

Complete 12-Bit A/D converters with reference

Pin-to-pin compatible with industry standard

No missing codes over temperature

250 mW maximum power dissipation

PRODUCT OVERVIEW

The ADC-674 A/D converters are available in both ceramic leadless chip carrier and industry standard DIP packages.

These units include a reference, clock, threestate outputs, and digital interface circuit which allows direct connection to the microprocessor address bus and control lines. The ADC-674 completes a 12-bit conversion in 8 microseconds.

Four user selectable input ranges are provided: 0 to +10V, 0 to +20V, +/-5V, and +/-10V dc. Laser trimming ensures specified linearity, gain and offset accuracy.

	INPUT/OUTPUT CONNECTIONS						
PIN	FUNCTION	PIN	FUNCTION				
1	V _{logic} , +5V	15	D _{GND}				
2	12/8, DATA MODE SELECT	16	DB0 (LSB)				
3	CS, CHIP SELECT	17	DB1				
4	A ₀ , BYTE ADDRESS/SHORT CYCLE	18	DB2				
5	r/c, read/convert	19	DB3				
6	CE, CHIP ENABLE	20	DB4				
7	V _{cc}	21	DB5				
8	REFERENCE OUT	22	DB6				
9	AGND	23	DB7				
10	REFERENCE IN	23	DB8				
11	V _{ee} *	25	DB9				
12	BIPOLAR OFFSET	26	DB10				
13	10V IN	27	DB11 (MSB)				
14	20V IN	28	STS				

* For applications with no -15V supply, contact our factory.

Vec Vis Auto (7) (1) (9) CON **28)**515 BIPOLAR (12) 27) DB11 (MSB) OFFSET 26 DB10 25 DB9 10V IN (13 rt. 24) DBS 20V IN (14 23 DB7 capacitance dac THREE 20066 STATE S.A.R 21) DB5 BUFFERS 20 DB4 19 DB3 18 DB2 17 DB1 (**16)** DBO (LSB) V logic (1 D GND (15 10V CONTROL REF OSCILLATO LOGIC 10 REF IN 8 REF OUT 23456

Figure 1. ADC-674 Functional Block Diagram

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

BLOCK DIAGRAM

and clock

574A/674A Series

8 µSec. Conversion time

ABSOLUTE MAXIMUM RATINGS	
V _{CC} TO GND	0 to +16.5V
V _{ee} to GND	0 to -16.5V
Logic Supply Voltage (Pin 1)	OV to +7V
Analog Common (Pin 9) to Digital Common (Pin 15)	0.5V to + 1V
Digital Control Inputs (Pins 2-6) to Digital Common	-0.3V to V _{logic} +0.3V
Analog Inputs (Pins 10,12,13) to Analog Common	±16.5V
20V Input (Pin 14) to Analog Common	±24V
Ref. Out (Pin 8) Short Circuit Duration	Indefinite to common, momentary to V _{CC}
Chip Temperature	-55°C to 125°C
Package Dissipation	1000 mW
Lead Temperature, soldering	300°C, 10 Sec.
Thermal Resistance, Junction-to-Ambient	48°C/W

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, \pm 15V, and +5V dc supply ranges, unless otherwise noted.

