ESMT

2x20W Stereo / 1x40W Mono Digital Audio Amplifier With 20 Bands EQ Functions

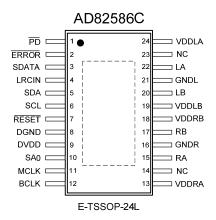
Features

- 16/18/20/24-bits input with I²S, Left-alignment and Right-alignment data format
- PSNR & DR(A-weighting) Loudspeaker: 99dB (PSNR), 104dB (DR) @24V
 Multiple sampling frequencies (Fs)
- 32kHz / 44.1kHz / 48kHz and 64kHz / 88.2kHz / 96kHz and 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs
 64x~1024x Fs for 32kHz / 44.1kHz / 48kHz
 64x~512x Fs for 64kHz / 88.2kHz / 96kHz
 64x~256x Fs for 128kHz / 176.4kHz / 192kHz
- Supply voltage
 3.3V for digital circuit
 7V~26V for loudspeaker driver
- Loudspeaker output power for at 24V
 10W x 2CH into 8Ω @0.17% THD+N for stereo
 20W x 2CH into 8Ω @0.26% THD+N for stereo
- Sound processing including : 20 bands parametric speaker EQ Volume control (+24dB~-103dB, 0.125dB/step), Dynamic range control (DRC) Dual band dynamic range control Power clipping 3D surround sound Channel mixing Noise gate with hysteresis window Bass/Treble tone control DC-blocking high-pass filter
- Anti-pop design
- Short circuit and over-temperature protection
- I²C control interface with selectable device address
- Support hardware and software reset
- Internal PLL

- LV Under-voltage shutdown and HV Under-voltage detection
- Power saving mode

Applications

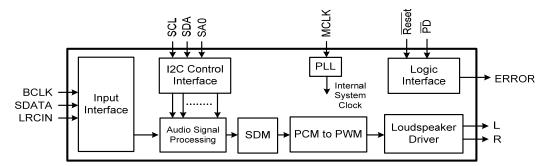
- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio


Description

AD82586C is a digital audio amplifier capable of driving a pair of 8Ω , 20W operating at 24V supply without external heat-sink or fan requirement with play music.

AD82586C can provide advanced audio processing capabilities, such as volume control, 20 bands speaker EQ, audio mixing, 3D surround and Dynamic Range Control (DRC). These functions are fully programmable via a simple I²C control interface.

Robust protection circuits are provided to protect AD82586C from damage due to accidental erroneous operating condition. AD82586C is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog Class-AB or Class-D audio amplifier counterpart implemented by analog circuit design. AD82586C is pop free during instantaneous power switch because of its built-in, robust anti-pop circuit.


Pin Assignment

Pin Description

Pin	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	PD	I	Power down, low active	Schmitt trigger TTL input buffer
2	ERROR	0	Error status, low active	Open-drain output
3	SDATA	I	Serial audio data input	Schmitt trigger TTL input buffer
4	LRCIN	I	Left/Right clock input (Fs)	Schmitt trigger TTL input buffer
5	SDA	I/O	I ² C bi-directional serial data	Schmitt trigger TTL input buffer
6	SCL	I	I ² C serial clock input	Schmitt trigger TTL input buffer
7	RESET	Ι	Reset, low active	Schmitt trigger TTL input buffer
8	DGND	Р	Digital Ground	
9	DVDD	Р	Digital Power	
10	SA0	Ι	I ² C select address 0	Schmitt trigger TTL input buffer
11	MCLK	I	Master clock input	Schmitt trigger TTL input buffer
12	BCLK	I	Bit clock input (64Fs)	Schmitt trigger TTL input buffer
13	VDDRA	Р	Right channel supply A	
14	N.C.	NC		
15	RA	0	Right channel output A	
16	GNDR	Р	Right channel ground	
17	RB	0	Right channel output B	
18	VDDRB	Р	Right channel supply B	
19	VDDLB	Р	Left channel supply B	
20	LB	0	Left channel output B	
21	GNDL	Р	Left channel ground	
22	LA	0	Left channel output A	
23	N.C.	NC		
24	VDDL	Р	Left channel supply A	

Functional Block Diagram

Ordering Information

Product ID	Package	Packing code	Packing / MPQ	Comments
AD82586C-QG24NA			62 Units / Tube	Green
AD02000-QG24NA	E-TSSOP 24L	I	100 Tubes / Small Box	MSL Level=3
		Б	2500 Units / reel	
AD02000-QG24NA	2586C-QG24NA E-TSSOP 24L R		2500 Units / Small Box	

Available Package

Package Type	Device No.	<i>θ</i> _{ja} (℃/₩)	Ψ _{jt} (°C /W)	<i>θ</i> jt(℃/₩)	Exposed Thermal Pad
E-TSSOP 24L	AD82586C	26.8	0.24	27.1	Yes (Note1)

Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.

- Note 1.2: \mathcal{O}_{ja} , the junction-to-ambient thermal resistance is simulated on a room temperature ($T_A=25^{\circ}C$), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The simulation is tested using the JESD51-5 thermal measurement standard.
- Note 1.3: Ψ_{jt} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining \mathcal{O}_{ja} , using a procedure described in JESD51-2.
- Note 1.4: \mathcal{O}_{jt} represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.

Absolute Maximum Ratings

Stresses beyond those listed under <u>absolute maximum ratings (<100msec)</u> may cause permanent damage to the device.

Symbol	Parameter	Min	Max	Units
VDDL/R	Supply for Driver Stage	-0.3	30	V
DVDD	Supply for Digital Circuit	-0.3	3.6	V
Vi	Input Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
TJ	Junction Operating Temperature	0	150	°C

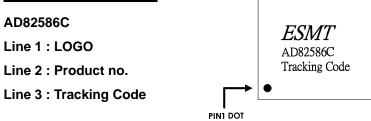
Recommended Operating Conditions

Symbol	Parameter	Parameter Typ	
DVDD	Supply for Digital Circuit	3.15~3.45	V
VDDL/R	Supply for Driver Stage	7~26	V
T _A	Ambient Operating Temperature	0~70	°C

Digital Characteristics

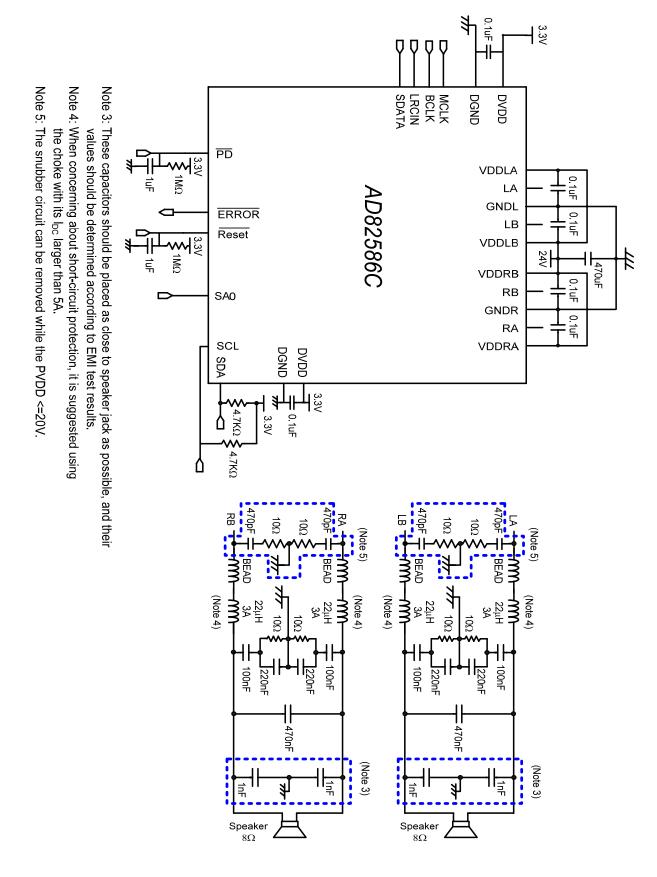
Symbol	Parameter	Min	Тур	Max	Units
V _{IH}	High-Level Input Voltage	2.0			V
V _{IL}	Low-Level Input Voltage			0.8	V
V _{OH}	High-Level Output Voltage	2.4			V
V _{OL}	Low-Level Output Voltage			0.4	V
Cı	Input Capacitance		6.4		pF

