm IN(ON)}$, the current drawn by the driver with $V_{\rm IN}=2.5V$ is typically $20\,\mu A$ at $25^\circ C$ and is guaranteed less than $120\,\mu A$ over temperature. DTL, such as the DM930 series can supply $180\,\mu A$ at logic "1" voltages in excess of 2.5V. TTL output levels are comparable at 400 μA . The DTL and TTL can drive the AH0100 series directly. However, at low temperature, DC noise margin in the logic "1" state is eroded with DTL. A pull-up resistor of 10 k\Omega is recommended when using DTL over military temperature range.

If more than one driver is to be driven by a DM930 series (6K) gate, an external pull-up resistor should be added. The value is given by:

$$R_P = \frac{11}{N-1}$$
 for $N > 2$

where:

 R_{P} = value of the pull-up resistor in $k\Omega$

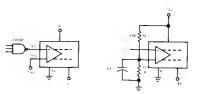
N = number of drivers.

C. Input Slew Rate

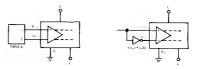
The slew rate of the logic input must be in excess of $0.3V/\mu s$ in order to assure proper operation of the analog switch. DTL, TTL, and RTL output rise times are far in excess of the minimum slew rate requirements. Discrete logic designs, however, should include consideration of input rise time.

2. ENABLE CONTROL

The application of a positive signal at the V_R

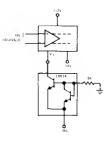

terminal will open all switches. The V_R (ENABLE) signal must be capable of rising to within 0.8V of V_{IN(ON)} in the OFF state and of sinking I_{R(ON)} milliamps in the ON state (at V_{IN(ON)} – V_R > 2.5V). The V_R terminal can be driven from most TTL and DTL gates.

3. DIFFERENTIAL INPUT CONSIDERATIONS


The differential switch driver is essentially a differential amplifier. The input requirements for proper operation are:

$$|V_{IN1} - V_{IN2}| \ge 0.3V$$

2.5 < (V_{IN1} or V_{IN2}) - V_B < 5V


The differential driver may be furnished by a DC level as shown below. The level may be derived from a voltage divider to V^{*} or the 5V V_{CC} of the DTL logic. In order to assure proper operation, the divider should be "stiff" with respect to I_{IN2}. Bypassing R1 with a 0.1 μ F disc capacitor will prevent degradation of t_{ON} and t_{OFF}.

Alternatively, the differential driver may be driven from a TTL flip-flop or inverter.

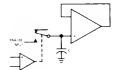
Connection of a 1 mA current source between V_R and V⁻ will allow operation over a \pm 10V common mode range. Differential input voltage must be less than the 6V breakdown, and input threshold of 2.5V and 300mV differential overdrive still prevail.

4. ANALOG VOLTAGE CONSIDERATIONS

The rules for operating the AH0100 series at supply voltages other than those specified essentially breakdown into OFF and ON considerations. The OFF considerations are dictated by the maximum negative swing of the analog signal and the pinch off of the JFET switch. In the OFF state, the gate of the FET is at V⁻ + V_{BE} + V_{SAT} or about 1.0V above the V⁻ potential. The maximum V_P of the FET switches is 7V. The most negative analog voltage, V_A, swing which can be accomo dated for any given supply voltage is

$$|V_A| \le |V^-| - V_P - V_{BE} - V_{SAT}$$
 or
 $|V_A| \le |V^-| - 8.0 \text{ or } |V^-| > |V_A| + 8.0 \text{ V}$

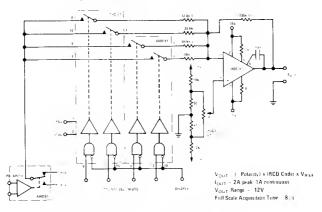
For the standard high level switches, $V_A \leq i - 18I + 8 = -10V$. The value for V^* is dictated by the maximum positive swing of the analog input voltage. Essentially the collector to base junction of the turn-on PNP must remain reversed biased for all positive value of analog input voltage. The base of the PNP is at $V^* - V_{SAT} - V_{BE}$ or $V^* - 10V$. The PNP's collector base junction should have at least 1.0V reverse bias. Hence, the most positive analog voltage swing which may be accommodated for a given value of V^* is:

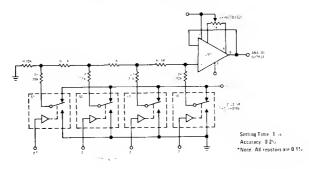

$V_{\text{A}} \leq V^{*} - V_{\text{SAT}} - V_{\text{BE}} - 1.0V$ or

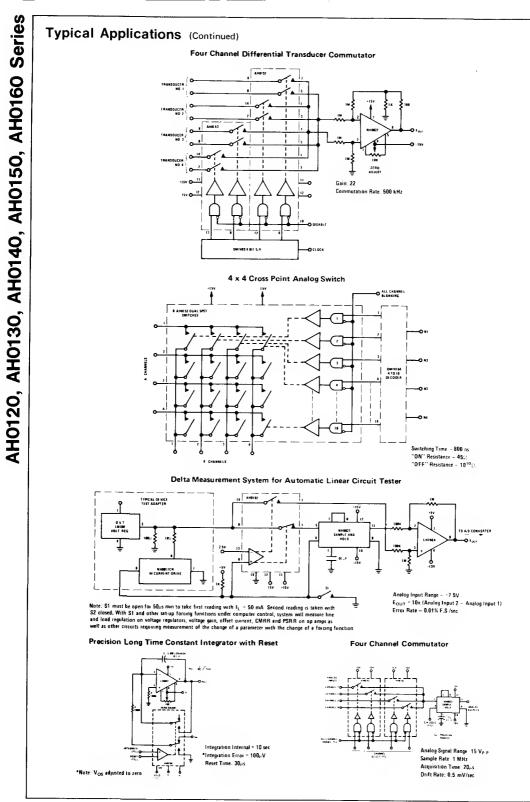
$$V_{\Delta} < V^{+} - 2.0V \text{ or } V^{+} > V_{A} + 2.0V$$

For the standard high level switches, $V_A = 12 - 2.0V = +10V$.

5. SWITCHING TRANSIENTS


Due to charge stored in the gate-to-source and gate-to-drain capacitances of the FET switch, transients may appear in the output during switching. This is particularly true during the OFF to ON transition. The magnitude and duration of the transient may be minimized by making source and load impedance levels as small as practical.


Furthermore, transients may be minimized by operating the switches in the differential mode; i.e., the charge delivered to the load during the ON to OFF transition is, to a large extent, cancelled by the OFF to ON transition.


Typical Applications

Programmable One Amp Power Supply

Four to Ten Bit D to A Converter (4 Bits Shown)

