

Features

- Low power consumption
- Low temperature coefficient
- Built-in hysteresis characteristic
- High input voltage (up to 10V)
- Output voltage accuracy: tolerance \pm 1% or \pm 2%
- TO92, SOT89, SOT23-3 ,SOT23 and SOT23-5

package

Applications

- Battery checkers
- Level selectors
- Power failure detectors
- Microcomputer reset
- Battery memory backup
- Non-volatile RAM signal storage protectors

General Description

The AF70XXM series devices are a set of three terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 0.9V to 5.0V. The voltage detectors consist of a high-precision and low power consumption standard voltage source as well as a comparator,

hysteresis circuit, and an output driver (CMOS inverter or NMOS open drain). CMOS technology ensures low power consumption.

Although designed primarily as fixed voltage detectors, these devices can be used with external components to detect user specified threshold voltages.

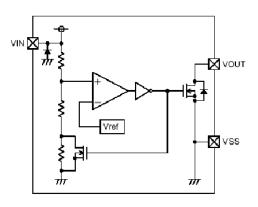
Selection Table

Part No.	Det. Voltage	Hys. Width	Output	Tolerance	Package
AF7009MCxx	0.9V	4%	CMOS	±1% or ±2%	
AF7009MNxx	0.9V	4%	NMOS	±1% or ±2%	
AF7010MCxx	1.0V	4%	CMOS	±1% or ±2%	
AF7010MNxx	1.0V	4%	NMOS	±1% or ±2%	TO92
AF7011MCxx	1.1V	4%	CMOS	±1% or ±2%	SOT89
AF7011MNxx	1.1V	4%	NMOS	±1% or ±2%	SOT23-3
AF7012MCxx	1.2V	4%	CMOS	±1% or ±2%	SOT23
AF7012MNxx	1.2V	4%	NMOS	±1% or ±2%	SOT23-5
		4%	•••	±1% or ±2%	
AF7050MCxx	5.0V	4%	CMOS	±1% or ±2%	
AF7050MNxx	5.0V	4%	NMOS	±1% or ±2%	

Order Information

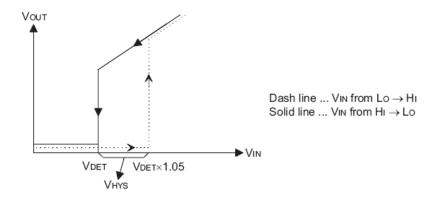
AF701234567

Designator	Symbol	Description
1 2	Integer	Output Voltage(0.9~5.0V)
3	M	Standard
4	С	CMOS output
	N	NMOS output
5	Т	Package:TO-92
	Р	Package:SOT89
	M	Package:SOT23-3
	N	Package:SOT23
	M5	Package:SOT23-5
6	R	RoHS / Pb Free
	G	Halogen Free
7	1	±1% accuracy

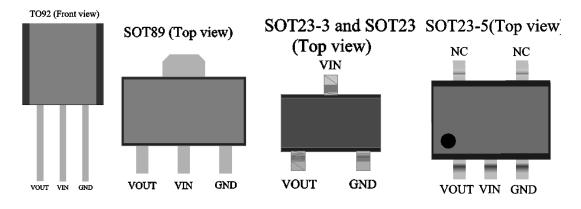

Note: if \bigcirc is omitted, the accuracy is $\pm 2\%$ accuracy

Block Diagram

(1) CMOS Output

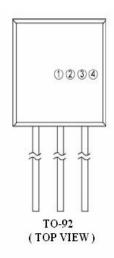

VIN W VOUT VOUT VSS

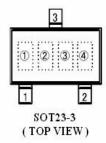
(2) N-ch Open Drain Output

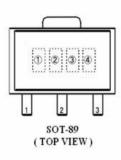


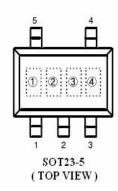
Output Table & Curve

V_{DD}	$V_{DD}>V_{DET}(+)$	V _{DD} ≪V _{DET} (-)
V _{OUT}	Hi-Z	V _{SS}




Pin Assignment




Ver1.0 3 www.afsemi.com

Marking Rule

① Represents integer of detect voltage and CMOS Output

MARK	CONFIGURATION	VOLTAGE (V)
А	CMOS	0.X
В	CMOS	1.X
С	CMOS	2.X
D	CMOS	3.X
E	CMOS	4.X
F	CMOS	5.X
Н	CMOS	6.X

N-Channel Open Drain Output

MARK	CONFIGURATION	VOLTAGE (V)
K	N-ch	0.X
5 <u>0</u>	N-ch	1.X
М	N-ch	2.X
N	N-ch	3.X
Р	N-ch	4.X
R	N-ch	5.X
S	N-ch	6.X

