

2X20W Stereo Digital Audio Amplifier with DRC

Features

- 16/18/20/24-bit input with I²S, Left-alignment and Right-alignment data format
- PSNR & DR(A-weighting)
 Loudspeaker: 94dB (PSNR), 106dB (DR) @24V
- Multiple sampling frequencies (Fs) 32kHz / 44.1kHz / 48kHz and 64kHz / 88.2kHz / 96kHz and 128kHz/176.4kHz/192kHz
- System clock = 64x, 128x, 256x, 384x, 512x, 768x, 1024x Fs
 256x~1024x Fs for 32kHz / 44.1kHz / 48kHz
 128x~512x Fs for 64kHz / 88.2kHz / 96kHz
- 64x~256x Fs for 128kHz/176.4kHz/192kHz
- Supply voltage
 3.3V for digital circuit
 10V~26V for loudspeaker driver
- Loudspeaker output power for 24V
 10W x 2CH into 8Ω @0.16% THD+N for stereo
 15W x 2CH into 8Ω @0.18% THD+N for stereo
 20W x 2CH into 8Ω @0.24% THD+N for stereo
- Sounds processing including: Volume control (+24dB~-103dB, 0.125dB/step) Dynamic range control Power clipping Channel mixing User programmed noise gate with hysteresis
 - window

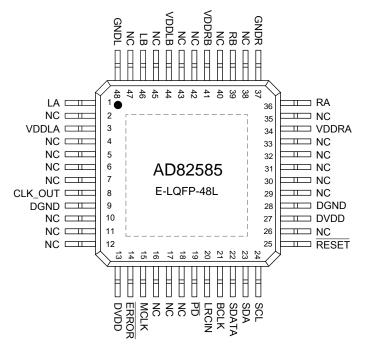
DC-blocking high-pass filter

- Anti-pop design
- Short circuit and over-temperature protection
- I²C control interface
- Internal PLL
- LV Under-voltage shutdown and HV Under-voltage detection
- Power saving mode
- Dynamic temperature control

Applications

- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio

Description

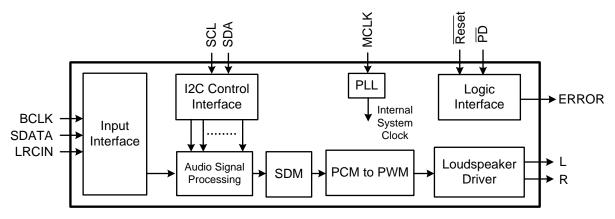

AD82585 is a digital audio amplifier capable of driving a pair of 8Ω , 20W speaker which operate with play music at a 24V supply without external heat-sink or fan requirement.

Using I²C digital control interface, the user can control AD82585's input format selection, mute and volume control functions. AD82585 has many built-in protection circuits to safeguard AD82585 from connection errors.

Ordering Information

Product ID	Package	Packing / MPQ	Comments	
AD82585-LG48NAY	E-LQFP-48L	250Units / Tray 2.5K Units / Box(10 Tray)	0	
AD82585-LG48NAR	(7x7 mm)	2K Units Tape & Reel	- Green	

Pin Assignment (Top View)


Pin Description

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	LA	0	Left channel output A.	
2	NC		Not connected.	
3	VDDLA	Р	Left channel supply A.	
4	NC		Not connected.	
5	NC		Not connected.	
6	NC		Not connected.	
7	NC		Not connected.	
8	CLK_OUT	0	Clock output from PLL.	TTL output buffer
9	DGND	Р	Digital ground.	
10	NC		Not connected.	
11	NC		Not connected.	
12	NC		Not connected.	
13	DVDD	Р	Digital Power.	
14	ERROR	0	Error status, low active.	Open-drain output
15	MCLK	I	Master clock input.	Schmitt trigger TTL input buffer
16	NC		Not connected.	
17	NC		Not connected.	
18	NC		Not connected.	
19	PD	Ι	Power down, low active	Schmitt trigger TTL input buffer

20	LRCIN		Left/Right clock input (Fs).	Schmitt trigger TTL input buffer
21	BCLK	I	Bit clock input (64Fs).	Schmitt trigger TTL input buffer
22	SDATA	I	Serial audio data input.	Schmitt trigger TTL input buffer
23	SDA	I/O	I ² C bi-directional serial data.	Schmitt trigger TTL input buffer
24	SCL	Ι	I ² C serial clock input.	Schmitt trigger TTL input buffer
25	RESET	Ι	Reset, low active.	Schmitt trigger TTL input buffer
26	NC		Not connected.	
27	DVDD	Ρ	Digital power.	
28	DGND	Ρ	Digital Ground.	
29	NC		Not connected.	
30	NC		Not connected.	
31	NC		Not connected.	
32	NC		Not connected.	
33	NC		Not connected.	
34	VDDRA	Ρ	Right channel supply A.	
35	NC		Not connected.	
36	RA	0	Right channel output A.	
37	GNDR	Р	Right channel ground.	
38	NC		Not connected.	
39	RB	0	Right channel output B.	
40	NC		Not connected.	
41	VDDRB	Р	Right channel supply B.	
42	NC		Not connected.	
43	NC		Not connected.	
44	VDDLB	Р	Left channel supply B.	
45	NC		Not connected.	
46	LB	0	Left channel output B.	
47	NC		Not connected.	
48	GNDL	Р	Left channel ground.	

Functional Block Diagram

Available Package

Package Type	Device No.	θ _{ja} (℃/W)	Ψ _{jt} (℃/₩)	θ _{jt} (°C/W)	Exposed Thermal Pad
E-LQFP-48L	AD82585	22.9	1.05	34.9	Yes (Note1)

Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.

Note 1.2: θ_{ja} is measured on a room temperature ($T_A=25$ °C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The measurement is tested using the JEDEC51-5 thermal measurement standard.

Note 1.3: θ_{jt} represents the heat resistance for the heat flow between the chip and the package's top surface.

Note 1.4: Ψ_{jt} represents the heat resistance for the heat flow between the chip and the exposed pad's center.

Absolute Maximum Ratings

Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device.