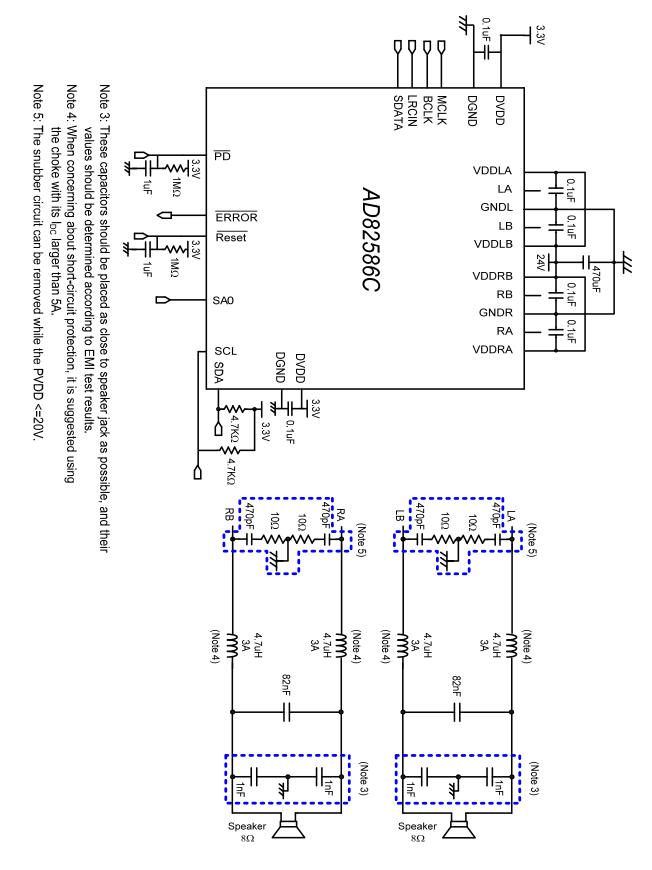
General Electrical Characteristics


Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{PD} (HV)	PVDD Supply Current during Power Down	PVDD=24V		4	200	uA
I _{PD} (LV)	DVDD Supply Current during Power Down	DVDD=3.3V		3.6	10	uA
-	Junction Temperature for Driver Shutdown			150		°C
T _{SENSOR}	Temperature Hysteresis for Recovery from Shutdown			30		°C
UV _H (HV)	Under Voltage Disabled (For PVDD)			10.2		V
$UV_{L}(HV)$	Under Voltage Enabled (For PVDD)			9.2		V
UV _H (LV)	Under Voltage Disabled (For DVDD)			2.9		V
UV _L (LV)	Under Voltage Enabled (For DVDD)			2.8		V
Dda an	Static Drain-to-Source On-state Resistor, PMOS	PVDD=24V,		245		mΩ
Rds-on	Static Drain-to-Source On-state Resistor, NMOS	Id=500mA		150		mΩ
	L(R) Channel Over-Current Protection (Note 2)			5.1		^
I _{sc}	Mono Channel Over-Current Protection (Note 2)	- PVDD=24V		10		A

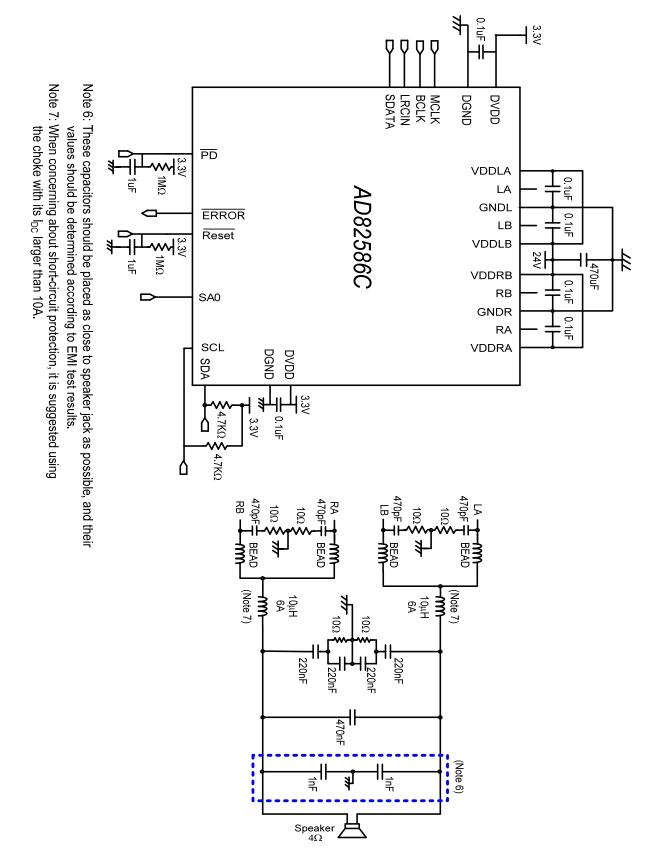
Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly

connected with external LC filters. Please refer to the application circuit example for recommended


LC filter configuration.


Marking Information

Elite Semiconductor Memory Technology Inc.

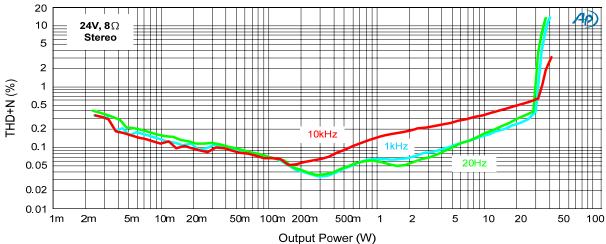

Application Circuit Example for Stereo

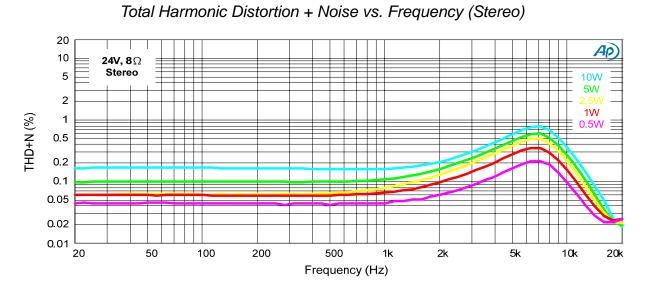
Application Circuit Example for Stereo (Economic type, moderate EMI suppression)

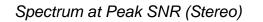
Application Circuit Example for Mono

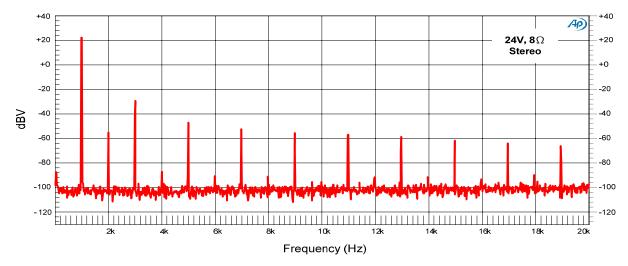
Electrical Characteristics and Specifications for Loudspeaker

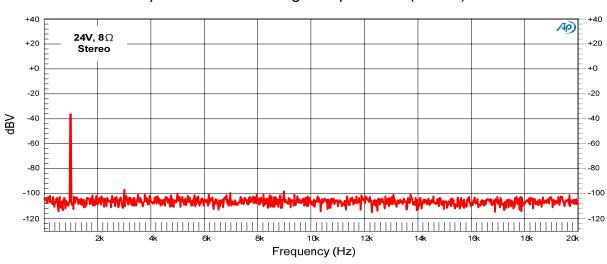
• Stereo output (BTL output)

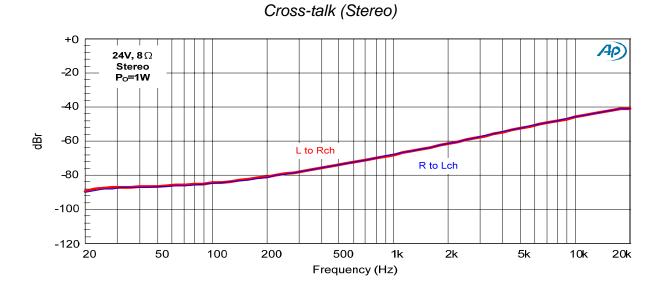

Condition: DVDD =3.3V, VDDL=VDDR=24V, F_s =48kHz, Load=8 Ω with passive LC lowpass filter (L=22 μ H with R_{DC} =0.12 Ω , C=470nF); Input is 1kHz sinewave.

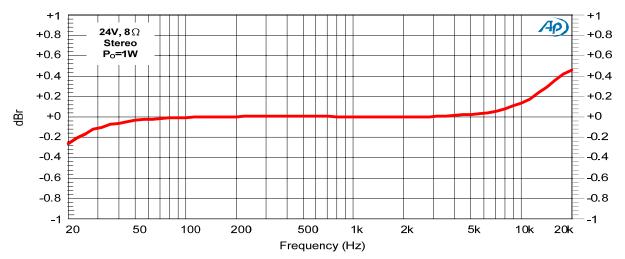

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=0.26%)	+8dB volume			20		W
(Note 9)							
THD+N	Total Harmonic Distortion + Noise	P _o =10W			0.17		%
SNR	Signal to Noise Ratio (Note 8)	+8dB volume	-9dB		99		dB
DR	Dynamic Range (Note 8)	+8dB volume	-68dB		104		dB
Vn	Output Noise (Note 8)	20Hz to 20kHz			179		uV
PSRR	Power Supply Principality Potion	V_{RIPPLE} =1 V_{RMS} at			-68		dB
PSRR Power Supply Rejection Ratio		1kHz			-00		UD
	Channel Separation	1W @1kHz	-1dB		-67		dB

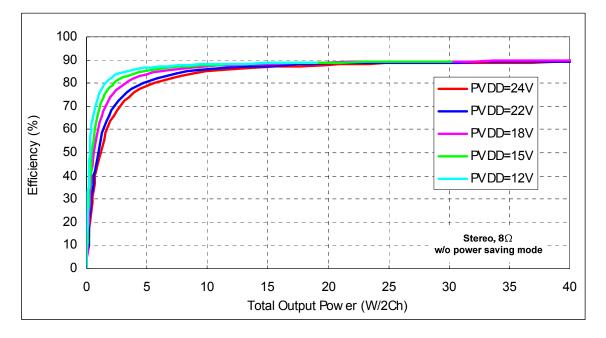

Note 8: Measured with A-weighting filter.