ANALOG INPUTS		
Input Voltage Range	unipolar	0 to +10V, 0 to +20V
	bipolar	±5V, ±10V
Input Impedance	10V range	5KΩ ±2KΩ
	20V range	10ΚΩ ±4ΚΩ
ANALOG OUTPUTS ①		
Internal Reference	voltage	+10.00V ±0.1 max.
	current	8 mA max.
DIGITAL INPUTS ②		
Logic Levels:	logic "1"	+2.0 min. to +5.5V max.
	logic "0"	-0.5V min. to +0.8V max.
Loading:	$V_{IN} = 0$ to V_{logic}	±5 μA
Capacitance		5pF
DIGITAL OUTPUTS ③		
Logic Levels:	logic "0" (I sink, 1.6 mA)	+0.4V max.
	logic "1" (I source, 500 µA)	+2.4V min.
Leakage (high impedance state)		-10 μ A min. to +10 μ A max.
Capacitance		5pF
POWER REQUIREMENTS		
Analog Supply Voltage Range		±11.4V to ±16.5V
Logic Supply Voltage Range		+4.5V to +5.5V
Supply-Current max.	V _{cc} , V _{ee}	+7mA, -9mA
	Logic Supply	+7mA
Power Consumption	$V_{CC} = +15V, V_{ee} = -15V, V_{logic} = +5V$	250 mW
PHYSICAL/ENVIRONMENTAL		
Operating Temperature Range		-55°C to +125°C
Storage Temperature Range		-65°C to +150°C
Package Type		28 pin LCC ceramic
PERFORMANCE (TYPICAL)		
Resolution		12 Bits
Conversion Time, max.		8 µSec
Power Supply Rejection ®	$V_{CC} = +15V \pm 1.5V$, $V_{ee} = -15V \pm 1.5V$, or $V_{logic} = +5V \pm 0.5V$	±0.001% FSR / %V
Differential Linearity Error	max. ④, no missing codes	±1 LSB
Linearity Error	max. ④	±1 LSB

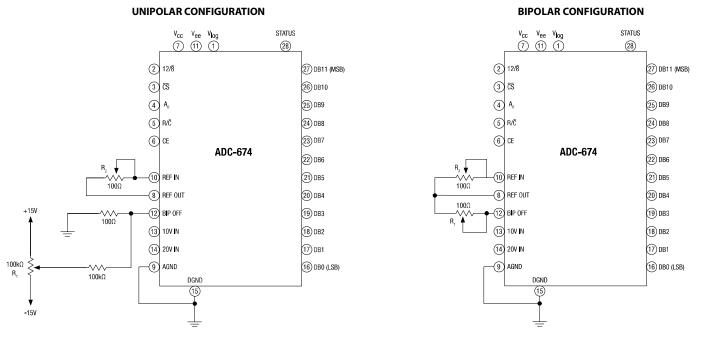
PERFORMANCE (TYPICAL, CONT.)					
Unipolar Offset	Max. 6	±2LSB			
Unipolar Offset	Max. tempco ⑥ ⑦	±1LSB			
Bipolar Offset	Max. (5) (6)	±3LSB			
Bipolar Offset	Max. tempco (5) (6) (7)	±2LSB			
Full Scale Calibration.	Max. 6	±5LSB			
Full Scale Calibration.	Max. tempco ⑥ ⑦	±6LSB			

Footnotes:

- ① Available for external loads. External load should not change during conversion. When supplying an external load using a +12V supply, a buffer amplifier must be provided for the reference output.
- 2 Logic Inputs CE, CS, R/C, A, 12/8.
- 3 Logic Outputs DB11-DB0, STS.
- ④ Over temperature.
- **TECHNICAL NOTES**
- The ADC-674 may interface directly to a microprocessor which can take full control of each conversion, or the device can be operated in the "stand alone" mode (controlled only by the R/Cinput). Full control consists of selecting an 8- or 12-bit conversion cycle, initiating the conversion and reading the output data when ready. The data may be read 12 bits at once or 8 followed by 4 in a left-justified format. There are five control inputs (12/8, CS, A_p, R/C: and CE) and all are TTL/CMOS compatible. (See Control Input Truth Table.)
- A conversion is initiated by a logic transition on any of the three inputs: CE, CS, R/C. One, two, or all three may be dynamically controlled. The nominal delay for each of the three inputs is the same and if necessary, all three may change states simultaneously. If it is required that a particular input controls the start of conversion, the other two should be set up at least 50 nanoseconds earlier. (See Start Convert Timing, Figure 3).
- 3. To read the output data, four conditions must be met (or the output buffers will remain in high impedance state): R/C taken high, STS low, CE high and \overline{CS} low. When this is accomplished, the data lines are activated according to the state of the 12/8 and A_n inputs. (See TIMING DIAGRAM on Figure 4).
- 4. The analog signal source driving the ADC-674's input will see a nominal load of 5 K Ω (10V range) or 10 K Ω (20V range). However, the other end of

