ADC-304 is its

8-Bit, ZUIVITZ, LOW-POWER Flash AD Converters

NOTRECOMMENDED

FOR NEW DESIGNS BY S ADC-304 is an 8-bit, 20MHz analog-toAnother novel feature of the

Datel's ADC-304 is an 8-bit, 20MHz analog-tosital flash converter. The ADC-304 offers many

performance features not obtainable from other flash A/D's.

Key reatures include a low power dissipation of 375mW and TTL-compatible outputs. A wide analog input bandwidth of 8MHz (-3dB) allows operation without the need of a sample-hold. Also, single +5V supply operation is obtainable with an input range of +3 to +5V, eliminating the need for an additional power supply. A 0 to -2V input range is available with $\pm 5V$ supply operation.

pins allow selection of binary, complementary binary, and if external offset circuitry is used for bipolar inputs, offset binary, two's complement and

The ADC-304 is supplied in a 28-pin plastic DIP or a 28-pin plastic SOP package. Operating temperature range is -20 to $+75^{\circ}$ C. Storage temperature range is -55 to $+150^{\circ}$ C.

complementary two's complement coding.

FEATURES

- 8-bit resolution
- 20MHz conversion rate
- ±1/2LSB maximum nonlinearity
- 8MHz input bandwidth
- Low power consumption, 375mW
- TTL compatible
- Single or dual supply operation

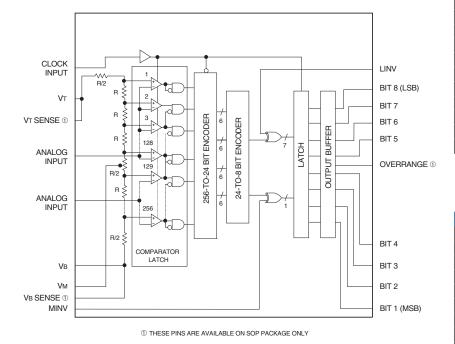


Figure 1. ADC-304 Functional Block Diagram

INPUT/OUTPUT CONNECTIONS—PLASTIC DIP PACKAGE					
Pin	FUNCTION	Pin	FUNCTION		
1	BIT 1 (MSB)	28	MINV		
2	BIT 2	27	V _M		
3	BIT 3	26	V _B		
4	BIT 4	25	ANALOG GND		
5	DIGITAL GND	24	NO CONNECT		
6	+5V POWER	23	ANALOG INPUT		
7	-5.2V POWER	22	NO CONNECT		
8	-5.2V POWER	21	ANALOG INPUT		
9	-5.2V POWER	20	NO CONNECT		
10	+5V POWER	19	ANALOG GND		
11	DIGITAL GND	18	V _T		
12	LINV	17	CLOCK INPUT		
13	BIT 5	16	BIT 8 (LSB)		
14	BIT 6	15	BIT 7		

INPUT/OUTPUT CONNECTIONS—PLASTIC SOP PACKAGE					
Pin	FUNCTION	Pin	FUNCTION		
1	ANALOG INPUT	28	ANALOG INPUT		
2	V _B SENSE	27	V _⊤ SENSE		
3	ANALOG GND	26	ANALOG GND		
4	V _B	25	V _T		
5	V _M	24	CLOCK INPUT		
6	NO CONNECT	23	BIT 8 (LSB)		
7	MINV	22	BIT 7		
8	BIT 1 (MSB)	21	BIT 6		
9	BIT 2	20	BIT 5		
10	BIT 3	19	LINV		
11	BIT 4	18	DIGITAL GND		
12	DIGITAL GND	17	+5V POWER		
13	+5V POWER	16	OVERRANGE		
14	-5.2V POWER	15	-5.2V POWER		

8-Bit, 20MHz, Low-Power Flash A/D Converters

ABSOLUTE MAXIMUM RATINGS					
PARAMETERS LIMITS					
Supply Voltages	+V _S to GND	0 to +6	Volts		
	–V _S to GND	0 to -6	Volts		
Input Voltage (Analog)	Vin	$-V_S$ to (ANA GND + 0.3)	Volts		
	(dual power supply)				
Input Voltage (Reference)	V _T , V _B , V _M (dual power supply)	$-V_S$ to (ANA GND + 0.3)	Volts		
	I V _T – V _B I	2.5	Volts		
Input Current	IM	-3.0 to +3.0	mA		
Input Voltage (Digital)	Digital Inputs	-0.5 to $+V_S$	Volts		