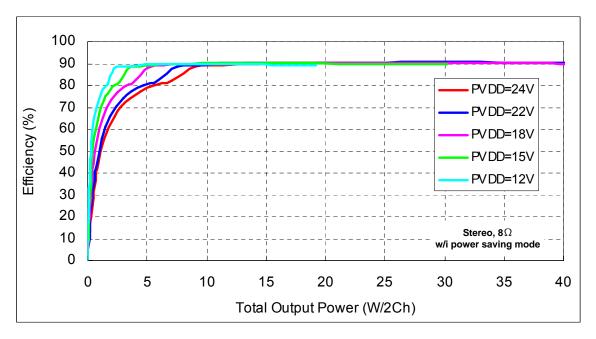

Note 9: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

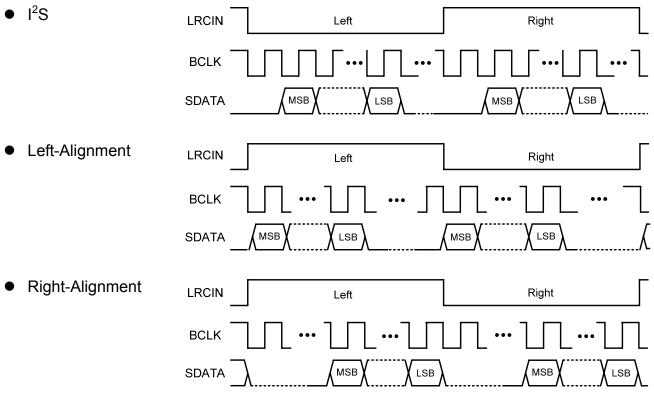


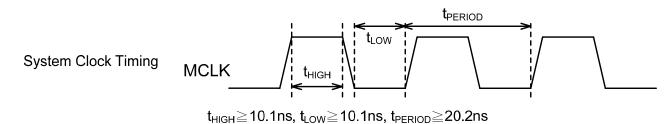


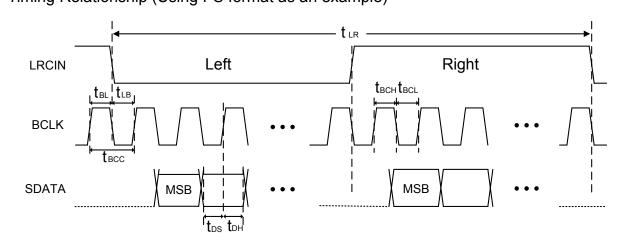






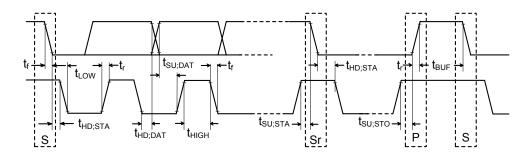

Efficiency without Power Saving Mode (Stereo)


Efficiency with Power Saving Mode (Stereo)


Interface configuration

• System Clock Timing

Timing Relationship (Using I²S format as an example)



Elite Semiconductor Memory Technology Inc.

Symbol	Parameter	Min	Тур	Max	Units
t _{LR}	LRCIN Period (1/F _s)	10.41		31.25	μs
t _{BL}	BCLK Rising Edge to LRCIN Edge	50			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	50			ns
t _{BCC}	BCLK Period (1/64F _S)	162.76		488.3	ns
t _{BCH}	BCLK Pulse Width High	81.38		244	ns
t _{BCL}	BCLK Pulse Width Low	81.38		244	ns
t _{DS}	SDATA Set-Up Time	50			ns
t _{DH}	SDATA Hold Time	50			ns

• I²C Timing

Demonster	O. make at	Standard Mode		Fast Mode		1.1
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		μS
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μS
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μs
Setup time for repeated START condition	t _{su;sta}	4.7		0.6		μs
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	μs
Setup time for I ₂ C bus data	t _{SU;DAT}	250		100		Ns
Rise time of both SDA and SCL signals	tr		1000	20+0.1Cb	300	Ns
Fall time of both SDA and SCL signals	t _f		300	20+0.1Cb	300	Ns
Setup time for STOP condition	t _{su;sto}	4.0		0.6		μs
Bus free time between STOP and the next	+	4.7		1.3		
START condition	t _{BUF}	4.7		1.5		μS
Capacitive load for each bus line	Cb		400		400	pF
Noise margin at the LOW level for each	V	0.11/		0.11/		V
connected device (including hysteresis)	V _{nL}	$0.1V_{DD}$		$0.1V_{DD}$		v
Noise margin at the HIGH level for each	V	$0.2V_{DD}$		0.2V _{DD}		V
connected device (including hysteresis)	V _{nH}	U.ZV _{DD}		U.ZVDD		v

Operation Description

Operation modes

(i) Without I²C control

The default settings, Bass, Treble, EQ, Volume, DRC, ..., and PLL are applied to register table content when using AD82586C without I²C control. The more information about default settings, please refer to the highlighted column of register table section.

(ii) With I²C control

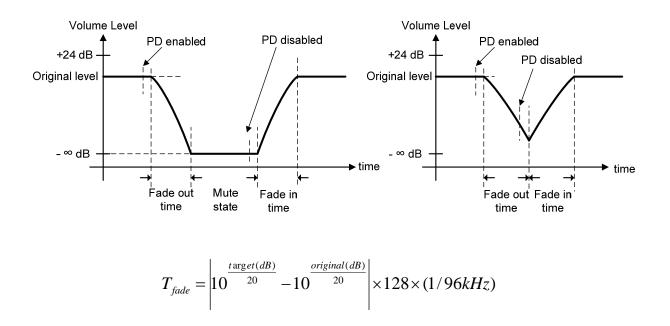
When using I^2C control, user can program suitable parameters into AD82586C for their specific applications. Please refer to the register table section to get the more detail.

Internal PLL

AD82586C has a built-in PLL internally, the multiple MCLK/FS ratio, which is selected by I²C control interface. The master clock inputted into the MCLK pin becomes the frequency of multiple edge evaluation.

Fs	MCLK/FS Setting Ratio for PLL	MCLK Frequency	Multiple edge evaluation for master clock	PWM Career Frequency
48kHz	256x	12.288MHz	4x	384kHz
44.1kHz	256x	11.289MHz	4x	352.8kHz
32kHz	256x	8.192MHz	4x	256kHz

• Default volume


The default volume level of AD82586C is +1.675dB, the default volume register table setting is muted. Please give a de-mute command via I^2C when the whole system is stable. About the more detailed information, please refer to the register table section.

Reset

When the RESET pin is lowered, AD82586C will clear the stored data and reset the register table to default values. AD82586C will exit reset state at the 256th MCLK cycle after the \overline{RESET} pin is raised to high.

• Power down control

AD82586C has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

The volume level will be decreased to $-\infty$ dB in several LRCIN cycles. Once the fade-out procedure is finished, AD82586C will turn off the power stages, stop clock signals (MCLK, BCLK) from feeding into digital circuit and turn off the current of the internal analog circuits. After PD pin is pulled low, AD82586C needs T_{fade} time to finish the above works before entering power down state. Users can't program AD82586C during power down state, but all the settings of register table will still be kept except that DVDD is removed.

If the PD function is disabled in the midway of the fade-out procedure, AD82586C will also execute the fade-in procedure. In addition, AD82586C will establish the analog circuits' bias current and feed the clock signals (MCLK, BCLK) into digital circuits. Then, AD82586C will return to its normal operation without power down.

• Self-protection circuits

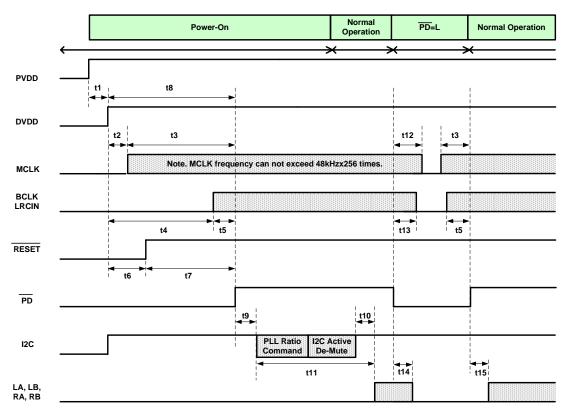
AD82586C has built-in protection circuits including thermal, short-circuit and under-voltage detection circuits.

