



## **FEATURES**

- 14-bit resolution; 20MSPS sampling rate
- Functionally complete; ±2.5V input range
- No missing codes over full temperature range
- Edge-triggered
- ±5V supplies, 1.6 Watts
- 75dB SNR, -80dB THD
- Ideal for both time and frequency-domain applications

### **PRODUCT OVERVIEW**

The ADSD-1420S is a functionally complete, dual 14-bit, 20MSPS, sampling A/D converter. Its standard, 40-pin, triple-wide SMT DIP contains two fast-settling sample/hold amplifiers, two 14-bit A/D converters, multiplexed output buffers, a precision reference, and all the timing and control logic necessary to operate from either two or a single start convert pulse.

### INPUT/OUTPUT CONNECTIONS

| PIN | FUNCTION      | PIN | FUNCTION      |
|-----|---------------|-----|---------------|
| 1   | INPUT A       | 40  | INPUT B       |
| 2   | +5VA          | 39  | +5VA          |
| 3   | ANALOG GROUND | 38  | ANALOG GROUND |
| 4   | N.C.          | 37  | N.C.          |
| 5   | OFFSET A      | 36  | OFFSET B      |
| 6   | RANGE         | 35  | N.C.          |
| 7   | 1.55V REF     | 34  | EOC A         |
| 8   | ANALOG GROUND | 33  | ANALOG GROUND |
| 9   | -5V           | 32  | -5V           |
| 10  | ENABLE A      | 31  | ENABLE B      |

The ADSD-1420S is optimized for wideband frequency-domain applications and is fully FFT tested. The ADSD-1420S requires only  $\pm 5$ V supplies and typically consumes 1.6 Watts. The digital output power supply is capable of directly driving 5V or 3V logic systems. Models are available in either commercial 0 to  $+70^{\circ}$ C or military -55 to  $+125^{\circ}$ C operating temperature ranges.

| PIN | FUNCTION     | PIN | FUNCTION    |
|-----|--------------|-----|-------------|
| 11  | START A      | 30  | START B     |
| 12  | VDD          | 29  | EOC B       |
| 13  | BIT 14 (LSB) | 28  | BIT 1 (MSB) |
| 14  | BIT 13       | 27  | BIT 2       |
| 15  | BIT 12       | 26  | BIT 3       |
| 16  | BIT 11       | 25  | BIT 4       |
| 17  | BIT 10       | 24  | BIT 5       |
| 18  | BIT 9        | 23  | BIT 6       |
| 19  | BIT 8        | 22  | BIT 7       |
| 20  | DGND         | 21  | DGND        |

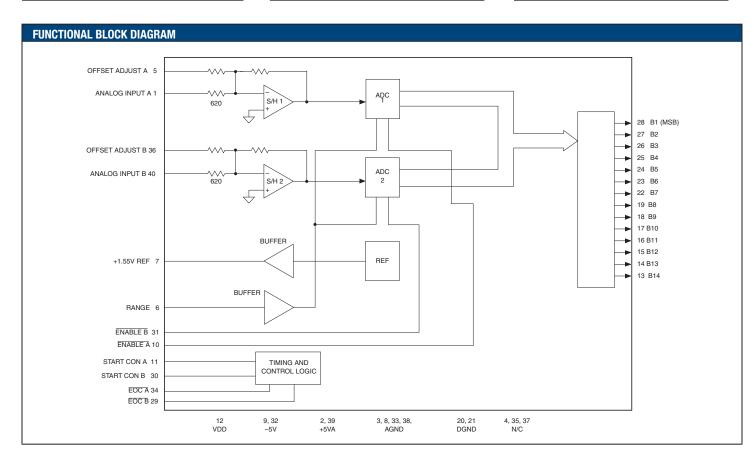



Figure 1. ADSD-1420S Functional Block Diagram



## **ABSOLUTE MAXIMUM RATINGS**

| PARAMETERS                           | LIMITS             | UNITS |
|--------------------------------------|--------------------|-------|
| +5Vcc Supply (Pins 2, 39)            | 0 to +6            | Volts |
| -5VEE Supply (Pins 9, 32)            | 0 to -6            | Volts |
| VDD Supply (Pin 12)                  | -0.3 to (Vcc +0.3) | Volts |
| Digital Inputs (Pins 10, 11, 30, 31) | -0.3 to (VDD +0.3) | Volts |
| Analog Input (Pins 1, 40)            | ±7                 | Volts |
| Lead Temp. (10 seconds)              | +300               | °C    |