5 With 50 Ω fixed resistor from REF OUT to BIP OFF. Adjustable to zero.

- \circledast With 50 Ω fixed resistor from REF OUT to REF IN. Adjustable to zero.
- $\ensuremath{\oslash}$ Guaranteed maximum change, Tmin to Tmax (using internal reference).
- ⑧ Maximum change in full scale calibration.


these input resistors may change 400 mV with each bit decision, causing sudden changes in current at the analog input. Therefore, the signal source must maintain its output voltage while supplying these step changes in load current which occur at 1.6 microsecond intervals. This requires low output impedance and fast settling by the signal source.

- 5. The power supply used should be low noise and well regulated. Voltage spikes can affect accuracy. If a switching supply is used, the outputs should be carefully filtered to assure "noise free" dc voltage to the converter. Decoupling capacitors should be used on all power supply pins; the +5V dc supply decoupling capacitor should be connected directly from + V_{ogic} (Pin 1) to digital common (Pin 15). V_{CC} (Pin 7) and V_{ee} (Pin 11) should be decoupled directly to A_{GND} (Pin 9). It is recommended that a 10 µF tantalum type in parallel with a 0.1 µF ceramic type be used for decoupling.
- 6. The use of good circuit board layout techniques is required for rated performance. It is recommended that a double sided printed circuit board with a ground plane on the component side be used. Other techniques, such as wirewrapping or point-to-point wiring on vectorboard will have an unpredictable effect on accuracy. Sensitive analog signals should be routed between ground traces and kept away from digital lines. If analog and digital lines must cross, they should do so at right angles.

ADC-674 12-Bit, µP-Compatible A/D Converter

TYPICAL CONNECTIONS

NOTES: The trimpots shown are for calibration of offset and gain. If adjustment is not required in unipolar, replace R₂ with a 50Ω, 1% metal film resistor, omit the network on Pin 12 and connect Pin 12 to Pin 9. In bipolar, either R or R₂ or both can be replaced by 50Ω, 1% metal film resistors.

CODING TABLES

INPUT RANGE		OUTPUT CODING		
0 to + 10V	0 to +20V	MSB		LSB
+10.000	+20.0000	1111	1111	1111
+9.9963	+19.9927	1111	1111	111Ø*
+5.0012	+10.0024	1000	0000	000Ø*
+4.9988	+9.9976	Ø000	0000	000Ø*
+4.9963	+9.9927	0111	1111	111Ø*
+0.0012	+0.0024	0000	0000	000Ø*
0.0000	+0.0000	0000	0000	0000

* Voltages shown are theoretical values for the transitions indicated. Ideally, In the continuous conversion mode, the output bits indicated as will change from "1" to "0" or "0" to "1" as the input voltage passes through the level indicated.

Output coding is straight binary for unipolar and offset binary for bipolar.

CALIBRATION

UNIPOLAR CALIBRATION

Offset Adjust

Apply an input of +½ LSB (+1.22 mV for the 10V range; +2.44 mV for the 20V range). Adjust the offset trimpot (R_1) until the first code transition flickers between 0000 0000 0000 and 0000 0000 0001.

Gain Adjust

Apply 1½ LSB's below the nominal full-scale (+9.9963V for the 10V range; +19.9927V for the 20V range). Adjust the gain-trimpot (R_2) so that the output flickers between 1111 1111 1110 and 1111 1111 1111.

BIPOLAR CALIBRATION Offset Adjust

Apply ½ LSB above negative full-scale (-4.9988V for the ±5V range; -9.9976V for the ±10V range.) Adjust the offset trimpot (R_1) so that the output flickers between 0000 0000 0000 and 0000 0000 0001.

