

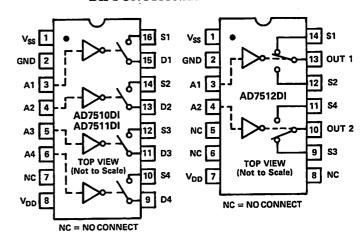
DI CMOS Protected Analog Switches

AD7511

FEATURES

Latch-Proof

Overvoltage-Proof: ±25V


Low R_{ON} : 75 Ω

Low Dissipation: 3mW
TTL/CMOS Direct Interface
Silicon-Nitride Passivated
Monolithic Dielectrically-Isolated CMOS
Standard 14-/16-Pin DIPs and

20-Terminal Surface Mount Packages

AD7510 and AD7512 are obsolete

DIP FUNCTIONAL DIAGRAMS

GENERAL DESCRIPTION

The AD7510DI, AD7511DI and AD7512DI are a family of latch proof dielectrically isolated CMOS switches featuring overvoltage protection up to ± 25 V above the power supplies. These benefits are obtained without sacrificing the low "ON" resistance (75 Ω) or low leakage current (500pA), the main features of an analog switch.

The AD7510DI and AD7511DI consist of four independent SPST analog switches packaged in either a 16-pin DIP or a 20-terminal surface mount package. They differ only in that the digital control logic is inverted. The AD7512DI has two independent SPDT switches packaged either in a 14-pin DIP or a 20-terminal surface mount package.

Very low power dissipation, overvoltage protection and TTL/CMOS direct interfacing are achieved by combining a unique circuit design and a dielectrically isolated CMOS process. Silicon nitride passivation ensures long term stability while monolithic construction provides reliability.

The AD7510 and AD7512 are no longer available.

CONTROL LOGIC

AD7510DI: Switch "ON" for Address "HIGH"
AD7511DI: Switch "ON" for Address "LOW"

AD7512DI: Address "HIGH" makes S1 to Out 1 and S3 to

Out 2

AD7511* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS •

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

• AD7511: DI CMOS Protected Analog Switches Data Sheet

DESIGN RESOURCES 🖵

- AD7511 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all AD7511 EngineerZone Discussions.

SAMPLE AND BUY 🖳

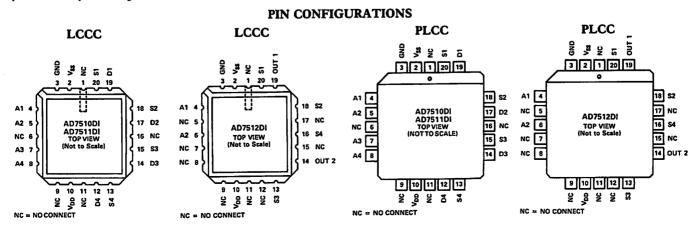
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.