# **FUNCTIONAL SPECIFICATIONS**

(Ta = +25°C, Vcc = +5V, Vdd = +5V, VEE = -5V, 20MSPS sampling rate, Vin =  $\pm 2.5$ V and a minimum 7 minute warmup unless otherwise specified.)

| ANALOG INPUTS               | MIN.    | TYP.             | MAX.       | UNITS  |
|-----------------------------|---------|------------------|------------|--------|
| Input Voltage Range         | _       | ±2.5V            | _          | Volts  |
| Input Impedence             | 610     | 620              | 630        | Ω      |
| Input Capacitance           | _       | 7                | 15         | pF     |
| DIGITAL INPUTS              |         | '                | 10         | ρı     |
| Logic Levels                |         |                  |            |        |
| Logic "1"                   | +2.4    |                  |            | Volts  |
| Logic "0"                   | 72.4    | _                | +0.8       | Volts  |
|                             | -       | _                |            |        |
| Logic Loading "1"           | _       | _                | +10        | μA     |
| Logic Loading "0"           | _       | _                | -10        | μA     |
| PERFORMANCE                 |         | i                |            |        |
| Integral Non-Linearity      |         | ,                |            |        |
| +25°C (fin=10kHz)           | -       | ±1               | _          | LSB    |
| 0 to +70°C                  | -       | ±1               | _          | LSB    |
| −55 to +125°C               | _       | ±2               | _          | LSB    |
| Differential Non-Linearity  |         |                  |            |        |
| (fin = 10kHz)               |         |                  |            |        |
| +25°C                       | -0.99   | ±0.5             | +1.5       | LSB    |
| 0 to +70°C                  | -0.99   | ±0.5             | +1.5       | LSB    |
| –55 to +125°C               | -0.99   | ±0.75            | +1.75      | LSB    |
| Offset Error                |         |                  |            |        |
| +25°C (see Figure 3)        | _       | ±0.25            | ±0.5       | %FSR   |
| 0 to +70°C                  | l —     | ±0.25            | ±0.5       | %FSR   |
| -55 to +125°C               | _       | ±0.5             | ±0.8       | %FSR   |
| Gain Error                  |         |                  |            |        |
| +25°C (see Figure 3)        | l —     | ±0.3             | ±0.6       | %FSR   |
| 0 to +70°C                  | _       | ±0.3             | ±0.6       | %FSR   |
| -55 to +125°C               | _       | ±0.6             | ±0.8       | %FSR   |
| No Missing Codes            |         |                  |            |        |
| 14 Bits                     |         | -55 to           | +125°C     |        |
| Resolution                  | 14 Bits |                  |            |        |
| OUTPUTS                     |         |                  |            |        |
| Output Coding               |         | Offse            | t Bin.     |        |
| Logic Level                 |         |                  |            |        |
| Logic "1" VDD = +5V         | +3.8    | _                | _          | Volts  |
| V <sub>DD</sub> = +3.3V     | +2.48   | _                | _          | Volts  |
| Logic "0" VDD = +5V         |         |                  | +0.5       | Volts  |
| V <sub>DD</sub> = +3.3V     |         |                  | +0.5       | Volts  |
| Logic Loading "1" VDD = +5V | _       | _                | +0.5<br>-8 | mA     |
| V <sub>DD</sub> = +3.3V     | _       | _                | -0<br>-4   | mA     |
| Logic Loading "0" VDD = +5V | _       | _<br>_<br>_<br>_ |            |        |
| V <sub>DD</sub> = +3.3V     | _       | _                | +8         | mA     |
| Internal Reference          | -       | _                | +4         | mA     |
| Voltage, +25°C              |         | .455             | .40        | \/alt- |
| 0 to +70°C                  | +1.5    | +1.55            | +1.6       | Volts  |
| External Current            | +1.5    | +1.55            | +1.6       | Volts  |
| LAGINAI CUITEIIL            | _       | _                | 5          | mA     |
|                             |         |                  |            |        |