- (i) When the internal junction temperature is higher than 150°C, power stages will be turned off and AD82586C will return to normal operation once the temperature drops to 120°C. The temperature values may vary around 10%.
- (ii) The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 5.1A for stereo configuration. Otherwise, the short-circuit detectors may pull the ERROR pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERROR pin will be pulled low and latched into ERROR state.

Once the over-temperature or short-circuit condition is removed, AD82586C will exit ERROR state when one of the following conditions is met: (1) $\overline{\text{RESET}}$ pin is pulled low, (2) $\overline{\text{PD}}$ pin is pulled low, (3)Master mute is enabled through the l²C interface.

(iii) Once the DVDD voltage is lower than 2.8V, AD82586C will turn off its loudspeaker power stages and cease the operation of digital processing circuits. When DVDD becomes larger than 2.9V, AD82586C will return to normal operation.

• Anti-pop design

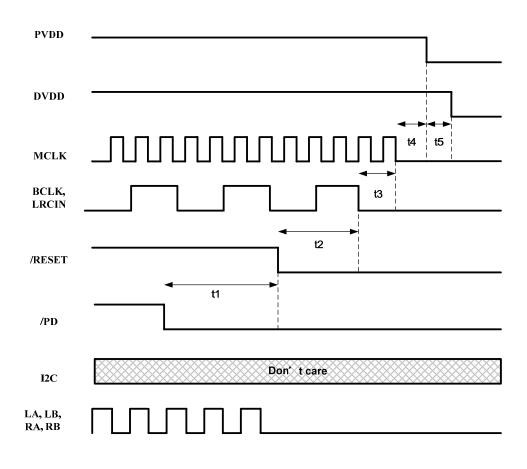

AD82586C will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

• 3D surround sound

AD82586C provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.

• Power on sequence

Hereunder is AD82586C's power on sequence. Please note that AD82586C default volume setting is muted initially. Please give a de-mute command via I^2C when the whole system is stable.



Symbol	Condition	Min	Max	Units
t1		0	-	msec
t2		0	-	msec
t3		10	-	msec
t4		0	-	msec
t5		10	-	msec
t6		10	-	msec
t7		0	-	msec
t8		200	-	msec
t9		20	-	msec
t10		-	0.1	msec
t11		-	0.1	msec
t12		25	-	msec
t13		25	-	msec
t14		-	22	msec
t15	DEF= L or H	-	0.1	msec

• Power off sequence

Hereunder is AD82586C's power off sequence.

Symbol	Condition	Min	Max	Units
t1		35	-	msec
t2		0.1	-	msec
t3		0	-	msec
t4		1	-	msec
t5		1	-	msec

I²C-Bus Transfer Protocol

Introduction

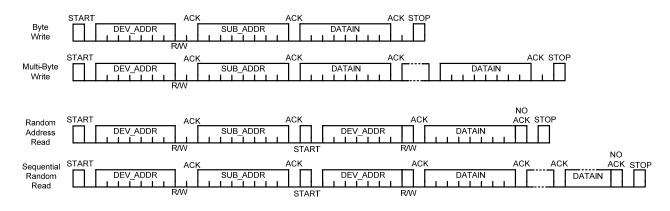
AD82586C employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD82586C is always an I²C slave device.

Protocol

START and STOP condition

START is identified by a high to low transition of the SDA signal.. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD82586C and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data validity

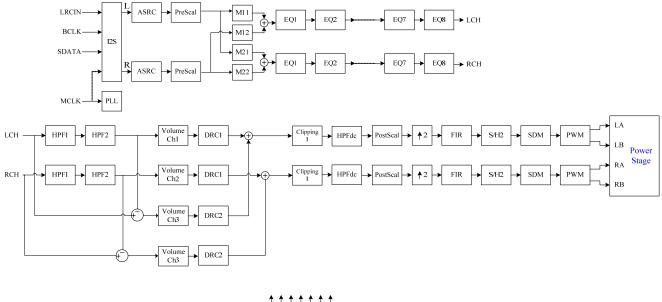

The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD82586C samples the SDA signal at the rising edge of SCL signal.

Device addressing

The master generates 7-bit address to recognize slave devices. When AD82586C receives 7-bit address matched with 0110x00 (where x can be selected by external SA0 pin, respectively), AD82586C will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD82586C internal sub-addresses.

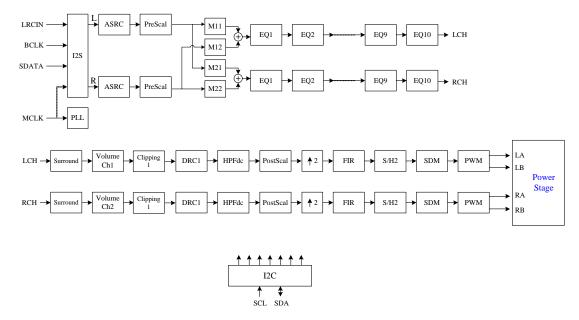
Data transferring

Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD82586C supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.


Elite Semiconductor Memory Technology Inc.

Publication Date: Jun. 2016 Revision: 1.2 19/52

Register Table


The AD82586C's audio signal processing data flow is shown below. Users can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

Dual band DRC enable

Dual bands DRC disable

Address	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]	Reserved	PWML_X	PWMR_X	LV_UVSEL	LREXC
0X01	SCTL2	Rese	erved	FS[1]	FS[0]	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL3		Res	erved		MUTE	CM1	CM2	CM3
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	C3VOL	C3V[7]	C3V[6]	C3V[5]	C3V[4]	C3V[3]	C3V[2]	C3V[1]	C3V[0]
0X07	BTONE		Reserved		BTC[4]	BTC[3]	BTC[2]	BTC[1]	BTC[0]
0X08	TTONE		Reserved		TTC[4]	TTC[3]	TTC[2]	TTC[1]	TTC[0]
0X09	XOF				Rese	erved			
0X0A	SCTL4	SRBP	BTE	TBDRCE	NGE	EQL	PSL	DSPB	HPB
0X0B	C1CFG		Reserved		C1DRCM	C1PCBP	C1DRCBP	Reserved	C1VBP
0X0C	C2CFG		Reserved		C2DRCM	C2PCBP	C2DRCBP	Reserved	C2VBP
0X0D	C3CFG		Reserved		Reserved	Reserved	C3DRCBP	Reserved	C3VBP
0X0E	LAR	LA[3]	LA[2]	LA[1]	LA[0]	LR[3]	LR[2]	LR[1]	LR[0]
0X0F					Rese	erved			
0X10	ERDLY				Rese	erved			
0X11	SCTL5	MONO	Reserved	SW_RSTB	LVUV_FADE	Reserved	DIS_MCLK_DET	QT_EN	PWM_SEL
0X12	HVUV	DIS_HVUV		Reserved		HV_UVSEL [3]	HV_UVSEL [2]	HV_UVSEL [1]	HV_UVSEL [0]
0X13	NGCFG		Reserved		DIS_NG_FADE	Rese	erved	NG_GAIN[1]	NG_GAIN[0]
0X14	CFADDR	Reserved	CFA[6]	CFA[5]	CFA[4]	CFA[3]	CFA[2]	CFA[1]	CFA[0]
0X15	A1CF1	C1B[23]	C1B[22]	C1B[21]	C1B[20]	C1B[19]	C1B[18]	C1B[17]	C1B[16]
0X16	A1CF2	C1B[15]	C1B[14]	C1B[13]	C1B[12]	C1B[11]	C1B[10]	C1B[9]	C1B[8]
0X17	A1CF3	C1B[7]	C1B[6]	C1B[5]	C1B[4]	C1B[3]	C1B[2]	C1B[1]	C1B[0]
0X18	A2CF1	C2B[23]	C2B[22]	C2B[21]	C2B[20]	C2B[19]	C2B[18]	C2B[17]	C2B[16]
0X19	A2CF2	C2B[15]	C2B[14]	C2B[13]	C2B[12]	C2B[11]	C2B[10]	C2B[9]	C2B[8]
0X1A	A2CF3	C2B[7]	C2B[6]	C2B[5]	C2B[4]	C2B[3]	C2B[2]	C2B[1]	C2B[0]
0X1B	B1CF1	C3B[23]	C3B[22]	C3B[21]	C3B[20]	C3B[19]	C3B[18]	C3B[17]	C3B[16]
0X1C	B1CF2	C3B[15]	C3B[14]	C3B[13]	C3B[12]	C3B[11]	C3B[10]	C3B[9]	C3B[8]
0X1D	B1CF3	C3B[7]	C3B[6]	C3B[5]	C3B[4]	C3B[3]	C3B[2]	C3B[1]	C3B[0]
0X1E	B2CF1	C4B[23]	C4B[22]	C4B[21]	C4B[20]	C4B[19]	C4B[18]	C4B[17]	C4B[16]
0X1F	B2CF2	C4B[15]	C4B[14]	C4B[13]	C4B[12]	C4B[11]	C4B[10]	C4B[9]	C4B[8]
0X20	B2CF3	C4B[7]	C4B[6]	C4B[5]	C4B[4]	C4B[3]	C4B[2]	C4B[1]	C4B[0]
0X21	A0CF1	C5B[23]	C5B[22]	C5B[21]	C5B[20]	C5B[19]	C5B[18]	C5B[17]	C5B[16]

Elite Semiconductor Memory Technology Inc.