Symbol	Parameter	Min	Max	Units
DVDD	Supply for Digital Circuit	-0.3	3.6	V
VDDL/R	Supply for Driver Stage	-0.3	30	V
V _i	Input Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
Tj	Junction Operating Temperature	0	150	°C

Recommended Operating Conditions

Symbol	Parameter	Тур	Units
DVDD	Supply for Digital Circuit	3.15~3.45	V
VDDL/R	Supply for Driver Stage	10~26	V
Tj	Junction Operating Temperature	0~125	°C
T _a	Ambient Operating Temperature	0~70	°C

Digital Characteristics

Symbol	Parameter	Min	Тур	Max	Units
V _{IH}	High-Level Input Voltage	2.0			V
V _{IL}	Low-Level Input Voltage			0.8	V
V _{OH}	High-Level Output Voltage	2.4			V
V _{OL}	Low-Level Output Voltage			0.4	V
Cı	Input Capacitance		6.4		pF

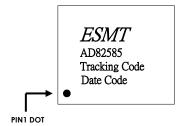
General Electrical Characteristics

Condition: $T_a=25$ °C, unless otherwise specified.

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{PD} (HV)	PVDD Supply Current during Power Down	PVDD=24V		40	200	uA
I _{PD} (LV)	DVDD Supply Current during Power Down	DVDD=3.3V		4	20	uA
Junction Temperature for Driver Shutdown				160		°C
T _{SENSOR}	Temperature Hysteresis for Recovery from Shutdown			35		°C
UV _H	Under Voltage Disabled (For DVDD)			2.8		V
UVL	Under Voltage Enabled (For DVDD)			2.7		V
D da an	Static Drain-to-Source On-state Resistor, PMOS	PVDD=24V,		260		mΩ
Rds-on	Static Drain-to-Source On-state Resistor, NMOS	Id=500mA		175		mΩ
I _{SC}	L(R) Channel Over-Current Protection (Note 2) PVDD=18V			5		А

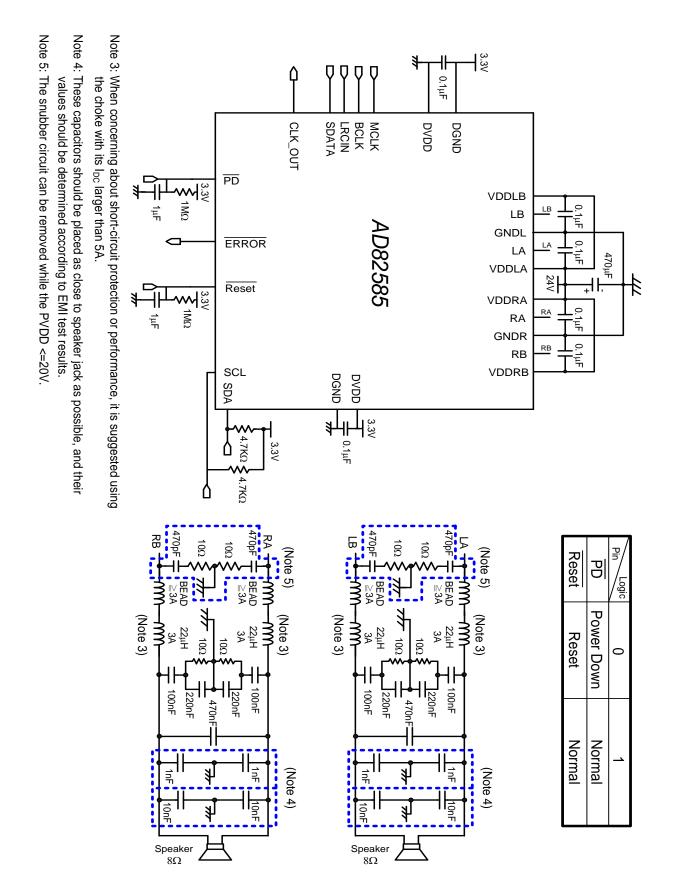
Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

Marking Information

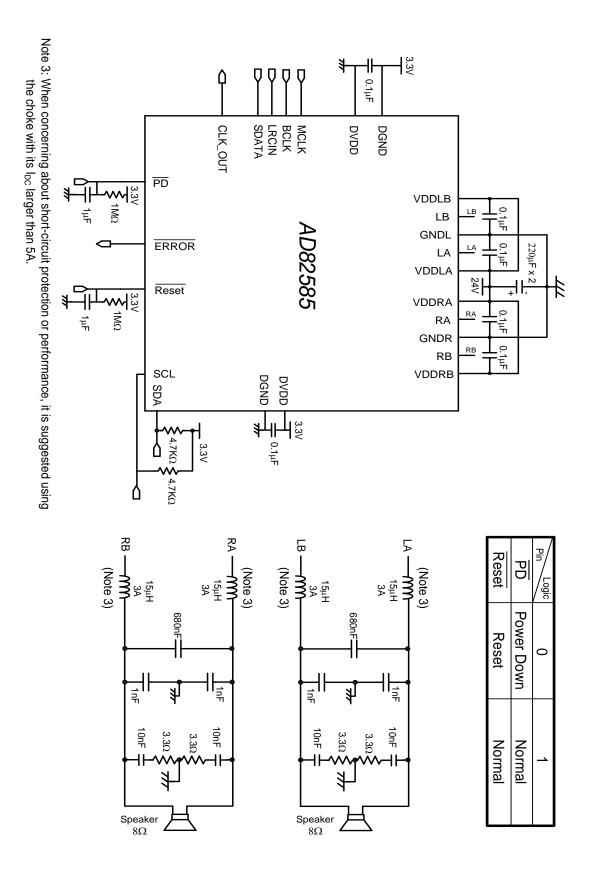

AD82585

Line 1 : LOGO

Line 2 : Product no.