②Represents decimal number of detect voltage

MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
0	X.0	5	X.5
1	X.1	6	X.6
2	X.2	7	X.7
3	X.3	8	X.8
4	X.4	9	X.9

3 Represents accuracy

MARK	ACCURACY
3	2%
1	1%

④Represents production lot number Based on the internal standard. (G, I, J, O, Q, W excepted)

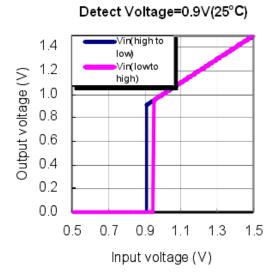
Absolute Maximum Ratings

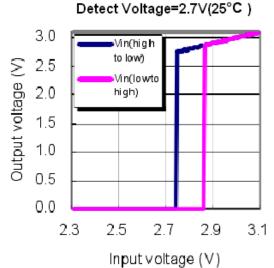
Supply Voltage-0.3V to 11V Storage Temperature-50°C to 125°C Operating Temperature-40°C to 85°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

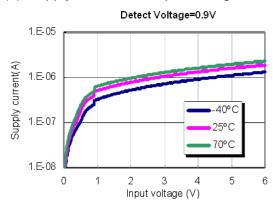
Thermal Information

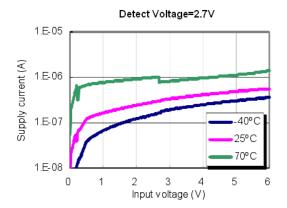
Symbol	Parameter	Package	Max.	Unit
	Thermal Decistores (lungtion to	SOT23	500	°C/W
θ _{JA}	Thermal Resistance (Junction to Ambient) (Assume no ambient	SOT89	200	°C/W
	airflow, no heat sink)	TO92	200	°C/W
		SOT23	0.20	W
P _D Power Dissipation	SOT89	0.50	W	
		TO92	0.50	W

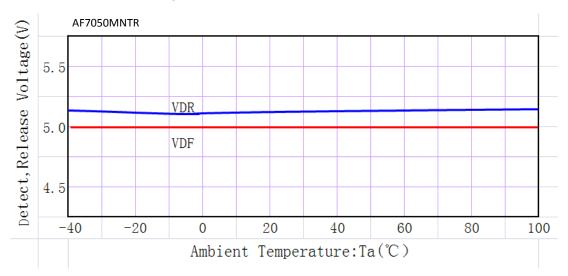

Electrical Characteristics


 $V_{DF}=0.8V\sim5.0V$ Ta=25°C

Symbol	Parameter	Τe	est Conditions	Min.	Тур.	Max.	Unit	
V _{DET}	Detection Voltage	V _{DF} =0.8V~2.2V V _{DF} =2.3V~5.0V		V _{DF} *0.98	V_{DF}	V _{DF} *1.02	V	
V _{HYS}	Hysteresis Width		-	0.02*V _{DET}	0.04*V _{DET}	0.08*V _{DET}	V	
			Vin=1.5V	-	0.7	2.3		
				Vin=2.0V	-	0.8	2.7	
I_{DD}	Operating Current	Vin=3.0V		-	0.9	3.0	μΑ	
		Vin=4.0V		-	1.0	3.2		
			Vin=5.0V	-	1.1	3.6		
V_{DD}	Operating Voltage	ı	-	0.7	-	10	V	
l _{OL}	Output Sink Current	2V	V _{OUT} =0.2V	0.5	1	-	mA	
$\frac{\Delta V_{\scriptscriptstyle DET}}{V_{\scriptscriptstyle DF}\Delta T_{\scriptscriptstyle a}}$	Temperature Coefficient	-1	-25℃ <ta<125℃< td=""><td>-</td><td>±100</td><td>-</td><td>ppm/°C</td></ta<125℃<>	-	±100	-	ppm/°C	