0X22	A0CF2	C5B[15]	C5B[14]	C5B[13]	C5B[12]	C5B[11]	C5B[10]	C5B[9]	C5B[8]
0X23	A0CF3	C5B[7]	C5B[6]	C5B[5]	C5B[4]	C5B[3]	C5B[2]	C5B[1]	C5B[0]
0X24	CFRW		Res	erved		RA	R1	WA	W1
0X25	FDCFG				Rese	erved			
0X26	MBIST				Rese	erved			
0X27	Status		Reserved						
0X28	PWM_CTR	R							
0//20	L				Rest	erveu			
0X29	TM_CTRL				Rese	erved			
0X2A	QT_SW	QT_SW_WINDO	QT_SW_WINDO	QT_SW_WINDO	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL
	Q1_0W	W[2]	W[1]	W[0]	[4]	[3]	[2]	[1]	[0]
0X2B	VFT	MV_FT[1]	MV_FT[0]	C1V_FT[1]	C1V_FT[0]	C2V_FT[1]	C2V_FT[0]	C3V_FT[1]	C3V_FT[0]

Detail Description for Register

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

Address 0X00 : State control 1

AD82586C supports multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats are selected by users via bit7~bit5 of address 0X00. The left/right channels can be exchanged to each other by programming to address 0X00/bit0, LREXC.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	I ² S 16-24 bits
			001	Left-alignment 16-24 bits
D[7·5]		Input Format	010	Right-alignment 16 bits
B[7:5]	IF[2:0]	Input Format	011	Right-alignment 18 bits
			100	Right-alignment 20 bits
			101	Right-alignment 24 bits
B[4]		Reserved		
B[3]	PWML X	LA/LB exchange	0	No Exchange
Б[Э]		LA/LB excitatinge	1	Exchange
D [0]	PWMR_X	DA/DB ovehenge	0	No Exchange
B[2]		RA/RB exchange	1	Exchange
D[1]		LV under voltage	0	2.8v
B[1]	LV_UVSEL	selection	1	3.1v
B[0]	LREXC	Left/Right (L/R)	0	No exchanged
Б[0]	LREAC	Channel exchanged	1	L/R exchanged

Address 0X01 : State control 2

AD82586C has a built-in PLL which the multiple MCLK/Fs ratios are supported. Detail setting is shown in the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:6]		Reserved		
			00	32/44.1/48kHz
B[5:4]	FS[1:0]	Sampling Frequency	01	64/88.2/96kHz
				128/176.4/192kHz

Multiple MCLK/FS ratio setting table

BIT	NAME	DESCRIPTION	VALUE	B[5:4]=00	B[5:4]=01	B[5:4]=1x
				Reset Default	Reset Default	Reset Default
			0000	(1024x)	(512x)	(256x)
			0001	64x	64x	64x
			0010	128x	128x	128x
		MCLK/Fs	0011	192x	192x	192x
B[3:0]	PMF[3:0]		0100	256x	256x	256x
		setup for PLL	0101	384x	384x	
			0110	512x	512x	
			0111	576x		Reserved
			1000	768x	Reserved	
			1001	1024x		

• Address 0X02 : State control 3

AD82586C has mute function including master mute and channel mute. When master mute is enabled, all 3 processing channels are muted. User can mute these 3 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
B[4]		Reserved		
D[3]	MUTE	Master Mute	0	All channel not muted
B[3]			1	All channel muted
וכום	CM1	Channel 1 Mute	0	Ch1 not muted
B[2]	CIVIT		1	Only Ch1 muted
D[4]	CM2	Channel 2 Mute	0	Ch2 not muted
B[1]	CIVIZ	Channel 2 Mule	1	Only Ch2 muted
B[0]	CM3	Channel 3 Mute	0	Ch3 not muted
B[0]	CIVIS		1	Only Ch3 muted

• Address 0X03 : Master volume control

ESMT

AD82586C supports both master-volume (Address 0X03) and channel-volume control (Address 0x04, 0x05 and 0X06) modes. Both volume control settings range from +12dB ~ -103dB and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			00000010	+11.0dB
			:	:
		Master	00010111	+0.5dB
BIT[7:0]	MV[7:0]		00011000	0.0dB
ыц7.0]		Master Volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

-103dB \leq	Total volume ((Level A + Level B	$) \leq$ +24dB.

• Address 0X04 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
		Channel1 Volume	:	:
BIT[7:0]	C1V[7:0]		00011000	0.0dB
ыц7.0ј			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X05 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			:	:
			00010100	+2dB
		Channel2 Volume	:	:
BIT[7:0]	C2V[7:0]		00011000	0.0dB
ы [7.0]	020[7.0]		00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X06 : Channel 3 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			:	:
			00010100	+2dB
		Objects all 2 Malutes	:	:
BIT[7:0]	C3V[7:0]		00011000	0.0dB
	037[1:0]	Channel3 Volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X07/0X08 : Bass/Treble tone boost and cut

Last two sets of EQ can be programmed as bass/treble tone boost and cut. When, register with address-0X0A, bit-6, BTE is set to high, the EQ-8 and EQ-9 will perform as bass and treble respectively. The -3dB corner frequency of bass is 360Hz, and treble is 7kHz. The gain range for both filters is +12db ~ -12dB with 1dB per step.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
			00000	+12dB
			00100	+12dB
			00101	+11dB
			00110	+10dB
			01110	+2dB
	BTC[4:0]	The gain setting	01111	+1dB
B[4:0]	/	of	10000	0dB
	TTC[4:0]	boost and cut	10001	-1dB
			10010	-2dB
			11010	-10dB
			11011	-11dB
			11100	-12dB
			11111	-12dB

• Address 0X0A : State control 4

The AD82586C provides several DSP setting as following.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודוס	SRBP	Surround bypage	0	Surround enable
B[7]	SKDF	Surround bypass	1	Surround bypass
DIGI	BTE	Bass/Treble Selection	0	Bass/Treble Disable
B[6]	DIL	bypass	1	Bass/Treble Enable
DIEI	TBDRCE	Two Band DRC Enable	0	Two Band DRC Disable
B[5]	IDDRUE	TWO BAIN DRC ENAble	1	Two Band DRC Enable
D[4]	NGE	Noise aste enable	0	Noise gate disable
B[4]	NGE	GE Noise gate enable		Noise gate enable
D[3]	EQL	EQ Link	0	Each channel uses individual EQ
B[3]		EQ LIIK	1	Channel-2 uses channel-1 EQ
			0	Each channel uses individual
B[2]	PSL	Post-scale link	0	post-scale
			1	Use channel-1 post-scale
B[1]	DSPB	EO hypass	0	EQ enable
Б[1]	DOFD	EQ bypass	1	EQ bypass
B [0]	НРВ	DC blocking HPF	0	HPF dc enable
B[0]	IIFD	bypass	1	HPF dc bypass

• Address 0X0B, 0X0C and 0X0D : Channel configuration registers

The AD82586C can configure each channel to enable or bypass DRC and channel volume and select the limiter set. AD82586C support two mode of DRC, RMS and PEAK detection which can be selected via bit 4.