Line 3 : Tracking Code

Line 4 : Date Code

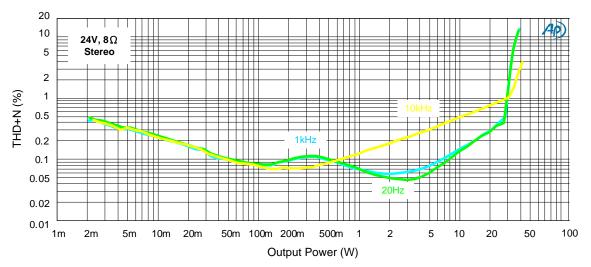


Application Circuit Example for Stereo

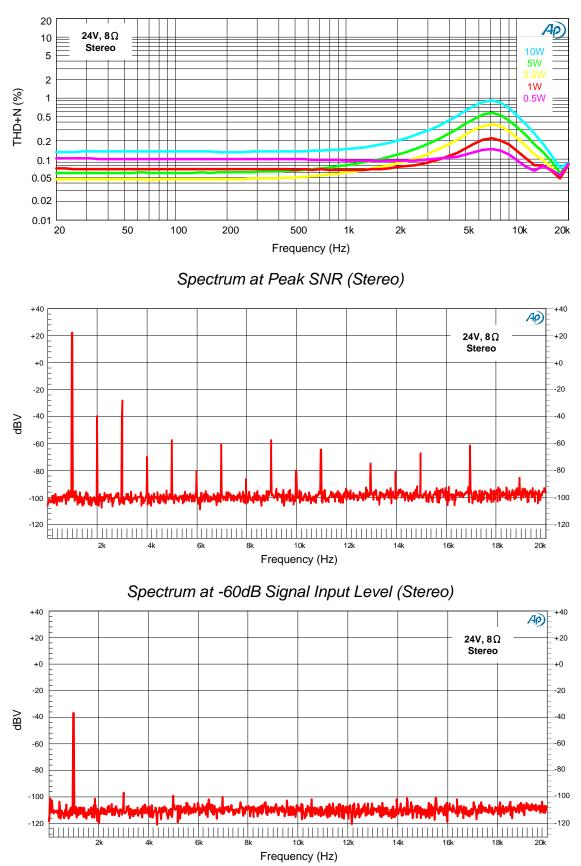
Application Circuit Example 2 for Stereo

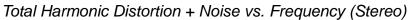
Electrical Characteristics and Specifications for Loudspeaker

Stereo output with 24V supply voltage

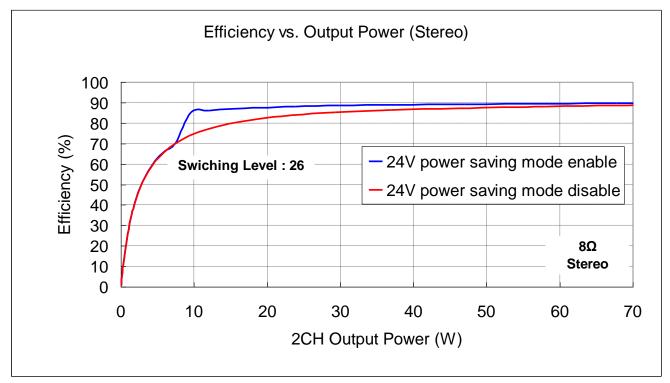

Condition: $T_a=25$ °C, DVDD=3.3V, VDDL=VDDR=24V, $F_S=48$ kHz, Load=8 Ω with passive LC lowpass filter (L=15 μ H with $R_{DC}=63m\Omega$, C=680nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
_	RMS Output Power (THD+N=0.24%)				20		W
P _O (Note 7)	RMS Output Power (THD+N=0.18%)	+8dB volume			15		W
(RMS Output Power (THD+N=0.16%)				10		
THD+N	Total Harmonic Distortion + Noise	P ₀ =7.5W			0.14		%
SNR	Signal to Noise Ratio (Note 6)	+8dB volume	-9dB		94		dB
DR	Dynamic Range (Note 6)	+8dB volume	-68dB		106		dB
PSRR	Power Supply Rejection Ratio	$V_{RIPPLE}=1V_{RMS}$			77		dB
		at 1kHz					
	Channel Separation	P _O =1W at 1kHz			80		dB

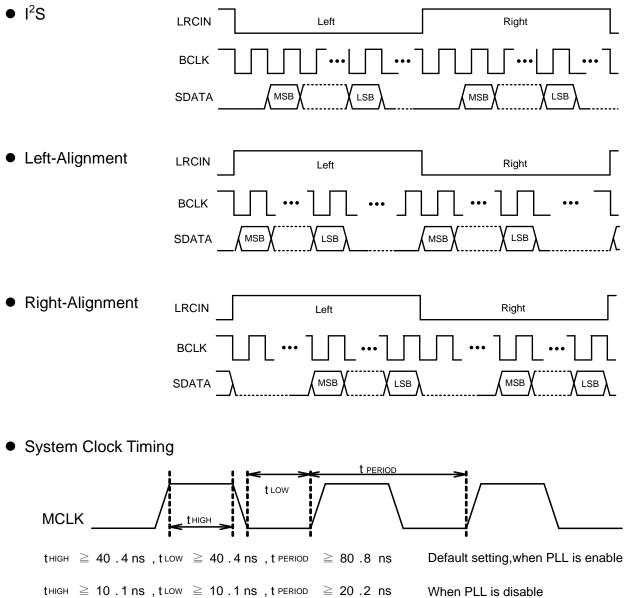

Note 6: Measured with A-weighting filter.


Note 7: Thermal dissipation is limited by package type and PCB design, the external heat-sink or system cooling method should be adopted for RMS power output.

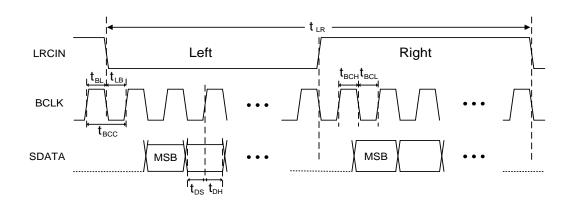
Total Harmonic Distortion + Noise vs. Output Power (Stereo)



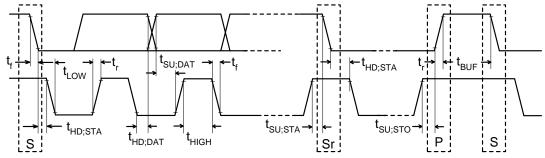
Efficiency (Stereo)



Efficiency (Stereo) for PWM of Power Saving Mode



Interface Configuration


• Timing Relationship (Using I²S format as an example)

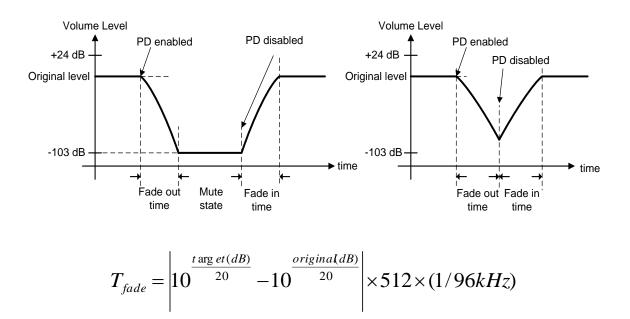
Symbol	Parameter	Min	Тур	Max	Units
t _{LR}	LRCIN Period (1/F _s)	10.41		31.25	μS
t _{BL}	BCLK Rising Edge to LRCIN Edge	50			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	50			ns
t _{BCC}	BCLK Period (1/64F _s)	162.76		488.3	ns
t _{BCH}	BCLK Pulse Width High	81.38		244	ns
t _{BCL}	BCLK Pulse Width Low	81.38		244	ns
t _{DS}	SDATA Set-Up Time	50			ns
t _{DH}	SDATA Hold Time	50			ns