Gain Adjust

Apply 1½ LSB's below positive full scale (+4.9963V for the \pm 5V range; +9.9927V for the \pm 10V range). Adjust the gain trimpot (R) so that the output flickers between 1111 1111 1110 and 1111 1111 1111.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

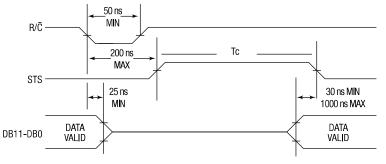
TIMING CONTROL

The variety of the ADC-674's control modes (as shown in the "CONTROL INPUTS TRUTH TABLE") allow for simple interface in most system applications.

The output signal STS indicates the status of the device; high during a conversion, and low at the completion of a conversion. During a conversion (STS output high), the output buffers remain in the high impedance state and data cannot be read. A start convert during conversion will not reset the converter or reinitiate a conversion. However, if A_b changes state after a conversion begins, an additional start convert pulse will latch the new state of A_b causing a wrong cycle length for that conversion.

CE	<u>c</u>	R/Ċ	12/8	A _o	OPERATION
0	х	Х	Х	Х	None
Х	1	Х	Х	Х	None
0-1	0	0	Х	0	Initiate 12-bit conversion
0-1	0	0	Х	1	Initiate 8-bit conversion
1	1-0	0	Х	0	Initiate 12-bit conversion
1	1-0	0	Х	1	Initiate 8-bit conversion
1	0	1-0	Х	0	Initiate 12-bit conversion
1	0	1-0	Х	1	Initiate 8-bit conversion
1	0	1	1	Х	Enable 12-bit Output
1	0	1	0	0	Enables 8 MSB's only
1	0	1	0	1	Enables 4 LSB's plus 4 trailing zeroes

Control Inputs Truth Table


TIMING AND OPERATION

Stand-Alone Mode Timing

For stand-alone operation, all that is required is a single control line to R/C CE and 12/8 are tied high, \overline{CS} and A_0 are tied low, and the output appears in words of 12 bits

The R/C signal may have any duty cycle within the limits shown in the diagrams below

The data may be read when R/C is high unless STS is also high indicating a conversion is in progress.

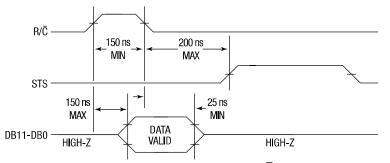
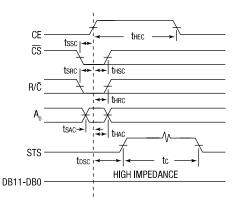



Figure 2. Outputs Enabled With R/CHigh

Figure 3. Start Convert Timing

A read operation in most applications begins after the conversion is complete and STS is low. For earliest access to the data, however, the read should begin no later than ($bD + t_{HS}$) before STS goes low. (See Technical Note 3.)

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

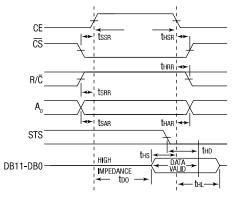


Figure 4. Read Cycle Timing

ADC-674 TIMING

Interface To An 8-Bit Data Bus

The 12/8 input will be tied either high or low in most applications. With 12/8 high, all 12 output lines become active simultaneously for interface to a 12- or 16-bit data bus. A_0 is ignored. Taking 12/8 low organizes the output in two 8-bit bytes, which are selected one at a time by A_0 . This allows an 8-bit data bus to be connected as shown below. A_0 is normally tied to the LSB of the address bus for storing the converter's output in two consecutive memory locations. This two byte format is called "left justified data" for which a decimal point is assumed to the left of byte 1. In addition, A_0 may be toggled at any time without damage to the converter. Break-before-make switching is guaranteed between two data bytes, which assures that the outputs strapped together as shown are never enabled at the same time.