FUNCTIONAL SPECIFICATIONS

Unless otherwise noted, the following specifications apply to the ADC-304 when used either with a single or dual power source. The test conditions are:

For single power supply operation:	For dual power supply operation:
$+V_s = +5V$, DIG GND = $0V$	$+V_s = +5V$, DIG GND = $0V$
$-V_{s} = 0V, V_{T} = +5V$	$-V_{s} = -5.2V, V_{T} = 0V,$
$V_{B} = +3V, TA = +25^{\circ}C$	$V_{R} = -2V, TA = +25^{\circ}C$
ANA GND = +5V, fs = 20MHz	ANA GND = 0V, fs = 20MHz

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Range	V _B		$V_{_{\mathrm{T}}}$	Volts
Input Capacitance	_	30	35	pF
Input Bias Current	15	50	100	μΑ
Offset Voltage				
V _T	-8	-13	-19	mV
V _B	0	+5	+11	mV
	DIGITAL INPUT	rs		
Logic Levels				
Logic "1"	+2.0	_	_	Volts
Logic "0"	_	_	+0.8	Volts
Logic Input Currents		400	450	
Logic "1"	_	-100	-150	μΑ
Logic "0"	-0.1	-0.32	-0.5	mA
	PERFORMANO	Æ		
Conversion Rate ①	20	_	_	MHz
Integral Nonlinearity	_	_	±1/2	LSB
Differential Nonlinearity	_	_	±1/2	LSB
Differential Gain Error ②	_	_	1.5	%
Differential Phase Error ②	_	_	0.5	degrees
Aperture Delay Ta	5	7	9	ns
Aperture Uncertainty	_	30	_	ps
Signal-to-Noise and Distortion				
(Vin = full scale, fs = 20MHz) fin = 1MHz		47		dB
fin = 5MHz		47		dВ
fin = 10MHz		43 35		dВ
Clock Pulse Width		33		uБ
Tpw1	35	_	_	ns
Tpw0	10	_	_	ns
Reference Pin Current	11	15	18	mA
Reference Resistance (V _T to V _B)	_	130	_	Ohms
Reference Input (dual supply)				
V_{T}	-0.1	0	+0.1	Volts
V _B	-1.8	-2.0	-2.2	Volts
Footnotes:				
① fin = 1kHz, ramp				
② NTSC 40 IRE-modulated ramp,	fs = 14.3MHz			
1				

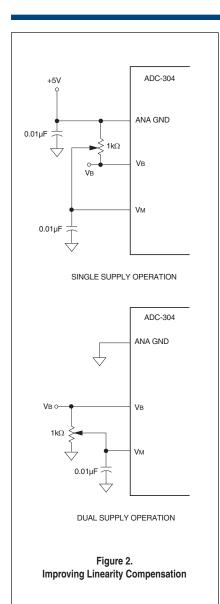
DIGITAL OUTPUTS	MIN.	TYP.	MAX.	UNITS		
Resolution and Output Coding	c	8	24	bits		
		traight binar	•			
		olementary b o's complem				
		ntary two's c				
Logic Levels	Compleme	ilary IWOS C	omplement			
Logic Levels Logic "1"	+2.7	+3.4	_	Volts		
Logic "0"		_	+0.5	Volts		
Logic Loading "1"	_	-500	_	μΑ		
Logic Loading "0"	_	_	+3	mA		
Output Data Delay						
TDLH	15	20	30	ns		
TDHL	22	26	35	ns		
POWE	R REQUIRE	MENTS				
Single Power Supply						
Supply Voltage = +V _s	+4.75	+5.0	+5.25	Volts		
Supply Voltage = -V _s	_	0	_	Volts		
Supply Current = +I _S	+56	+71	+91	mA		
Power Dissipation	280	355	455	mW		
Dual Power Supply						
Supply Voltage = +V _S	+4.75	+5.0	+5.25	Volts		
Supply Voltage = -V _S	-4.75	-5.2	- 5.5	Volts		
Supply Current = +I _S	+7	+10	+14	mA		
Supply Current = -I _S	-50	-62	-78	mA		
Power Dissipation	295	375	476	mW		
PHYSICAL/ENVIRONMENTAL						
Operating Temperature	-20	_	+75	°C		
Storage Temperature	-55	_	+150	°C		