| DYNAMIC PERFORMANCE                       | MIN.     | TYP.            | MAX.             | UNITS    |
|-------------------------------------------|----------|-----------------|------------------|----------|
| Total Harm. Distort. (–0.5dB)             | IVIIIV.  | IIIF.           | IVIAA.           | UNITS    |
| dc to 500kHz                              |          | <b>–</b> 81     | <b>–</b> 77      | dB       |
| 500kHz to 10MHz                           |          | _80             | _74              | dB<br>dB |
| Signal-to-Noise Ratio                     | _        | -00             | -/4              | UD UD    |
| (w/o distortion, –0.5dB                   |          |                 |                  |          |
| dc to 500kHz                              | 73       | 75              | _                | dB       |
| 500kHz to 10MHz                           | 73       | 75              | _                | dB       |
| Signal-to-Noise Ratio                     | '0       | ,,,             |                  |          |
| (and distortion, –0.5dB)                  |          |                 |                  |          |
| dc to 500kHz                              | 71       | 74              | _                | dB       |
| 500kHz to 10MHz                           | 71       | 74              | _                | dB       |
| Spurious Free Dyn. Range ①                |          |                 |                  |          |
| dc to 500kHz                              | _        | -83             | -80              | dB       |
| 500kHz to 10MHz                           | _        | <del>-</del> 82 | <b>–</b> 76      | dB       |
| Two-tone IMD                              |          |                 |                  |          |
| Distortion (fin = 9.68MHz,                |          |                 |                  |          |
| fs = 20MHz, -0.5dB)                       | _        | <b>–</b> 78     | _                | dB       |
| Input Bandwidth (–3dB)                    |          |                 |                  |          |
| Small Signal (–20dB input)                | _        | 25              | _                | MHz      |
| Large Signal (-0.5dB input)               | _        | 25              | _                | MHz      |
| Aperture Delay Time                       | _        | _               | ±10              | ns       |
| Aperature Uncertainty                     | _        | 0.4             | _                | ps, RMS  |
| S/H Acq. Time, (to ±0.003%FSR)            |          |                 |                  |          |
| Step input                                | _        | _               | 25               | ns       |
| Feedthrough Rejection                     |          |                 |                  |          |
| (fin = 10MHz)                             | _        | 85              | _                | dB       |
| Noise                                     | _        | 250             | _                | μVrms    |
| TIMING SPECIFICATIONS                     |          |                 |                  |          |
| Conversion Rate                           | 1        | _               | 20               | MHz      |
| Start Convert High                        | 20       | 25              | 500              | ns       |
| Start Convert Low                         | 20       | 25              | 500              | ns       |
| Start Convert to EOC                      |          |                 |                  |          |
| EOC to Data Valid                         |          |                 |                  |          |
| Output Disable Delay                      | 1        | 6               | 13               | ns       |
| POWER REQUIREMENTS                        |          |                 |                  |          |
| Power Supply Ranges                       | _        |                 |                  |          |
| -5VEE Supply                              | -5.25    | -5.0            | -4.75            | Volts    |
| +5Vcc Supply                              | +4.75    | +5.0            | +5.25            | Volts    |
| VDD Supply                                | +3.0     | +5.0            | Vcc              | Volts    |
| Power Supply Currents                     |          |                 |                  |          |
| -5VEE Supply                              | -100     | -89             |                  | mA.      |
| +5Vcc Supply                              | _        | +230            | +245             | mA.      |
| VDD Supply                                | _        | +2.0            | +5.0             | mA       |
| Power Dissipation                         | _        | 1.6             | 1.7              | Watts    |
| Power Supply Rejection                    | _        |                 | ±0.01            | %FSR%V   |
| PHYSICAL/ENVIRONMENTAL                    | <u> </u> |                 | 1                | ·        |
| Oper. Temp. Range, Ambient                |          |                 |                  |          |
| ADSD-1420S                                | 0        | _               | +70              | °C       |
| ADSD-1420S-EX                             | -55      | _               | +125             | °C       |
|                                           | l c-     |                 | 4                | l        |
| Storage Temperature Range<br>Package Type | -65      | _               | +150<br>SMT TDIP | °C       |