Symbol	Parameter, Read Mode	Min.	Тур.	Max.
t _{DD}	Access Time from CE	-	-	150 nS
thd	Data Valid after CE low	25 nS	-	-
t _{HL}	Output Float Delay	-	-	120 nS
tSSR	CS to CE Setup	50 nS	0	-
t _{SRR}	R/\overline{C} to CE Setup	0	0	-
^t SAR	A ₀ to CE Setup	50 nS	-	-
tHSR	CS Valid after CE Low	0	0	0
t _{HRR}	RIC High after CE Low	0	0	0
thar	A ₀ Valid after CE Low	0 nS	-	-
ths	STS Delay after Data Valid	30 nS	-	300 nS

Symbol	Parameter, Read Mode	Min.	Тур.	Max.
tDSC	STS Delay From CE	-	-	200 nS
thec	CE Pulse Width	50 nS	-	-
tSSC	CS to CE Setup	50 nS	-	-
thsc	CS Low during CE High	50 nS	-	-
tSRC	R/C to CE Setup	50 nS	-	-
thrc	R/C Low during CE High	50 nS	-	-
tSAC	A ₀ to CE Setup	0	-	0
thac	A ₀ Valid during CD High	50 nS	-	-
t _C	Conversion Time:	~		
	12-bit cycle	6 µS	-	8 µS
	8-bit cycle	4 µS	-	6 µS

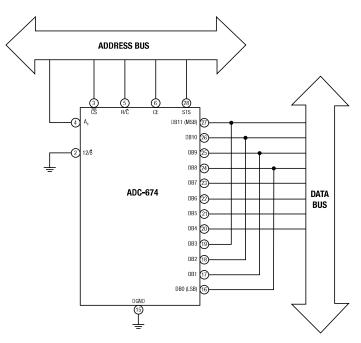
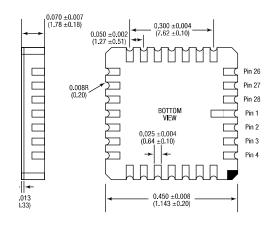
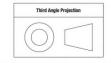
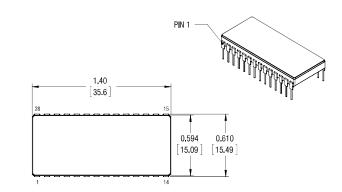
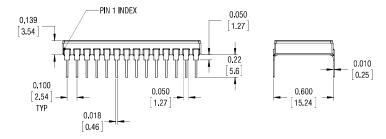



Figure 5 8-Bit Data Bus


ADC-674 12-Bit, µP-Compatible A/D Converter

MECHANICAL DIMENSIONS - INCHES (mm)


CLCC Package



Tolerances (unless otherwise specified): .XX \pm 0.02 (0.5) .XXX \pm 0.010 (0.25) Angles \pm 2°

Components are shown for reference only.

28-PIN Ceramic DIP Package

ORDERING INFORMATION						
MODEL NUMBER	OPERATING TEMP. RANGE	PACKAGE	ROHS			
ADC-674LC	0°C TO 70°C	28-Pin LCC	No			
ADC-674LC-C	0°C TO 70°C	28-Pin LCC	Yes			
ADC-674LE	-40°C T0 +100°C	28-Pin LCC	No			
ADC-674LE-C	-40°C T0 +100°C	28-Pin LCC	Yes			
ADC-674LM	-55°C T0 +125°C	28-Pin LCC	No			
ADC-674LM-C	-55°C T0 +125°C	28-Pin LCC	Yes			
ADC-674L/883	-55°C T0 +125°C	28-Pin LCC	No			
ADC-674L/883-C	-55°C T0 +125°C	28-Pin LCC	Yes			
ADC-674AMC	0°C TO 70°C	28-Pin DIP	No			
ADC-674AMC-C	0°C TO 70°C	28-Pin DIP	Yes			
ADC-674AME	-40°C T0 +100°C	28-Pin DIP	No			
ADC-674AME-C	-40°C T0 +100°C	28-Pin DIP	Yes			
ADC-674AMM	-55°C T0 +125°C	28-Pin DIP	No			
ADC-674AMM-C	-55°C T0 +125°C	28-Pin DIP	Yes			
ADC-674A/883	-55°C T0 +125°C	28-Pin DIP	No			
ADC-674A/883-C	-55°C T0 +125°C	28-Pin DIP	Yes			

DATEL is a registered trademark of DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED DATEL, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2016 DATEL, Inc.

www.datel.com • e-mail: help@datel.com