PHILIPS

AF178

TENTATIVE DATA

R.F. GERMANIUM ALLOY-DIFFUSED TRANSISTOR

Germanium alloy-diffused transistor of the p-n-p type in a metal case with low noise and high gain up to 260 Mc/s, for use in V.H.F. applications as amplifier-, oscillator- and converter circuits.

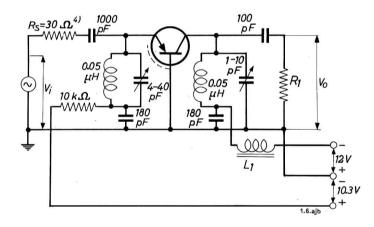
LIMITING VALUES (Absolute max. values)

Collector			
Voltage (base reference)	-V _C B	= max.	25 V
Current	$-I_{C}$	= max.	10 mA
Emitter			
Reverse current	$-I_{\rm E}$	= max.	1 mA
Base		÷	
Current	-I _B	= max.	1 mA
Dissipation			
Total dissipation	Ptot	= max.	110 mW
Temperatures			
Storage temperature	$T_{\mathbf{S}}$	= -55 °C	to +75 ^o C
Junction temperature continuous	Тj	= max.	750 °C
incidentally (total dura- tion max. 200 hrs)	Т _ј (t	= max. = max.	990 °С 200 hrs)
THERMAL DATA	(*		200 1115)
Thermal resistance from junction to ambience in free air	K	= max.	0.4 ^o C/mW

Shield lead-

Dimensions in mm TO-12 case	5.1 () () () () () () () () () () () () ()	5 0 x D 4 15.ahe	nax6.6_min	13 12 max0.48			
CHARACTERISTICS at $T_{amb} = 25 \text{ °C}$							
Collector current at I_E = 0							
$-V_{CB} = 12 V$			-I _{CBO}	<	10 µA		
$-V_{CB} = 25 V$			-I _{CBO}	<	50 µA		
Emitter voltage at $I_C = 0$							
$-I_E = 50 \ \mu A$			$-V_{EB}$	>	0.5 V		
Base current							
$-V_{CB} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$			-I _B	<	50 µA		
Base voltage				-	000		
$-V_{CB} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$			$-v_{BE}$ $-V_{BE}$	> <	220 mV 360 mV		
CHARACTERISTICS RANGE VALUES FOR EQUIP-							
MENT DESIGN			7	^r amb	= 25 °C		
Frequency at which $h_{fe} = 1$							
$-V_{CB} = 12$ V; $I_E = 1$ mA		f_1	= 180 N	lc/s			
Base impedance							
$-V_{CB} = 12$ V; $I_E = 1$ mA f = 2 Mc/s		zrb	= 10 \$	2			
Feedback capacitance							
$-V_{CE} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$ f = 0.45 Mc/s	Ą	-c _{re}	= 0.8 p	F			

¹) Shield lead


CHARACTERISTICS RANGE VALUES FOR EQUIP-MENT DESIGN (continued)

Current amplification factor

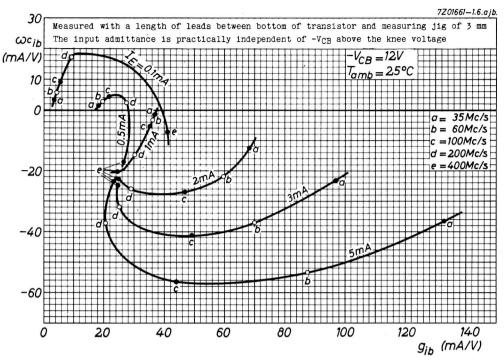
$$-V_{CE} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$$

f = 1 kc/s $h_{fe} > 20$

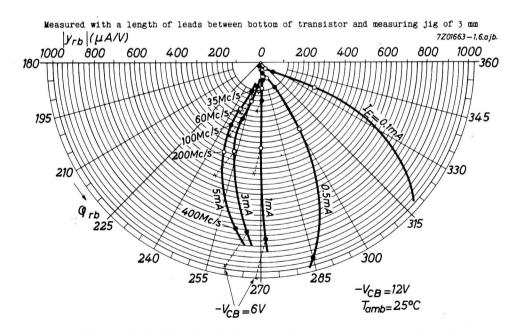
Noise figure

Test circuit for power gain at 200 Mc/s

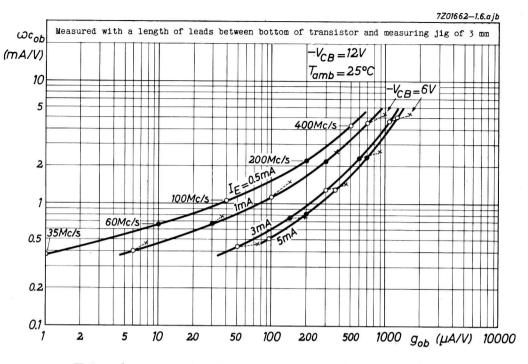
 R_1 is chosen such that the total impedance R_L of the tuned circuit is 2.0 $k\Omega.$

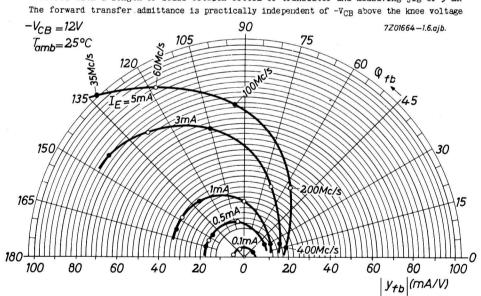

L₁ = ferrite bead

Available power gain at 200 Mc/s in the circuit above

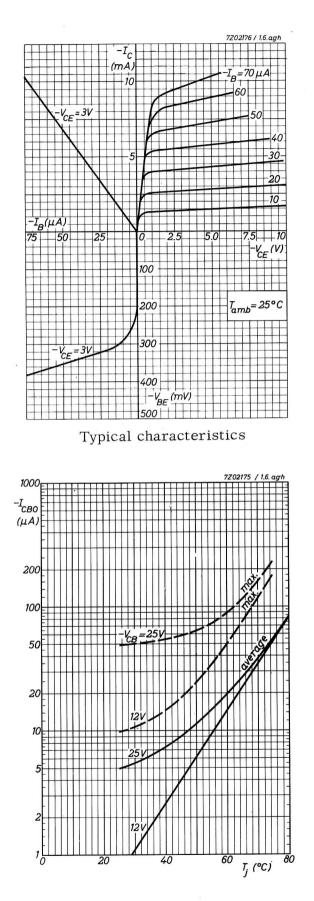

At
$$f = 100 \text{ Mc/s}$$
 $G = 13 \text{ dB} > 10 \text{ dB}$

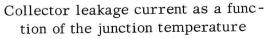
The available power gain is defined as


$$G = \frac{V_0^2}{V_i^2} \cdot \frac{4R_s}{R_L} = 0.073 \frac{V_0^2}{V_i^2}$$


Typical input admittance in common base circuit

Typical feedback admittance in common base circuit


Typical output admittance in common base circuit



Measured with a length of leads between bottom of transistor and measuring jig of 3 mm

Typical forward transfer admittance in common base circuit

5