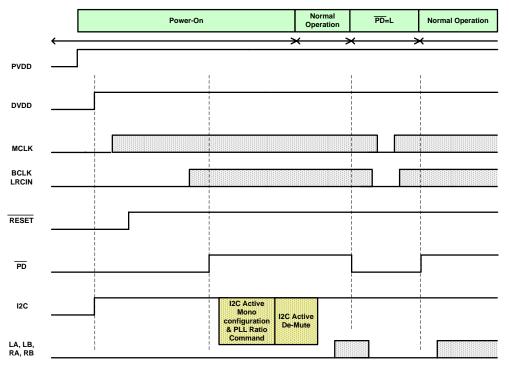
BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
D[4]	CXDRCM	Channel X DRC Mode	0	Peak detection
B[4]	CADROW		1	RMS detection
D [3]	CxPCBP	Channel x Power	0	Channel x PC enable
B[3]	CAFODE	Clipping bypass	1	Channel x PC bypass
D [2]		Channel x DRC bypass	0	Channel x DRC enable
B[2]	CIDRCDF		1	Channel x DRC bypass
B[1]		Reserved		
B[0]	CxVBP	Channel x Volume	0	Channel x's master volume operation
B[0]	UNV DF	bypass	1	Channel x's master volume bypass

Address 0X0B and 0X0C; where x=1 or 2

Address 0X0D

BIT	NAME	DESCRIPTION	VALUE	FUNCTION	
B[7]		Reserved			
B[6]		Reserved			
B[5]		Reserved			
B[4]		Reserved			
B[3]		Reserved			
D[0]	C3DRCBP	Channel 3 DRC bypass	0	Channel 3 DRC enable	
B[2]	CODRCDP	Channel 5 DRC bypass	1	Channel 3 DRC bypass	
B[1]		Reserved			
PI01	C3VBP	Channel 3 Volume	0	Channel 3 volume operation	
B[0]	COVER	bypass	1	Channel 3 volume bypass	

• Address 0X0E : DRC limiter attack/release rate


The AD82586C defines a set of limiter. The attack/release rates are defines as following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	3 dB/ms
			0001	2.667 dB/ms
			0010	2.182 dB/ms
			0011	1.846 dB/ms
			0100	1.333 dB/ms
			0101	0.889 dB/ms
			0110	0.4528 dB/ms
P [7:5]	1 1 2 0 1	DRC attack rate	0111	0.2264 dB/ms
B[7:5]	LA[3:0]		1000	0.15 dB/ms
			1001	0.1121 dB/ms
			1010	0.0902 dB/ms
			1011	0.0752 dB/ms
			1100	0.0645 dB/ms
			1101	0.0563 dB/ms
			1110	0.0501 dB/ms
			1111	0.0451 dB/ms
			0000	0.5106 dB/ms
			0001	0.1371 dB/ms
			0010	0.0743 dB/ms
			0011	0.0499 dB/ms
			0100	0.0360 dB/ms
			0101	0.0299 dB/ms
			0110	0.0264 dB/ms
B[3:0]	LR[3:0]	DRC release rate	0111	0.0208 dB/ms
B[3.0]	LIN[0.0]	DICC release rate	1000	0.0198 dB/ms
			1001	0.0172 dB/ms
			1010	0.0147 dB/ms
			1011	0.0137 dB/ms
			1100	0.0134 dB/ms
			1101	0.0117 dB/ms
			1110	0.0112 dB/ms
			1111	0.0104 dB/ms

• Address 0X11 : State control 5

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום		Mana mada	0	Stereo
B[7]	MONO	Mono mode	1	Mono
B[6]	Reserved	Reserved		
B [5]	SW_RSTB	Software reset	0	Reset
B[5]	300_0316	Soltware reset	1	Normal operation
B[4]	LVUV FADE	Low Under Voltage	0	No fade
D[4]	LVOV_FADE	Fade	1	Fade
B[3]	Reserved	Reserved		
B[2]	DIS_MCLK_DET	Disable MCLK detect	0	Enable MCLK detect circuit
D[2]	DIS_WOLK_DET	circuit	1	Disable MCLK detect circuit
D[1]	QT EN	Power saving mode	0	Disable
B[1]			1	Enable
B[0]	PWM_SEL	PWM modulation	0	Qua-ternary
D[0]			1	Ternary

AD82586C provides MONO configuration via register bit 7 of address 0X11. The output configuration (please refer to the page 7, Mono application circuit) shall be right connected before Mono configuration enable. That's possible to damage chips due to channel shoot-through if the wrong output configuration is connected.

• Address 0X12 : PVDD under voltage selection

AD82586C can disable HV under voltage detection via bit 7.

AD82586C support multi-level HV under voltage detection via bit3~ bit0, using this function, AD82586C will fade out signal to avoid pop sounds if high voltage supply disappear before low voltage supply.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום		Disable HV under	0	Enable
B[7]	Dis_HVUV	voltage selection	1	Disable
B[6:4]		Reserved		
		EL UV detection level	0000	8.2V
			0001	9.7V
B[3:0]	HV UV SEL		0011	13.2 V
Б[3.0]			0100	15.5 V
			1100	19.5 V
			Others	9.7V

• Address 0X13 : Noise gate gain

AD82586C provide noise gate function if receiving 2048 signal sample points smaller than noise gate attack level. User can change noise gate gain via bit1~ bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via bit 4.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]	х	Reserved		
D[4]		Diachla naise gata fada	0	Fade
B[4]	DIS_NG_FADE	Disable noise gate fade	1	No fade
B[3:2]	Х	Reserved		
			00	x1/8
D[1:0]		Noise acto acin	01	x1/4
B[1:0]	B[1:0] NG_GAIN[1:0]	Noise gate gain	10	x1/2
			11	Mute

• Address 0X14 ~0X24 : User-defined coefficients registers

An on-chip RAM in AD82586C stores user-defined EQ and mixing coefficients. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 0X14), five sets of registers (address 0X15 to 0X23) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 0X24) to control access of the coefficients in the RAM.

Address 0X14

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6:0]	CFA[6:0]	Coefficient RAM base	0000000	
Б[0.0]		address	0000000	

Address 0X15, A1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0] C1B[23:16]	Top 8-bits of		
ы, то		coefficients A1		

Address 0X16, A1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]		Middle 8-bits of		
B[7:0]	C1B[15:8]	coefficients A1		

Address 0X17, A1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C1D[7:0]	Bottom 8-bits of		
B[7:0]	C1B[7:0]	coefficients A1		

Address 0X18, A2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C2B[23:16]	Top 8-bits of		
ы, то		coefficients A2		

Address 0X19, A2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Middle 8-bits of		
B[7:0]	C2B[15:8]	coefficients A2		

Address 0X1A, A2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C2B[7:0]	Bottom 8-bits of		
Б[7:0]		coefficients A2		

Address 0X1B, B1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C3B[23:16]	Top 8-bits of		
B[7:0]		coefficients B1		

Address 0X1C, B1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]] C3B[15:8]	Middle 8-bits of		
B[7:0]		coefficients B1		

Address 0X1D, B1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Bottom 8-bits of		
B[7:0]	C3B[7:0]	coefficients B1		

Address 0X1E, B2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D(7:0)	C4B[23:16]	Top 8-bits of		
B[7:0]		coefficients B2		

Address 0X1F, B2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	040[45:0]	Middle 8-bits of		
B[7:0]	C4B[15:8]	coefficients B2		

Address 0X20, B2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	040[7:0]	Bottom 8-bits of		
B[7:0]	C4B[7:0]	coefficients B2		

Address 0X21, A0cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C5B[23:16]	Top 8-bits of		
ы, тор		coefficients A0		

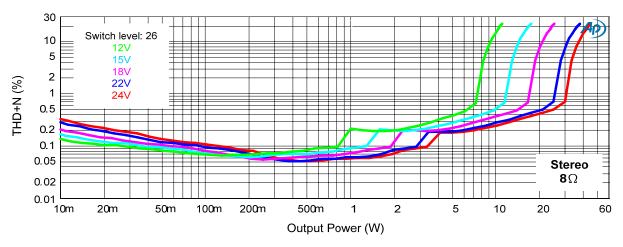
Address 0X22, A0cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Middle 8-bits of		
B[7:0]	C5B[15:8]	coefficients A0		

Address 0X23, A0cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Bottom 8-bits of		
B[7:0]	C5B[7:0]	coefficients A0		

Address 0X24, CfRW


BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
B[3]	RA	Enable of reading a set of	0	Read complete
		coefficients from RAM	1	Read enable
B[2]	R1	Enable of reading a single	0	Read complete
		coefficients from RAM	1	Read enable
B[1]	WA	Enable of writing a set of	0	Write complete
		coefficients to RAM	1	Write enable
B[0]	W1	Enable of writing a single	0	Write complete
		coefficient to RAM	1	Write enable

• Address 0X2A : Power saving mode switching level

If the PWM exceeds the programmed switching power level (default 26*40ns), the modulation algorithm will change from quaternary into power saving mode. It results in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level - power saving mode hysteresis window, the modulation algorithm will change back to quaternary modulation.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]			111	9
			110	8
			101	7
	QT_SW_WINDOW	Power saving mode	100	6
		hysteresis window	011	5
			010	4
			001	3
			000	2
B[4:0]			11111	62
			11110	60
			:	:
			10000	32
		Switching lovel	01111	30
	QT_SW_LEVEL	Switching level	01110	28
			01101	26
			:	:
			00001	4
			00000	4

Total Harmonic Distortion + Noise vs. Output Power (Stereo)

• Address 0X2B : Volume fine tune

AD82586C supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from 0dB \sim -0.375dB and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
DIZICI		Master Volume Fine	01	-0.125dB
B[7:6]	MV_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[5·4]	C1)/ ET	Channel 1 Volume Fine	01	-0.125dB
B[5:4]	C1V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[2·2]		Channel 2 Volume Fine	01	-0.125dB
B[3:2]	C2V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
B[1.01	C3V_FT	Channel 3 Volume Fine	01	-0.125dB
B[1:0]	U3V_F1	Tune	10	-0.25dB
			11	-0.375dB