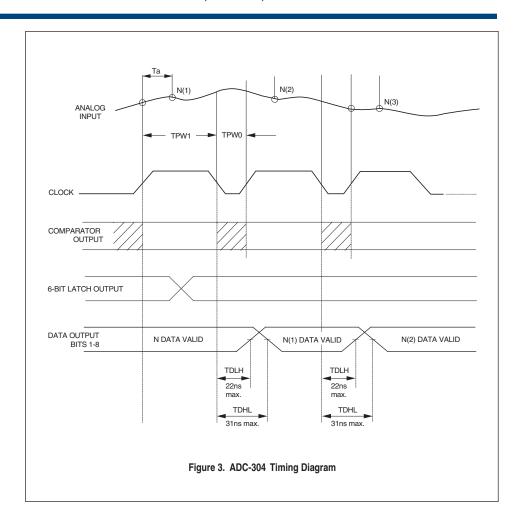
TECHNICAL NOTES

- The two DIGITAL GND pins (pins 5 and 11 on the DIP, pins 12 and 18 on the SOP) are not
 connected to each other internally and neither are the two +5V POWER pins (6 and 10 on the DIP,
 13 and 17 on the SOP). All four pins must be externally connected to the appropriate pcb patterns.
 Also, the DIGITAL GND and ANALOG GND pins are not connected to each other internally.
- 2. Layout of the analog and digital sections should be separated to reduce interference from noise. To further guard against unwanted noise, it is recommended to bypass, as close as possible, the voltage supply pins to their respective ground pins with $1\mu F$ tantalum and $0.01\mu F$ ceramic disk capacitors in parallel.
- 3. The input capacitance of the analog input is much smaller than that of a typical flash A/D converter. It is necessary to use an amplifier with sufficient bandwidth and driving power. The analog input pins are separated internally, so they should be connected together externally. If the ADC-304 is driven with a low output impedance amplifier, parasitic oscillations may occur.

These parasitic oscillations can be prevented by introducing a small resistance of 2 to 10Ω between the amplifier output and the ADC-304's A/D input. This resistance must have a very low value of series inductance at high frequencies.

Note that each of the analog input pins is divided in this manner with these resistances. Connect the driving amplifier as close as possible to the A/D input of the ADC-304.


4. The voltage between VT and VB is equivalent to the dynamic range of the analog input. Bypass VB to ANALOG GND USING a 1μF and a 0.01μF capacitor in parallel. To balance the characteristics of the ADC-304 at high frequencies, bypass VM with a 0.01μF capacitor to ANALOG GND.


Also, VM can be used as a trimming pin for more precise linearity compensation. A stable voltage source with a potential equal to VB and a $1k\Omega$ potentiometer can be connected to VM as shown in Figure 2 for this purpose.

- Separate the clock input, CLOCK, from other leads as much as possible, observing proper EMI and RFI wiring techniques. This reduces the inductive pick-up of this lead from interfering with the "clean" operation of the ADC-304.
- 6. The analog input signal is sampled on the positive-going edge of CLOCK. Corresponding digital data appears at the output on the negative-going edge of the CLOCK pulse after a brief delay of 31ns maximum (TDLH, TDHL). Refer to the Timing Diagram (Figure 3) for more information.
- 7. Connect all free pins to ANALOG GND to reduce unwanted noise.

The analog input range is equal to a 2V spread. The voltage on VT-VB will equal 2V. The connection of VT and ANALOG GND is 2V higher than VB. Whether using a single or dual power supply, the analog input will range from the value of VT to VB. If VT equals +5V, then VB will equal +3V and the analog input range will be from +3 to +5V.