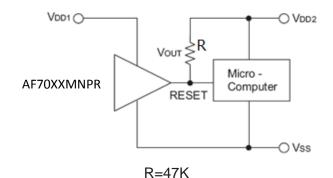

Typical Performance Characteristics


(1) Output Voltage vs Input voltage

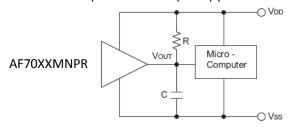


(2) Supply Current vs. Input Voltage

(3) Detect, Release Voltage vs. Ambient Temperature

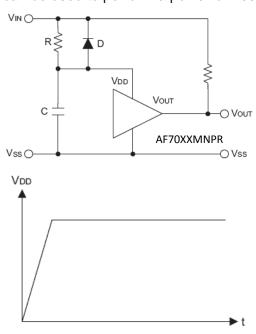


Application Circuits

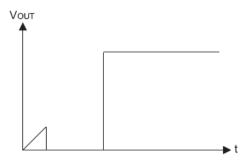

Microcomputer Reset Circuit

Normally a reset circuit is required to protect the microcomputer system from malfunctions due to power line interruptions. The following examples show how different output configurations perform a reset function in various systems.

NMOS open drain output application for separate power supply

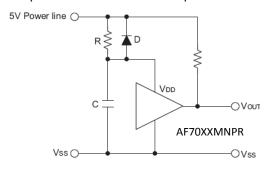


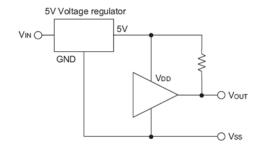
NMOS open drain output application with R-C delay



Power-on Reset Circuit

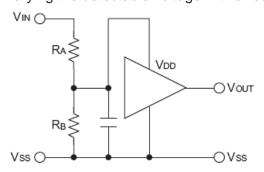
With several external components, the NMOS open drain type of the AF70XXM series can be used to perform a power-on reset function as shown:




5V Power Line Monitoring Circuit

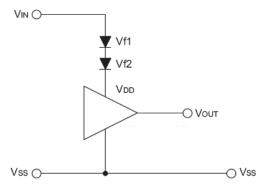
Generally, a minimum operating voltage of 4.5V is guaranteed in a 5V power line system.

5V power line monitor with power-on reset


With 5V voltage regulator

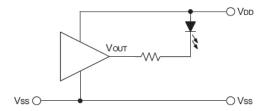
Change of Detectable Voltage

If the required voltage is not found in the standard product selection table, it is possible to change it by using external resistance dividers or diodes.


Varying the detectable voltage with a resistance divider

Detectable voltage =
$$\frac{R_A + R_B}{R_B} \times V_{DET}$$

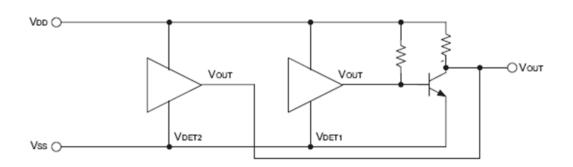
Hysteresis width = $\frac{R_A + R_B}{R_B} \times V_{HYS}$

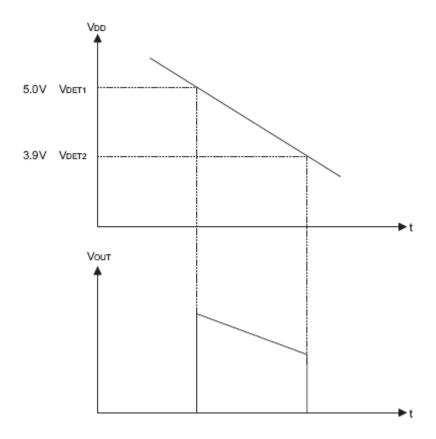

Varying the detectable voltage with a diode

Detectable Voltage = $V_{f1}+V_{f2}+V_{DET}$

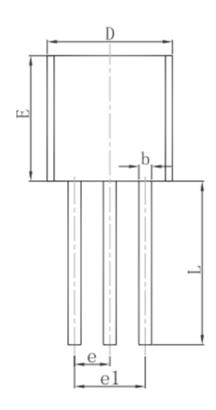
Malfunction Analysis

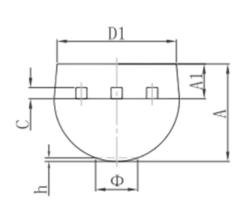
The following circuit demonstrates the way a circuit analyzes malfunctions by monitoring the variation or spike noise of power supply voltage.