RAM access

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X14
- 2. Write 1 to R1 bit in address-0X24
- 3. Read top 8-bits of coefficient in I2C address-0X15
- 4. Read middle 8-bits of coefficient in I2C address-0X16
- 5. Read bottom 8-bits of coefficient in I2C address-0X17

Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X14
- 2. Write 1 to RA bit in address-0X24
- 3. Read top 8-bits of coefficient A1 in I2C address-0X15
- 4. Read middle 8-bits of coefficient A1in I2C address-0X16
- 5. Read bottom 8-bits of coefficient A1 in I2C address-0X17
- 6. Read top 8-bits of coefficient A2 in I2C address-0X18
- 7. Read middle 8-bits of coefficient A2 in I2C address-0X19
- 8. Read bottom 8-bits of coefficient A2 in I2C address-0X1A
- 9. Read top 8-bits of coefficient B1 in I2C address-0X1B
- 10. Read middle 8-bits of coefficient B1 in I2C address-0X1C
- 11. Read bottom 8-bits of coefficient B1 in I2C address-0X1D
- 12. Read top 8-bits of coefficient B2 in I2C address-0X1E
- 13. Read middle 8-bits of coefficient B2 in I2C address-0X1F
- 14. Read bottom 8-bits of coefficient B2 in I2C address-0X20
- 15. Read top 8-bits of coefficient A0 in I2C address-0X21
- 16. Read middle 8-bits of coefficient A0 in I2C address-0X22
- 17. Read bottom 8-bits of coefficient A0 in I2C address-0X23

Write a single coefficient from RAM:

- 1. Write 7-bis of address to I2C address-0X14
- 2. Write top 8-bits of coefficient in I2C address-0X15
- 3. Write middle 8-bits of coefficient in I2C address-0X16
- 4. Write bottom 8-bits of coefficient in I2C address-0X17
- 5. Write 1 to W1 bit in address-0X24

Write a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address-0X14
- 2. Write top 8-bits of coefficient A1 in I2C address-0X15
- 3. Write middle 8-bits of coefficient A1 in I2C address-0X16
- 4. Write bottom 8-bits of coefficient A1 in I2C address-0X17
- 5. Write top 8-bits of coefficient A2 in I2C address-0X18
- 6. Write middle 8-bits of coefficient A2 in I2C address-0X19
- 7. Write bottom 8-bits of coefficient A2 in I2C address-0X1A
- 8. Write top 8-bits of coefficient B1 in I2C address-0X1B
- 9. Write middle 8-bits of coefficient B1 in I2C address-0X1C
- 10. Write bottom 8-bits of coefficient B1 in I2C address-0X1D
- 11. Write top 8-bits of coefficient B2 in I2C address-0X1E
- 12. Write middle 8-bits of coefficient B2 in I2C address-0X1F
- 13. Write bottom 8-bits of coefficient B2 in I2C address-0X20
- 14. Write top 8-bits of coefficient A0 in I2C address-0X21
- 15. Write middle 8-bits of coefficient A0 in I2C address-0X22
- 16. Write bottom 8-bits of coefficient A0 in I2C address-0X23
- 17. Write 1 to WA bit in address-0X24

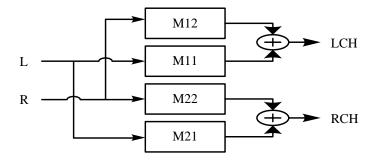
Note that: the read and write operation on RAM coefficients works only if LRCIN (pin-15) switching on rising edge. And, before each writing operation, it is necessary to read the address-0X24 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

• User-defined equalizer

The AD82586C provides 18 parametric Equalizer (EQ). Users can program suitable coefficients via I^2C control interface to program the required audio band frequency response for every EQ. The transfer function

$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

The data format of 2's complement binary code for EQ coefficient is 3.21. i.e., 3-bits for integer (MSB is the sign bit) and 21-bits for mantissa. Each coefficient range is from 0x800000 (-4) to 0x7FFFFF (+3.999999523). These coefficients are stored in User Defined RAM and are referenced in following manner:


CHxEQyA0 = A0CHxEQyA1 = A1CHxEQyA2 = A2CHxEQyB1 = -B1CHxEQyB2 = -B2

Where *x* and *y* represents the number of channel and the band number of EQ equalizer.

All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x200000 which represents 1.

Mixer

The AD82586C provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFFF (0.9999998808). The function block diagram is as following:

• Pre-scale

For each audio channel, AD82586C can scale input signal level prior to EQ processing which is realized by a 24-bit signed fractional multiplier. The pre-scale factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the pre-scaling factors are set to 0x7FFFFF. Programming of RAM is described in RAM access.

• Post-scale

The AD82586C provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 24-bit signed fractional multiplier. The post-scaling factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

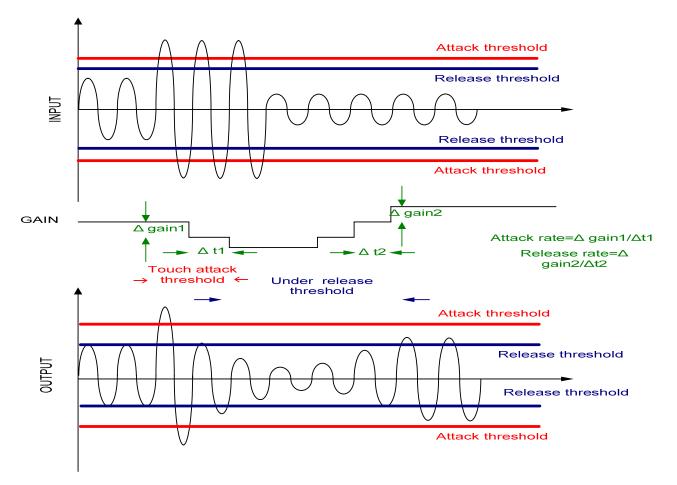
• Power Clipping

The AD82586C provides power clipping function to avoid excessive signal that may destroy loud speaker. Two sets of power clipping are provided. One is used for both channel 1 and channel 2, while the other is used for channel 3. The power clipping level is defined by 24-bit representation and is stored in RAM address 0X6F and 0X70. The following table shows the power clipping level's numerical representation.

	e contra concentration to the contration of				
Max amplitude	dB	Linear	Decimal	Hex (3.21 format)	
umpiltude				(0.211011101)	
PVDD	0	1	2097152	200000	
PVDD*0.707	-3	0.707	1484574	16A71E	
PVDD*0.5	-6	0.5	1048576	100000	
PVDD*L	х	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)	

Sample calculation	n for power	clipping
--------------------	-------------	----------

• Attack threshold for Dynamic Range Control (DRC)


The AD82586C provides dynamic range control (DRC) function. When the input exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Two sets of dynamic range control are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Attack threshold is defined by 24-bit representation and is stored in RAM address 0X71 and 0X72.

• Release threshold for Dynamic Range Control (DRC)

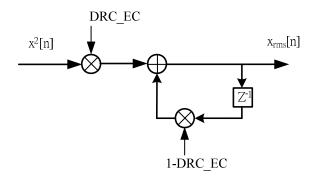
After AD82586C has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Two sets of dynamic range control are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Release threshold is defined by 24-bit representation and is stored in RAM address 0X73 and 0X74. The following table shows the attack and release threshold's numerical representation.

				Hex
Power	dB	Linear	Decimal	(3.21 format)
(PVDD^2)/R	0	1	2097152	200000
(PVDD^2)/2R	-3	0.5	1048576	100000
(PVDD^2)/4R	-6	0.25	524288	80000
((PVDD^2)/R)*L	x	L=10 ^(x/10)	D=2097152xL	H=dec2hex(D)

To best illustrate the dynamic range control, please refer to the following figure.

Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24-bit representation and is stored in RAM address 0X75.


• Noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD82586C receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation and is stored in RAM address 0X76. The following table shows the noise gate attack and release threshold level's numerical representation.

Input amplitude	Lincor	Linear Decimal	Hex
(dB)	Linear	Decimai	(1.23 format)
0	1	8388607	7FFFF
-100	10 ⁻⁵	83	53
-110	10 ^{-5.5}	26	1A
x	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)

Sample calculation for noise gate attack and release level

• DRC Energy Coefficient

The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Two sets of energy coefficients are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Energy coefficient is defined by 24-bit representation and is stored in RAM address 0X77 and 0X78. The following table shows the DRC energy coefficient numerical representation.

DRC energy	dB	Linear	Decimal	Hex
coefficient				(1.23 format)
1	0	1	8388607	7FFFFF
1/256	-48.2	1/256	524288	80000
1/1024	-60.2	1/1024	131072	20000
L	х	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)

Sample calculation for DRC energy coefficient

ESMT

The user defined RAM

The contents of user defined RAM is represented in following table.