# Footnote:

① Same specification as In-Band Harmonics and Peak Harmonics.





### **TECHNICAL NOTES**

 Rated performance requires using good high-frequency circuit board layout techniques. Connect the digital and analog grounds to one point, the analog ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

#### **CALIBRATION PROCEDURE**

 Connect the converter per Figure 3. Apply a pulse of 50 nanoseconds typical to START CONVERT (pin 11) at a rate of 2MHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

## 2. Zero (Offset) Adjustments

Apply a precision voltage reference source between ANALOG INPUT A (pin 1) and SIGNAL GROUND (pin 3), then adjust the reference source output per Table 2. Adjust trimpot R1 until the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001.

3. Repeat above step for Analog Input B (Pin 40). Use trimpot R2 for the zero (Offset) adjustment .

Table 2. Offset Adjustment

| INPUT | OFFSET ADJUST |  |
|-------|---------------|--|
| RANGE | +1/2 LSB      |  |
| ±2.5V | +0.000153V    |  |

**Table 3. Output Coding** 

| OI<br>MS | JTPU <sup>.</sup><br>B | ГСОБ | ING<br>LSB | INPUT RANGE<br>±2.5V | BIPOLAR<br>SCALE |
|----------|------------------------|------|------------|----------------------|------------------|
| 11       | 1111                   | 1111 | 1111       | +2.499695            | +FS – 1LSB       |
| 11       | 1000                   | 0000 | 0000       | +1.875000            | +3/4FS           |
| 11       | 0000                   | 0000 | 0000       | +1.250000            | +1/2FS           |
| 10       | 0000                   | 0000 | 0000       | ±0.000000            | 0                |
| 01       | 0000                   | 0000 | 0000       | -1.250000            | -1/2FS           |
| 00       | 1000                   | 0000 | 0000       | -1.875000            | -3/4FS           |
| 00       | 0000                   | 0000 | 0001       | -2.499695            | -FS+1LSB         |
| 00       | 0000                   | 0000 | 0000       | -2.500000            | –FS              |