• I²C Timing

Durali		Standard Mode		Fast Mode		L los it
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		μS
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μS
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μS
Setup time for repeated START condition	t _{SU;STA}	4.7		0.6		μS
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	μS
Setup time for I_2C bus data	t _{SU;DAT}	250		100		ns
Rise time of both SDA and SDL signals	t _r		1000	20+0.1Cb	300	ns
Fall time of both SDA and SDL signals	t _f		300	20+0.1Cb	300	ns
Setup time for STOP condition	t _{SU;STO}	4.0		0.6		μS
Bus free time between STOP and the next	+	4.7		1.0		
START condition	t _{BUF}	4.7		1.3		μS
Capacitive load for each bus line	Cb		400		400	pF
Noise margin at the LOW level for each	V	0.11/		0.11/		V
connected device (including hysteresis)	V _{nL}	$0.1V_{DD}$		0.1V _{DD}		v
Noise margin at the HIGH level for each	V	0.2V _{DD}		0.21/		V
connected device (including hysteresis)	V _{nH}	U.ZVDD		$0.2V_{DD}$		v

Elite Semiconductor Memory Technology Inc.

Operation Description


AD82585 has a built-in PLL with multiple MCLK/FS ratio, which is selected by I^2C control interface. The volume level default is muted, AD82585 will activate while the de-mute command via I^2C is programmed.

Reset

When the RESET pin is lowered, AD82585 will clear the stored data and reset the register table to default values. AD82585 will exit reset state at the 256th MCLK cycle after the \overrightarrow{RESET} pin is raised to high.

• Power down control

AD82585 has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

The volume level will be decreased to $-\infty$ dB in several LRCIN cycles. Once the fade-out procedure is finished, AD82585 will turn off the power stages, clock signals (for digital circuits) and current (for analog circuits). After PD pin is pulled low, AD82585 requires T_{fade} to finish the forementioned work before entering power down state. Users can not program AD82585 during power down state. Also, all settings in the registers will remain intact unless DVDD is removed.

If the PD signal is removed during the fade-out procedure (above, right figure), AD82585 will still execute the fade-in procedure. In addition, AD82585 will establish the analog circuits' bias current and send the clock signals to digital circuits. Afterwards, AD82585 will return to its normal status..

• Anti-pop design

AD82585 will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

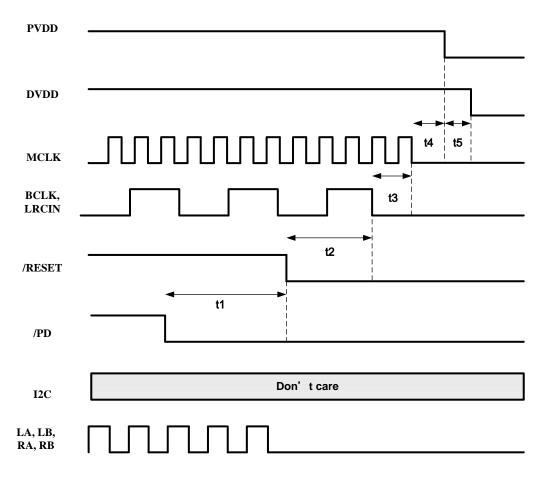
• Self-protection circuits

AD82585 has built-in protection circuits including thermal, short-circuit and under-voltage detection circuits.

- (i) When the internal junction temperature is higher than 160°C, power stages will be turned off and AD82585 will return to normal operation once the temperature drops to 125°C. The temperature values may vary around 10%.
- (ii) The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 5A for stereo configuration or less than 10A for mono configuration. Otherwise, the short-circuit detectors may pull the ERROR pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERROR pin will be pulled low and latched into ERROR state. Once the over-temperature or short-circuit condition is removed, AD82585 will exit ERROR state when one of the following conditions is met: (1) RESET pin is pulled low, (2) PD pin is pulled low, (3) Master mute is enabled through the I²C interface.
- (iii) Once the DVDD voltage is lower than 2.7V, AD82585 will turn off its loudspeaker power stages and cease the operation of digital processing circuits. When DVDD becomes larger than 2.8V, AD82585 will return to normal operation.
- (iv) If the master clock inputted into MCLK pin stops during the period for 500 ns or more, AD82585 detect the stop of MCK. In this state, amplifier outputs are forced to Weak Low. If master clock is inputted normally again, ERROR pin is set to low. AD82585 won't leave ERROR state until one of the following conditions: (1) Reset pin is pulled low, (2) PD pin is pulled low, (3) Programming master mute via I²C interface.
 - PD pin is set to low, when stop the clock inputted into MCLK, BCLK, and LRCIN during operation.
- (v) If it will be in the state where PVDD power supply is OFF and DVDD power supply is ON, ERROR pin is set to Low.

• Power on sequence

Hereunder is AD82585's power on sequence. AD82585 the default volume level is muted, give a de-mute command via I^2C when the whole system is stable to activate it.



Symbol	Condition	Min	Max	Units
t1		0	-	msec
t2		0	-	msec
t3		10	-	msec
t4		0	-	msec
t5		10	-	msec
t6		10	-	msec
t7		0	-	msec
t8		200	-	msec
t9		20	-	msec
t10		-	0.1	msec
t12		25	-	msec
t13		25	-	msec
t14		-	22	msec
t15		-	0.1	msec

• Power off sequence

Hereunder is AD82585's power off sequence.

Symbol	Condition	Min	Max	Units
t1		35	-	msec
t2		0.1	-	msec
t3		0	-	msec
t4		1	-	msec
t5		1	-	msec

I²C-Bus Transfer Protocol

Introduction

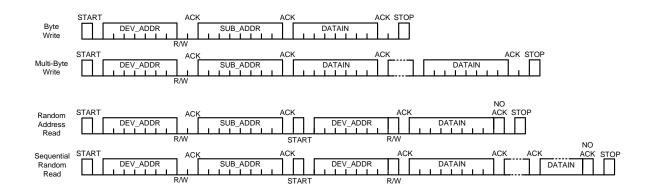
AD82585 employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD82585 is always an I²C slave device.