0x00			
		CH1EQ1A1	0x000000
0x01		CH1EQ1A2	0x000000
0x02	Channel-1 EQ1	CH1EQ1B1	0x000000
0x03		CH1EQ1B2	0x000000
0x04		CH1EQ1A0	0x200000
0x05		CH1EQ2A1	0x000000
0x06		CH1EQ2A2	0x000000
0x07	Channel-1 EQ2	CH1EQ2B1	0x000000
0x08		CH1EQ2B2	0x000000
0x09		CH1EQ2A0	0x200000
0x0A		CH1EQ3A1	0x000000
0x0B		CH1EQ3A2	0x000000
0x0C	Channel-1 EQ3	CH1EQ3B1	0x000000
0x0D		CH1EQ3B2	0x000000
0x0E		CH1EQ3A0	0x200000
0x0F		CH1EQ4A1	0x000000
0x10		CH1EQ4A2	0x000000
0x11	Channel-1 EQ4	CH1EQ4B1	0x000000
0x12		CH1EQ4B2	0x000000
0x13		CH1EQ4A0	0x200000
0x14		CH1EQ5A1	0x000000
0x15		CH1EQ5A2	0x000000
0x16	Channel-1 EQ5	CH1EQ5B1	0x000000
0x17		CH1EQ5B2	0x000000
0x18		CH1EQ5A0	0x200000
0x19		CH1EQ6A1	0x000000
0x1A		CH1EQ6A2	0x000000
0x1B	Channel-1 EQ6	CH1EQ6B1	0x000000
0x1C		CH1EQ6B2	0x000000
0x1D		CH1EQ6A0	0x200000
0x1E		CH1EQ7A1	0x000000
0x1F	Channel-1 EQ7	CH1EQ7A2	0x000000
0x20		CH1EQ7B1	0x000000

Elite Semiconductor Memory Technology Inc.

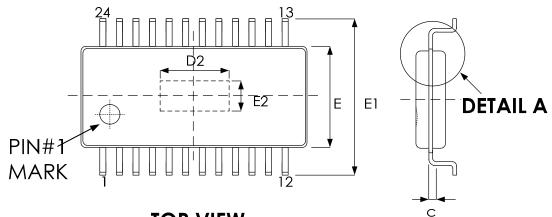
0x21		CH1EQ7B2	0x000000
0x22		CH1EQ7A0	0x200000
0x23		CH1EQ8A1	0x000000
0x24		CH1EQ8A2	0x000000
0x25	Channel-1 EQ8	CH1EQ8B1	0x000000
0x26		CH1EQ8B2	0x000000
0x27		CH1EQ8A0	0x200000
0x28		CH1EQ9A1	0x000000
0x29		CH1EQ9A2	0x000000
0x2A	Channel-1 EQ9	CH1EQ9B1	0x000000
0x2B		CH1EQ9B2	0x000000
0x2C		CH1EQ9A0	0x200000
0x2D		CH3EQ1A1	0x000000
0x2E		CH3EQ1A2	0x000000
0x2F	Channel-2 EQ10	CH3EQ1B1	0x000000
0x30		CH3EQ1B2	0x000000
0x31		CH3EQ1A0	0x200000
0x32		CH2EQ1A1	0x000000
0x33		CH2EQ1A2	0x000000
0x34	Channel-2 EQ1	CH2EQ1B1	0x000000
0x35		CH2EQ1B2	0x000000
0x36		CH2EQ1A0	0x200000
0x37		CH2EQ2A1	0x000000
0x38		CH2EQ2A2	0x000000
0x39	Channel-2 EQ2	CH2EQ2B1	0x000000
0x3A		CH2EQ2B2	0x000000
0x3B		CH2EQ2A0	0x200000
0x3C		CH2EQ3A1	0x000000
0x3D		CH2EQ3A2	0x000000
0x3E	Channel-2 EQ3	CH2EQ3B1	0x000000
0x3F		CH2EQ3B2	0x000000
0x40		CH2EQ3A0	0x200000
0x41		CH2EQ4A1	0x000000
0x42		CH2EQ4A2	0x000000
0x43	Channel-2 EQ4	CH2EQ4B1	0x000000
0x44		CH2EQ4B2	0x000000
0x45		CH2EQ4A0	0x200000

Elite Semiconductor Memory Technology Inc.

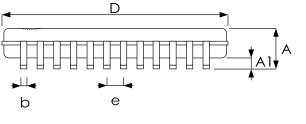
Publication Date: Jun. 2016 Revision: 1.2 47/52

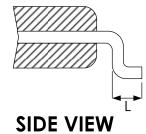
0x46		CH2EQ5A1	0x000000
0x47		CH2EQ5A2	0x000000
0x48	Channel-2 EQ5	CH2EQ5B1	0x000000
0x49		CH2EQ5B2	0x000000
0x4A		CH2EQ5A0	0x200000
0x4B		CH2EQ6A1	0x000000
0x4C		CH2EQ6A2	0x000000
0x4D	Channel-2 EQ6	CH2EQ6B1	0x000000
0x4E		CH2EQ6B2	0x000000
0x4F		CH2EQ6A0	0x200000
0x50		CH2EQ7A1	0x000000
0x51		CH2EQ7A2	0x000000
0x52	Channel-2 EQ7	CH2EQ7B1	0x000000
0x53		CH2EQ7B2	0x000000
0x54		CH2EQ7A0	0x200000
0x55		CH2EQ8A1	0x000000
0x56		CH2EQ8A2	0x000000
0x57	Channel-2 EQ8	CH2EQ8B1	0x000000
0x58		CH2EQ8B2	0x000000
0x59		CH2EQ8A0	0x200000
0x5A		CH2EQ9A1	0x000000
0x5B		CH2EQ9A2	0x000000
0x5C	Channel-2 EQ9	CH2EQ9B1	0x000000
0x5D		CH2EQ9B2	0x000000
0x5E		CH2EQ9A0	0x200000
0x5F		CH3EQ2A1	0x000000
0x60		CH3EQ2A2	0x000000
0x61	Channel-2 EQ10	CH3EQ2B1	0x000000
0x62		CH3EQ2B2	0x000000
0x63		CH3EQ2A0	0x200000
0x64	Channel-1 Mixer1	M11	0x7FFFFF
0x65	Channel-1 Mixer2	M12	0x000000
0x66	Channel-2 Mixer1	M21	0x000000
0x67	Channel-2 Mixer2	M22	0x7FFFFF
0x68	Reserve	Reserve	
0x69	Reserve	Reserve	
0x6A	Channel-1 Prescale	C1PRS	0x7FFFFF

Elite Semiconductor Memory Technology Inc.


Publication Date: Jun. 2016Revision: 1.248/52

ESMT


0x6B	Channel-2 Prescale	C2PRS	0x7FFFFF
0x6C	Channel-1 Postscale	C1POS	0x7FFFFF
0x6D	Channel-2 Postscale	C2POS	0x7FFFFF
0x6E	Reserve	Reserve	
0x6F	CH1.2 Power Clipping	PC1	0x200000
0x70	Reserve	Reserve	
0x71	CH1.2 DRC Attack	DRC1_ATH	0x200000
0.7.1	threshold	DRCI_ATH	0x200000
0x72	CH1.2 DRC Release	DRC1_RTH	0x80000
0/12	threshold	DRC1_RTT	0x00000
0x73	CH3 DRC Attack	DRC2_ATH	0x200000
0010	threshold		07200000
0x74	CH3 DRC Release	DRC2_RTH	0x80000
0,1,4	threshold	BROZ_RTT	
0x75	Noise Gate Attack Level	NGAL	0x00001A
0x76	Noise Gate Release	NGRL	0x000053
	Level	NOILE	0,000000
0x77	DRC1 Energy Coefficient	DRC1_EC	0x8000
0X78	DRC2 Energy Coefficient	DRC2_EC	0x2000


Package Dimensions

• E-TSSOP 24L

TOP VIEW

Sumbol	Dimensio	on in mm
Symbol	Min	Max
А	1.00	1.20
A1	0.00	0.15
b	0.19	0.30
С	0.09	0.20
D	7.70	7.90
E	4.30	4.50
E1	6.30	6.50
е	0.65 BSC	
L	0.45	0.75

Exposed pad				
	Dimension in mm			
D2	3.70	4.62		
E2	2.20	2.85		

Revision History

Revision	Date	Description
0.1	2013.11.13	Original.
0.2	2014.08.01	MCLK/FS ratio default setting changed at register address 0X01 (State control 2).
0.3	2015.02.05	 Added the Mono information into. Updated application circuits.
1.0	2015.04.29	 Remove preliminary word and modify version to 1.0 Add package information (MSL Level=3) Add UVP spec for PVDD(HV) Revise VDDL/R operating condition from 10V to 7V
1.1	2015.09.30	New add "tape reel" packing information
1.2	2016.06.30	Modify order information

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.