ORDERING INFORMATION

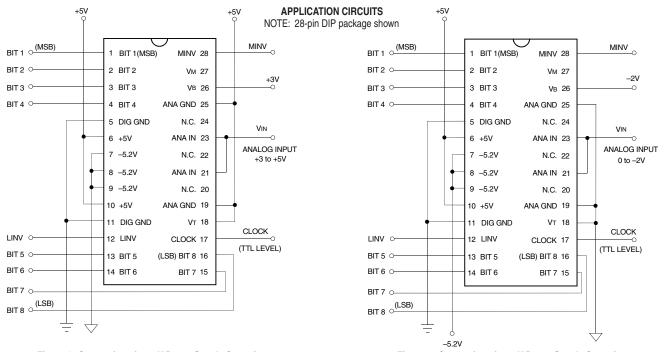
PACKAGE
28-pin DIP (plastic)
28-pin SOP (plastic)

Tahla 1	Output Coding	for ±5V Power Sun	nly Operation (±3 to	o +5V Signal Input)

		Straight Binary	Complementary Two's Complement	Two's Complement	Complementary Binary
Unipolar	MINV	0	0	1	1
Scale	LINV	0	1	0	1
+FS – 1SLB	+4.9922V	11111111	10000000	01111111	00000000
+7/8FS	+4.7500V	11011111	10100000	01011111	00100000
+3/4FS	+4.5000V	10111111	11000000	00111111	01000000
+1/2FS	+4.0000V	01111111	00000000	11111111	10000000
+1/4FS	+3.5000V	00111111	01000000	10111111	11000000
+1/8FS	+3.2500V	00011111	01100000	10011111	11100000
+1LSB	+3.0078V	0000001	01111110	10000001	11111110
Zero	+3.0000V	00000000	01111111	10000000	11111111

Table 2. Output Coding for ±5V Power Supply Operation (0 to -2V Signal Input)

		Straight Binary	Complementary Two's Complement	Two's Complement	Complementary Binary
Unipolar	MINV	0	0	1	1
Scale	LINV	0	1	0	1
Zero	0.0000V	11111111	10000000	01111111	00000000
-1LSB	-0.0078V	11111110	10000001	01111110	0000001
-1/8FS	-0.2500V	11011111	10100000	01011111	00100000
-1/4FS	-0.5000V	10111111	11000000	00111111	01000000
-1/2FS	-1.0000V	01111111	00000000	11111111	10000000
-3/4FS	-1.5000V	00111111	01000000	10111111	11000000
-7/8FS	-1.7500V	00011111	01100000	10011111	11100000
-FS + 1SLB	-1.9922V	00000000	01111111	10000000	11111111



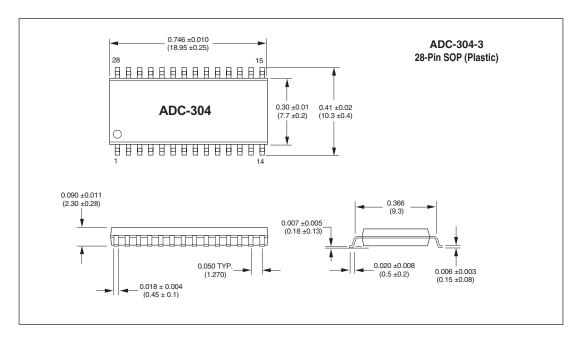

Figure 4. Connections for +5V Power Supply Operation

Figure 5. Connections for ±5V Power Supply Operation

DATEL is a registered trademark of Murata Power Solutions • 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

MECHANICAL DIMENSIONS 1.494 ±0.010 (37.95 ±0.25) ADC-304 28-Pin DIP (Plastic) 28 15 **ADC-304** 0.52 ±0.02 (13.2 ±0.3) 0.187 ±0.010 (4.75 ±0.25) 0.600 0.118 MIN. (3.0 MIN.) (15.24)0.011 ±0.003 (0.28 ±0.08) 0.022 ±0.004 (0.55 ±0.10) 0.100 TYP SEATING PLANE 0.020 MIN. (0.50 MIN.) 0.051 ±0.006 (1.30 ±0.15)

DATEL is a registered trademark of Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2011 Murata Power Solutions, In