Protocol

START and STOP condition

START is identified by a high to low transition of the SDA signal. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD82585 and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

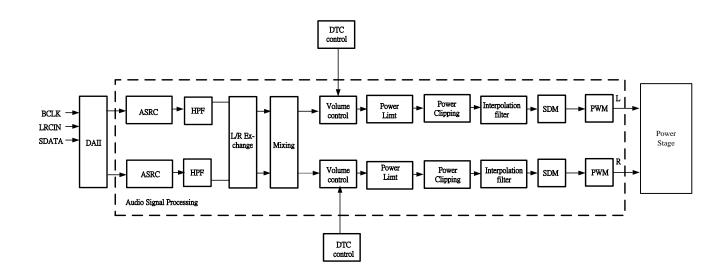
Data validity


The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD82585 samples the SDA signal at the rising edge of SCL signal.

Device addressing

The master generates 7-bit address to recognize slave devices. When AD82585 receives 7-bit address matched with 0110000, AD82585 will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD82585 internal sub-addresses.

Data transferring


Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD82585 supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.

Register Table

The audio signal processing data flow is shown as the following figure. Users can control these function by programming appropriate setting to register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

Address	Register	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]	LREXC	PWML_X	PWMRX	PwmMode	NGE
0X01	SCTL 2	Rese	erved	FS[1]	FS[0]	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL 3	EN_CLKO	HPB	LV_UVSEL	SW_RSTB	MUTE	CM1	CM2	CompSDMEn
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	HVUV	DIS_HVUV		Reserved		HVUVSEL[3]	HVUVSEL[2]	HVUVSEL[1]	HVUVSEL[0]
0X07	SCTL 4	C1MX_EN	C2MX_EN	PC_EN	DRC_EN	Reserved			
0X08	LAR	LA[3]	LA[2]	LA[1]	LA[0]	LR[3]	LR[2]	LR[1]	LR[0]
0X09	QT_SW_LEVEL		Reserved		QTS[4]	QTS[3]	QTS[2]	QTS[1]	QTS[0]
0X0A					R	eserved			
0X0B	OC SET				R	eserved			
0X0C	STATUS				R	eserved			
0X0D	ACFG				R	eserved			
0X0E	TM_CTRL				R	eserved			
0X0F	PWM_CTRL		Reserved						
0X10	ATT	Reserved ATT[4]			ATT[4]	ATT[3]	ATT[2]	ATT[1]	ATT[0]
0X11	ATM	ATM[7]	ATM[6]	ATM[5]	ATM[4]	ATM[3]	ATM[2]	ATM[1]	ATM[0]
0X12	ATB	ATB[7]	ATB[6]	ATB[5]	ATB [4]	ATB [3]	ATB [2]	ATB [1]	ATB [0]

Elite Semiconductor Memory Technology Inc.

AD82585

0X13	PCT	Reserved			PCT[4]	PCT[3]	PCT[2]	PCT[1]	PCT[0]
0X14	PCM	PCM[7]	PCM[6]	PCM[5]	PCM[4]	PCM[3]	PCM[2]	PCM[1]	PCM[0]
0X15	PCB	PCB[7]	PCB[6]	PCB[5]	PCB [4]	PCB [3]	PCB [2]	PCB [1]	PCB [0]
0X16	NGG		Reserved		DIS_ZD _FADE	Rese	erved	NG_GAIN[1]	NG_GAIN[0]
0X17	VFT	MV_FT[1]	MV_FT[0]	C1V_FT[1]	C1V_FT[0]	C2V_FT[1]	C2V_FT[0]	Res	erved
0X18	DTC	DTC_EN	DTC_TH[1]	DTC_TH[0]	DTC_RATE[1]	DTC_RATE[0]		Reserved	
0X19			Reserved						
0X1A	NGALT	NGALT[7]	NGALT[6]	NGALT[5]	NGALT[4]	NGALT[3]	NGALT[2]	NGALT[1]	NGALT[0]
0X1B	NGALM	NGALM[7]	NGALM[6]	NGALM[5]	NGALM[4]	NGALM[3]	NGALM[2]	NGALM[1]	NGALM[0]
0X1C	NGALB	NGALB[7]	NGALB [6]	NGALB [5]	NGALB [4]	NGALB [3]	NGALB [2]	NGALB [1]	NGALB [0]
0X1D	NGRLT	NGRLT[7]	NGRLT[6]	NGRLT[5]	NGRLT[4]	NGRLT[3]	NGRLT[2]	NGRLT[1]	NGRLT[0]
0X1E	NGRLM	NGRLM[7]	NGRLM[6]	NGRLM[5]	NGRLM[4]	NGRLM[3]	NGRLM[2]	NGRLM[1]	NGRLM[0]
0X1F	NGRLB	NGRLB[7]	NGRLB [6]	NGRLB[5]	NGRLB[4]	NGRLB [3]	NGRLB [2]	NGRLB [1]	NGRLB [0]
0X20	DRC_ECT	DRC_ECT[7]	DRC_ECT[6]	DRC_ECT[5]	DRC_ECT[4]	DRC_ECT[3]	DRC_ECT[2]	DRC_ECT[1]	DRC_ECT[0]
0X21	DRC_ECB	DRC_ECB[7]	DRC_ECB[6]	DRC_ECB[5]	DRC_ECB[4]	DRC_ECB[3]	DRC_ECB[2]	DRC_ECB[1]	DRC_ECB[0]
0X22	RTT	Reserved			RTT[4]	RTT[3]	RTT[2]	RTT[1]	RTT[0]
0X23	RTM	RTM[7]	RTM[6]	RTM[5]	RTM[4]	RTM[3]	RTM[2]	RTM[1]	RTM[0]
0X24	RTB	RTB[7]	RTB[6]	RTB[5]	RTB [4]	RTB [3]	RTB [2]	RTB [1]	RTB [0]

Detail Description for Register

In this section, please note that the highlighted columns are the default value of these tables. If no highlighted, it is because the default setting of this bit is determined by external pin.