Charge Monitoring Circuit

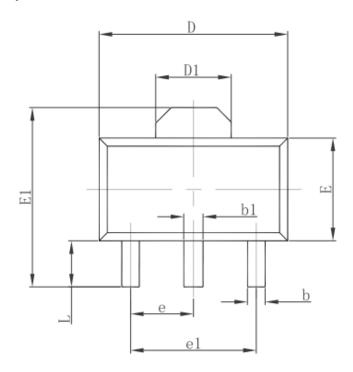

The following circuit shows a charged monitor for protection against battery deterioration by overcharging. When the voltage of the battery is higher than the set detectable voltage, the transistor turns onto bypass the charge current, protecting the battery from overcharging.

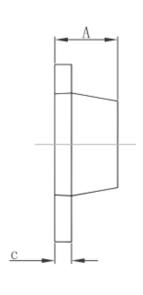
Level Selector


The following diagram illustrates a logic level selector.



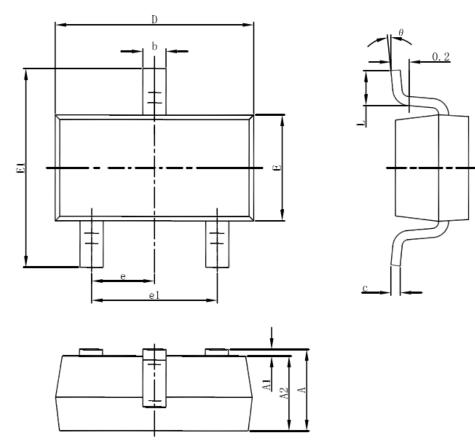
Package Information 3-pin TO92 Outline Dimensions



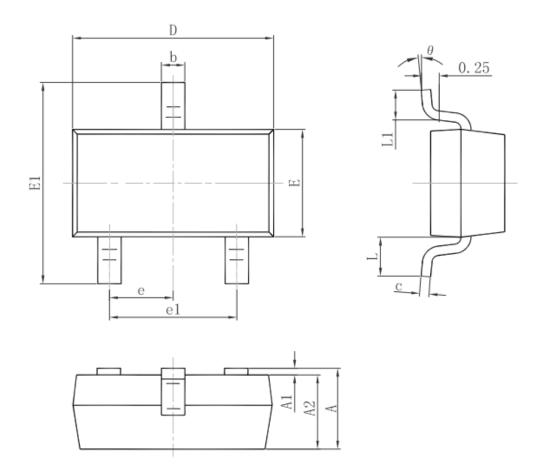


Cumbal	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	3.300	3.700	0.130	0.146
A1	1.100	1.400	0.043	0.055
b	0.380	0.550	0.015	0.022
С	0.360	0.510	0.014	0.020
D	4.300	4.700	0.169	0.185
D1	3.430		0.135	
E	4.300	4.700	0.169	0.185
е	1.270 TYP.		0.050	TYP.
e1	2.440	2.640	0.096	0.104
L	14.100	14.500	0.555	0.571
Ф		1.600		0.063
h	0.000	0.380	0.000	0.015

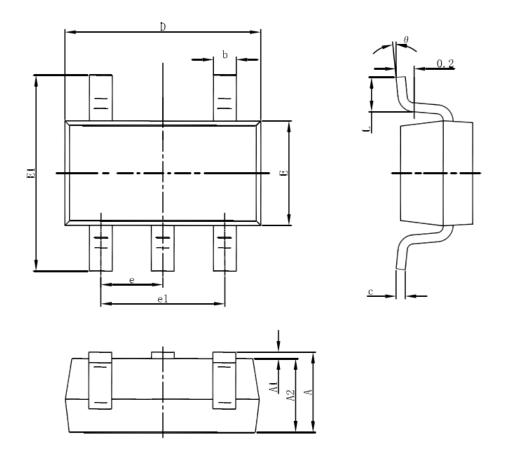
3-pin SOT89 Outline Dimensions



Cumbal	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061	REF.
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000 TYP.		0.118	TYP.
L	0.900	1.200	0.035	0.047


3-pin SOT23-3 Outline Dimensions

Cumbal	Dimensions In Millimeters		Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°


3-pin SOT23 Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950 TYP.		0.037 TYP.	
e1	1.800	2.000	0.071	0.079
L	0.550 REF.		0.022 REF.	
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

5-pin SOT23-5 Outline Dimensions

Symbol	Dimensions In Millimeters Dimensions In Inches		In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G,. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.