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

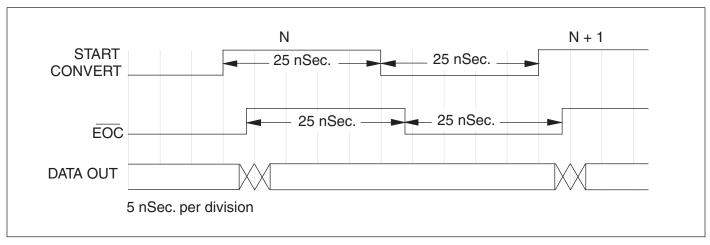



Figure 2. ADSD-1420S Timing Diagram



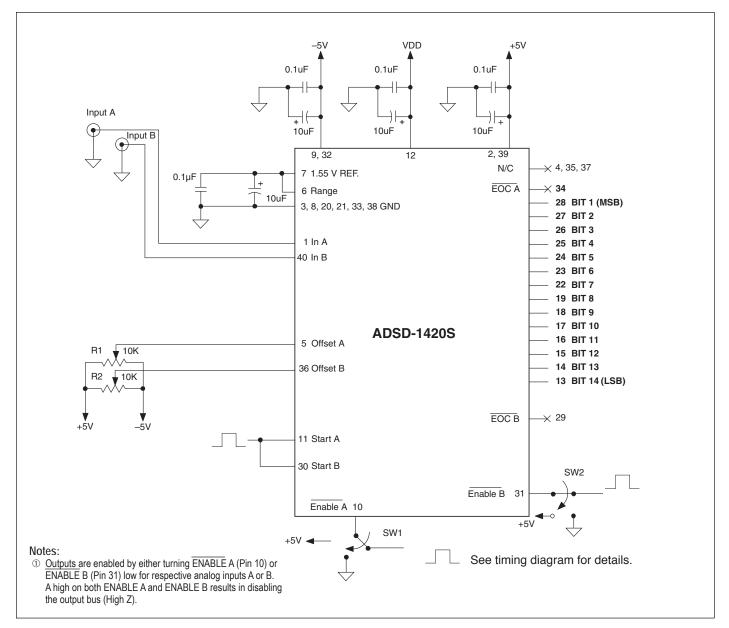
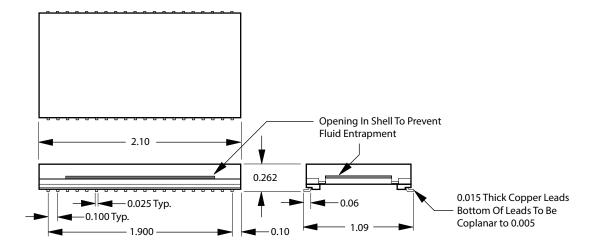



Figure 3. ADSD-1420S Connection Diagram

### THERMAL REQUIREMENTS

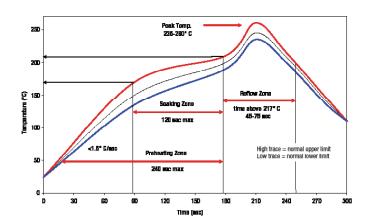

The ADSD-1420S sampling A/D converter is fully characterized and specified over the commercial operating temperature (ambient) range of 0 to +70°C and military temperature range of –55 to +125°C (EX suffix). All room-temperature (TA = +25°C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should

be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Minimal air flow over the surface can greatly help reduce the package temperature.



# **MECHANICAL DIMENSIONS INCHES (MM)**




# **Soldering Guidelines**

DATEL recommends the specifications below when installing these converters. These specifications vary depending on the solder type. Exceeding these specifications may cause damage to the product. Your production environment may differ therefore please thoroughly review these guidelines with your process engineers.

| REFLOW SOLDER OPERATIONS FOR SURFACE-MOUNT PRODUCTS (SMT) |                             |  |  |  |  |
|-----------------------------------------------------------|-----------------------------|--|--|--|--|
| For Sn/Ag/Cu based solders:                               | For Sn/Ag/Cu based solders: |  |  |  |  |
| Preheat Temperature                                       | Less than 1 °C. per second  |  |  |  |  |
| Time over Liquidus                                        | 45 to 75 seconds            |  |  |  |  |
| Maximum Peak Temperature                                  | 260 °C.                     |  |  |  |  |
| Cooling Rate                                              | Less than 3 °C. per second  |  |  |  |  |
| For Sn/Pb based solders:                                  |                             |  |  |  |  |
| Preheat Temperature                                       | Less than 1 °C. per second  |  |  |  |  |
| Time over Liquidus                                        | 60 to 75 seconds            |  |  |  |  |
| Maximum Peak Temperature                                  | 235 ℃.                      |  |  |  |  |
| Cooling Rate                                              | Less than 3 °C. per second  |  |  |  |  |

# **Recommended Lead-free Solder Reflow Profile**



### **ORDERING INFORMATION**

| MODEL NUMBER  | OPERATING TEMP. RANGE |
|---------------|-----------------------|
| ADSD-1420S    | 0 to +70°C            |
| ADSD-1420S-EX | −55 to +125°C         |

Contact Datel for high-reliability versions.

DATEL is a registered trademark of DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED

DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2015 DATEL, Inc.