• Address 0X00 : State Control 1

AD82585 support multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats is chosen by user via bit7~bit5 of address 0.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
				I ² S 16-24 bits
			001	Left-alignment 16-24 bits
			010	Right-alignment 16 bits
B[7:5]	IF[2:0]	Input Format	011	Right-alignment 18 bits
			100	Right-alignment 20 bits
			101	Right-alignment 24 bits
			other	Reversed
B[4]	LREXC	Left/Right (L/R)	0	No exchanged
D[4]	LINEXC	Channel Exchanged	1	L/R exchanged
B[3]	PWML X		0	No exchange
D[3]		LA/LB Exchange	1	Exchange
DIOI			0	No exchange
B[2]	PWMR_X	RA/RB Exchange	1	Exchange
B[1]	PwmMode	Dowor Soving Mode	0	Quarternary+Ternary
БП	r williviode	Power Saving Mode	1	Quarternary
B[0]	NGE	Noice Cate Enable	0	Disable
БГОЈ	NGE	NGE Noise Gate Enable		Enable

• Address 0X01 : State Control 2

AD82585 has built-in PLL internally. It can support the multiple MCLK/FS ratio as the below this table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:6]	Х	Reserved		
			00	32/44.1/48kHz
D[5·4]	FS	Sompling Frequency	01	32/44.1/48kHz
B[5:4]	го	Sampling Frequency	10	64/88.2/96kHz
			11	96/176.4/192kHz

Multiple MCLK/FS Ratio Setting table

BIT	NAME	DESCRIPTION	VALUE	B[5:4]=00/01	B[5:4]=10	B[5:4]=11
				Reset	Reset	Reset
	NA 141-1-	0001	Default	Default	Default	
D[2:0]		-		(256x)	(128x)	(64x)
B[3:0]	PMF[3:0]		0010	512x	256x	128x
	Ratio Setting	0011	768x	384x	192x	
		0100	1024x	512x	256x	

• Address 0X02 : State Control 3

To prevent the DC current from damaging the speaker, a high pass filter (3dB frequency = 5Hz) is built into the AD82585. It can be enabled or disabled by bit 6 of address 2.

AD82585 has a mute function which includes master mute and individual channel mute modes. When the master mute mode is enabled, both left and right processing channels are muted. On the other hand, either channel can be muted by using the channel mute mode. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום	EN_CLK_		0	Disabled
B[7]	OUT	PLL Clock Output	1	Enabled
DIC1	HPB	DC Blocking HPF	0	Enable
B[6]	пгр	Bypass	1	Disabled
DIEI		LV Under Voltage	0	2.7V
B[5]	LV_UVSEL	Selection	1	3.0V
D[4]			0	Reset
B[4]	SW_RSTB	Software reset	1	Normal operating
DIOI	MUTE		0	Un-Mute
B[3]	NUTE	Master Mute	1	Mute
D[0]	CM1	Channel 1 Mute	0	Un-Mute
B[2]	CIVIT	Channel T Mule	1	Mute
D[4]	CM2	Channel 2 Mute	0	Un-Mute
B[1]	CIVIZ		1	Mute
B[0]	CompSDMEn	Compensate SDM	0	Disable
5[0]	CompoDivien	Frequency Response	1	Enable

• Address 0X03 : Master volume

AD82585 supports both master-volume and channel-volume control for the stereo processing channels. Both master volume control (Address 0X03) and channel volume (Address 0X04 and 0X05) settings range from +12dB ~ -102dB. Given master volume level, say, Level A (in dB unit) and channel volume level, say Level B (in dB unit), the total volume equals to Level A plus with Level B and its range is from +24dB ~ -102dB, i.e., -103dB \leq Total Volume (Level A + Level B) \leq +24dB.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12dB
			00000001	+11.5dB
			00000010	+11dB
			:	:
			00010111	0.5dB
D[7:0]	MV[7:0]		00011000	0dB
B[7:0]	101 V [7.0]	Master Volume	00011001	-0.5dB
			:	:
			11100110	-103dB
			11100101	-∞dB
			:	:
			1111111	-∞dB

• Address 0X04 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12dB
			00000001	+11.5dB
			••	:
			00010100	2dB
			••	:
D[7:0]	C1V[7:0]		00011000	0dB
B[7:0]		Channel 1 Volume	00011001	-0.5dB
			••	:
			11100110	-103dB
			11100101	-∞dB
			•	:
			1111111	-∞dB

• Address 0X05 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12dB
			00000001	+11.5dB
			:	:
			00010100	2dB
) Channel 2 Volume	:	:
B[7:0]	C2V[7:0]		00011000	0dB
Ы(7.0)	020[7.0]		00011001	-0.5dB
			:	:
			11100110	-103dB
			11100101	-∞dB
			:	:
			1111111	-∞dB

• Address 0X06 : Under Voltage Selection for High Voltage Supply

AD82585 provides HV under voltage detection which can be enable or disable via bit 7. The under-voltage detection level is programmable via bit3~ bit0. Once the output stage voltage drops below the preset value (see table), AD82585 will fade out audio signals to turn off the speaker.

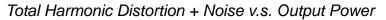
BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום		Disable HV Under	0	Enable
B[7]	Dis_HVUV	Voltage Circuit	1	Disable
B[6:4]	Х	Reserved		
			Other	9.7V
			1100	19.5V
D[2:0]	HVUVSEL[3:0]	HV Under Voltage	0100	15.5V
B[3:0]		Selection (Active)	0011	13.2V
			0001	9.7V
			0000	8.2V

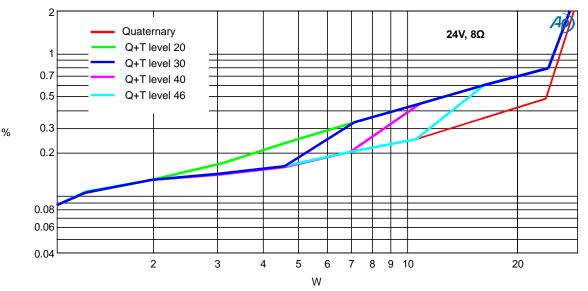
• Address 0X07 : State Control 4

AD82585 provides channel mix, power clipping, and dynamic range control (DRC) function. These functions can be enable or not as the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
ודום	C1MX EN	Channel1 Mixing	0	Disable(MONO=0)
B[7]		Enable	1	Enable (MONO=1)
DIGI	C2MX EN	Channel2 Mixing	0	Disable(MONO=0)
B[6]	CZIVIA_EIN	Enable	1	Enable(MONO=1)
DIEI	PC EN	Power Clipping	0	Disable
B[5]	PC_EN	Enable	1	Enable
D[4]		DBC Enchlo	0	Disable
B[4]	DRC_EN	DRC Enable	1	Enable
B[3:0]	Х	Reserved		

• Address 0X08 : Attack Rate and Release Rate for Dynamic Range Control (DRC) The attack/release rates of AD82585 are defined as following table,


BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	3 dB/ms
			0001	2.667 dB/ms
			0010	2.182 dB/ms
			0011	1.846 dB/ms
			0100	1.333 dB/ms
			0101	0.889 dB/ms
			0110	0.4528 dB/ms
B[7:5]	LA[3:0]	DRC Attack Rate	0111	0.2264 dB/ms
ы, тр	LA[3.0]		1000	0.15 dB/ms
			1001	0.1121 dB/ms
			1010	0.0902 dB/ms
			1011	0.0752 dB/ms
			1100	0.0645 dB/ms
			1101	0.0563 dB/ms
			1110	0.0501 dB/ms
			1111	0.0451 dB/ms
			0000	0.5106 dB/ms
			0001	0.1371 dB/ms
			0010	0.0743 dB/ms
			0011	0.0499 dB/ms
			0100	0.0360 dB/ms
			0101	0.0299 dB/ms
			0110	0.0264 dB/ms
D [2:0]		DRC Release Rate	0111	0.0208 dB/ms
B[3:0]	LR[3:0]	DRC Release Rale	1000	0.0198 dB/ms
			1001	0.0172 dB/ms
			1010	0.0147 dB/ms
			1011	0.0137 dB/ms
			1100	0.0134 dB/ms
			1101	0.0117 dB/ms
			1110	0.0112 dB/ms
			1111	0.0104 dB/ms



• Address 0X09 : Quaternary and Ternary Switching Level

If the PWM exceeds the programmed switching power level (default 30*40ns), the modulation algorithm will change from quaternary to ternary modulation. Ternary modulation has less switching loss, resulting in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level, the modulation algorithm will change back to quaternary modulation.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]	Х	Reserved		
			11111	62
			11110	60
			:	:
			:	:
		Quaternary and	10000	32
B[4:0]	QTS[4:0]	Ternary	01111	30
		Switching Level	01110	28
			01101	26
			:	:
			00001	4
			00000	4

• Address 0X10 : Top 5 Bits of Attack Threshold for Dynamic Range Control (DRC)

The AD82585 provides dynamic range control function. When the input RMS exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Attack threshold is defined by 21-bit representation composed of registers controlled by I2C. The device addresses of DRC attack threshold are 0X10, 0X11, and 0X12.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]	Х	Reserved		
P[4:0]		Top 5 Bits of Attack	Х	User programmed
B[4:0]	ATT[4:0]	Threshold	01000	0dB

• Address 0X11 : Middle 8 Bits of Attack Threshold

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Middle 8 Bits of Attack	Х	User programmed
B[7:0]	ATM[7:0]	Threshold	00000000	0dB

• Address 0X12 : Bottom 8 Bits of Attack Threshold

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Bottom 8 Bits of Attack	Х	User programmed
B[7:0]	ATB[7:0]	Threshold	00000000	0dB

• Address 0X13 : Top 8 Bits of Power Clipping

The AD82585 provides power clipping function to avoid excessive signal that may destroy loud speaker. The power clipping level is defined by 21-bit representation composed of registers controlled by I2C. The device addresses of power clipping threshold are 0X13, 0X14, and 0X15.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]	Х	Reserved		
P[4:0]		Top 5 Bits of Power	Х	User programmed
B[4:0]	PCT[4:0]	Clipping	01000	0dB

• Address 0X14 : Middle 8 Bits of Power Clipping

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Middle 8 Bits of Power	Х	User programmed
B[7:0]	PCM[7:0]	Clipping Level	00000000	0dB

• Address 0X15 : Bottom 8 Bits of Power Clipping Level

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	Bottom 8 Bits of Power	Х	User programmed	
B[7:0]	PCB[7:0]	Clipping Level	00000000	0dB

The following table shows the power clipping level's numerical representation.

Sample Calculation for Power C	Clipping
--------------------------------	----------

Max	٩D	Lincor	Desimal	Hex
amplitude	dB	Linear	Decimal	(2.19 format)
PVDD	0	1	524288	80000
PVDD*0.707	-3	0.707	370727	5A827
PVDD*0.5	-6	0.5	262144	40000
PVDD*L	х	L=10 ^(x/20)	D=524288xL	H=dec2hex(D)

• Address 0X16 : Noise Gate Gain Control

AD82585 provide noise gate function if receiving 2048 signal sample points less than noise gate attack level. User can change noise gate gain via bit1~ bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via bit 4.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]	х	Reserved		
D[4]		Disable Noise Gate	0	Fade
B[4]	DIS_NG_FADE	Fade	1	No fade
B[3:2]	Х	Reserved		
			00	x1/8
D[1:0]		Noise Gate	01	x1/4
B[1:0]	NG_GAIN	Detection Gain	10	x1/2
			11	Mute

• Address 0X17 : Volume Fine Tune

AD82585 supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from 0dB \sim -0.375dB and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
D[7:6]		Master Volume Fine	01	-0.125dB
B[7:6]	MV_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
		Channel 1 Volume Fine	01	-0.125dB
B[5:4]	C1V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
0.01	C2V_FT	Channel 2 Volume Fine	01	-0.125dB
B[3:2]	C2V_F1	Tune	10	-0.25dB
			11	-0.375dB
B[1:0]	Х	Reserved		

• Address 0X18 : Dynamic Temperature Control (DTC)

AD82585 supports dynamic temperature control. The table describes the setting of DTC.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
וקום	DTC_EN DTC Enable		0	Disable
B[7]	DIC_EN	DTC Enable	1	Enable
			00	110 °C
DICICI		DTC Threshold	01	120 °C
B[6:5]	DTC_TH	DTC Threshold	10	130 °C
			11	140 °C
			00	1dB/sec
D[4:2]	DTC Attack and	DTC Attack and	01	0.5dB/sec
B[4:3]	DTC_RATE	Release Rate	10	0.33dB/sec
			11	0.25dB/sec
B[2:0]	Х	Reserved		

Release threshold is always 10 $^{\circ}\text{C}$ smaller than attack threshold.

For example:

DTC threshold (attack threshold) =130 $^{\circ}$ C, the release threshold = 120 $^{\circ}$ C.

DTC threshold (attack threshold) =120 $^{\circ}$ C, the release threshold = 110 $^{\circ}$ C.

If junction temperature (Tj) exceeds 130 °C, amplifier gain will be lowered to timing of 1dB/sec. If amplifier gain falls and junction temperature (Tj) turns into less than 130 °C and larger than 120 °C, the gain will not increase or decrease. If amplifier gain falls and junction temperature (Tj) turns into less than 120 °C, amplifier gain will be raised to timing of 1dB/sec.

• Address 0X1A : Top 8 Bits of Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24-bit representation composed of registers controlled by I2C. The device addresses of noise gate attack level are 0X1A, 0X1B, and 0X1C

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Top 8 Bits of Noise	Х	User programmed
B[7:0]	NGALT[7:0]	Gate	00000000	110dD
		Attack Level	00000000	-110dB

• Address 0X1B : Middle 8 Bits of Noise Gate Attack Level

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	NGALM[7:0]	Middle 8 Bits of Noise	Х	User programmed
		Gate Attack Level	00000000	-110dB

• Address 0X1C : Bottom 8 Bits of Noise Gate Attack Level

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] N	NGALB[7:0]	Bottom 8 Bits of Noise	Х	User programmed
		Gate Attack Level	00011010	-110dB

• Address 0X1D : Top 8 Bits of noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD82585 receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation composed of registers controlled by I2C. The device addresses of noise gate release level are 0X1D, 0X1E, and 0X1F.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Top 8 Bits of Noise	Х	User programmed
B[7:0]	NGRLT[7:0]	Gate	0000000	
		Release Level	0000000	-100dB

• Address 0X1E : Middle 8 Bits of Noise Fate Release Level

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	NGRLM[7:0]	Middle 8 Bits of Noise	Х	User programmed
		Gate Release Level	00000000	-100dB

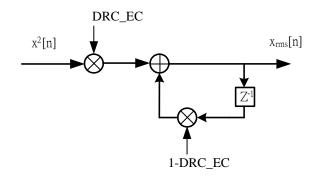
• Address 0X1F : Bottom 8 Bits of Noise Gate Release Level

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	NGRLB[7:0]	Bottom 8 Bits of Noise	Х	User programmed
		Gate Release Level	01010011	-100dB

The following table shows the noise gate attack and release threshold level's numerical representation.

Sami	ole Calculation	for Noise	Eate Attack	and Release Level	
Jani		101 110130			

Input amplitude	Lincor	Desimal	Hex
(dB)	Linear	Decimal	(1.23 format)
0	1	8388607	7FFFF
-100	10 ⁻⁵	83	53
-110	10 ^{-5.5}	26	1A
X	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)



• Address 0X20 : Top 8 Bits of DRC Energy Coefficient

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	DRC_ECT [7:0]	Top 8 Bits of DRC	Х	User programmed
		Energy Coefficient	00000000	1/256

• Address 0X21 : Bottom 8 Bits of DRC Energy Coefficient

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	DRC_ECB	Bottom 8 Bits of DRC	Х	User programmed
	[7:0]	Energy Coefficient	00010000	1/256

The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Energy coefficient is defined by 16-bit representation composed of registers controlled by I2C. The device addresses of DRC energy coefficient are 0X20, and 0X21. The following table shows the DRC energy coefficient numerical representation.

Cample Calculation for Dive Energy Coefficient						
DRC energy	dB	Linear	Decimal	Hex		
coefficient				(1.15 format)		
1	0	1	4095	FFF		
1/256	-48.2	1/256	16	10		
1/1024	-60.2	1/1024	4	4		
L	x	L=10 ^(x/20)	D=4095xL	H=dec2hex(D)		

 Address 0X22 : Top 8 Bits of Release Threshold for Dynamic Range Control (DRC) After AD82585 has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Release threshold is defined by 21-bit representation composed of registers controlled by I2C. The device addresses of release threshold are 0X22, 0X23, and 0X24.

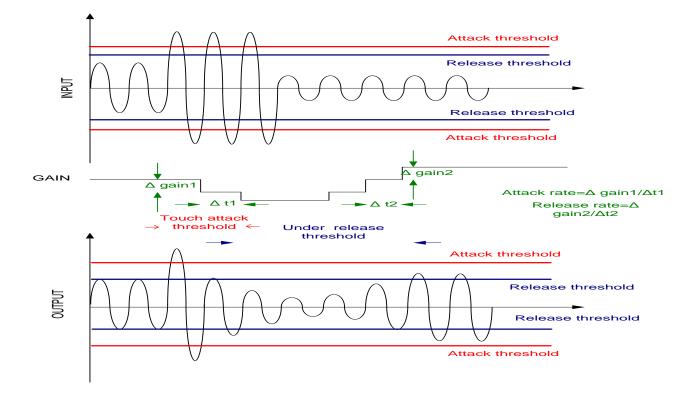
BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]	Х	Reserved		
B[4:0] RTT[4:0		Top 5 Bits of Release	Х	User programmed
	KTT[4.0]	Threshold	00000010	-6dB

• Address 0X23 : Middle 8 Bits of Release Threshold

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] RTM[7:		Middle 8 Bits of	Х	User programmed
	KTM[7.0]	Release Threshold	00000000	-6dB

• Address 0X24 : Bottom 8 Tits of Release Threshold

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]		Bottom 8 Bits of	Х	User programmed
	RTB[7:0]	Release Threshold	00000000	-6dB


The following table shows the attack and release threshold's numerical representation.

Dowor	٩D	Linear	Desimal	Hex
Power	dB		Decimal	(2.19 format)
(PVDD^2)/R	0	1	524288	80000
(PVDD^2)/2R	-3	0.5	262144	40000
(PVDD^2)/4R	-6	0.25	131072	20000
((PVDD^2)/R)*L	х	L=10 ^(x/10)	D=524288xL	H=dec2hex(D)

Sample Calculation for Attack and Release Threshold

To best illustrate the dynamic range control function, please refer to the following figure.

Package Dimensions

• E-LQFP 48L (7x7mm)

Crumb al	Dimension in mm		
Symbol	Min	Max	
А		1.60	
A1	0.05	0.15	
b	0.17	0.27	
С	0.09	0.20	
D	6.90	7.10	
D1	8.90	9.10	
E	6.90	7.10	
E1	8.90	9.10	
е	0.50 BSC		
L	0.45	0.75	

Exposed pad

	Dimension in mm		
	Min	Max	
D2	4.31	5.21	
E2	4.31	5.21	

Revision History

Revision	Date	Description
0.1	2012.08	Original
0.2	2013.01	 Fade-out and fade-in time formula revised. Adding DTC explanation at address 0X18. Modifying the description of Available Package.
1.0	2015.03.10	Revise version to 1.0
1.1	2016.06.29	Add packing code in ordering information table
1.2	2016.08.12	 Modify ordering information Add product ID : AD82585-LG48NAR
1.3	2016.08.25	 Update address 0X02, register table B[4] content. Modify the description of Address 0X02.
1.4	2017.07.31	Update power off sequence.
1.5	2018.05.18	 Modify the description of Address 0x02 Update the table of Address 0x02

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.