This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

-SPECIFICATIONS

 $(V_{DD} = +15V, V_{SS} = -15V, unless otherwise noted.)$

INDUSTRIAL VERSION (K)							
PARAMETER	MODEL	VERSION	+25°C (N, P, Q)	0 to +70°C (N, P) -25°C to +85°C (Q)	TEST CONDITIONS		
ANALOG SWITCH							
R _{ON} ¹	All	K	75 Ω typ, 100 Ω max	175 Ω max	$-10V \le V_D \le +10V$		
R _{ON} vs V _D (V _S)	All	K	20% typ		I _{DS} = 1.0mA		
R _{ON} Drift	Ail	K	+0.5%/°C typ				
R _{ON} Match	All	K	1% typ		$V_{D} = 0$, $I_{DS} = 1.0 \text{mA}$		
R _{ON} Drift Match	All	K	0.01%/°C typ				
ID (IS)OFF1	All	К	0.5nA typ, 5nA max	500nA max	$V_D = -10V$, $V_S = +10V$ and $V_D = +10V$, $V_S = -10V$		
ID (IS)ON1	All	К	10nA max		$V_S = V_D = +10V$ $V_S = V_D = -10V$		
I _{OUT} 1	AD7512DI	К	15nA max	1500nA max	$V_{S1} = V_{OUT} = \pm 10V$, $V_{S2} = \mp 10V$ and $V_{S2} = V_{OUT} = \pm 10V$, $V_{S1} = \mp 10V$		
DIGITAL CONTROL							
V _{INL} 1	All	K		0.8V max			
V _{INH} 1	All			2.4V min			
C _{IN}	All	K	7pF typ				
I _{INH} i	All	K	10nA max		$V_{IN} = V_{DD}$		
I _{INL} 1	All	K	10nA max		$V_{IN} = 0$		
DYNAMIC							
CHARACTERISTICS	AD7510DI	K	180ns typ		•		
^t on	AD7510D1	ĸ	350ns typ		V _{IN} = 0 to +3.0V		
t _{OFF}	AD7510DI	K	350ns typ		V _{IN} = 0 to +3.04		
OFF	AD7511DI	K	180ns typ				
^t TRANSITION	AD7512DI	K	300ns typ				
C _S (C _D)OFF	All	K	8pF typ				
C _S (C _D)ON	All	K	17pF typ		11 (11) 011		
$C_{DS}(C_{S-OUT})$	All	K	1pF typ		$V_D(V_S) = 0V$		
C _{DD} (C _{SS})	All	K	0.5pF typ				
COUT	AD7512DI	K	17pF typ				
Q _{ENJ}	All	К	30pC typ		Measured at S or D terminal. $C_L = 1000 \text{pF}$, $V_{IN} = 0$ to 3V, $V_D (V_S) = +10V$ to $-10V$		
POWER SUPPLY	<u></u>	· · · · · · · · · · · · · · · · · · ·			All disiral income - N		
l _{DD} 1	All	K	800μA max	800μA max	All digital inputs = V _{INH}		
I _{SS} 1	All	K	800μA max	800μA max			
I _{DD} 1	All	К	500μA max	500μA max	All digital inputs = V _{INL}		
I _{SS} 1	Ali	K	500μA max	500μA max			

Specifications subject to change without notice.

NOTES
100% tested.

EXTENDED VERSIONS (S, T)							
PARAMETER	MODEL	VERSION	+25°C	-55°C to +125°C	TEST CONDITIONS		
ANALOG SWITCH R _{ON} ¹	All	S, T	100Ω max	175Ω max	$-10V \leqslant V_{D} \leqslant +10V$ $I_{DS} = 1 \text{mA}$		
I _D (I _S) _{OFF} ¹	All	S, T	3nA max	200nA max	$V_D = -10V$, $V_S = +10V$ and $V_D = +10V$, $V_S = -10V$		
I _D (I _S)ON ¹	All	S, T	10		$V_S = V_D = +10V$ and $V_S = V_D = -10V$		
I _{OUT} ¹	AD7512D	oi S, T	9nA max	600nA max	$V_{S1} = V_{OUT} = \pm 10V$ $V_{S2} = \mp 10V$ and $V_{S2} = V_{OUT} = \pm 10V$ $V_{S1} = \mp 10V$		
DIGITAL CONTROL V _{INL} ¹	All	S, T		0.8V max			
V _{INH} 1,2	AD7510D AD7511D AD7512D AD7511D AD7512D	I T I T I S		2.4V min 2.4V min 2.4V min 3.0V min 3.0V min	•1		
I _{INH} 1 I _{INL}	All All	S, T S, T	10nA max 10nA max		$V_{IN} = V_{DD}$ $V_{IN} = 0$		
DYNAMIC CHARACTERISTICS							
t _{ON} ³ t _{OFF} ³ t _{TRANSITION} ³	AD7510D AD7511D AD7510D AD7511D AD7512D	I S, T I S, T I S, T	1.0μs max 1.0μs max 1.0μs max 1.0μs max 1.0μs max		$V_{IN} = 0 \text{ to } +3V$		
POWER SUPPLY IDD1 ISS1	All All	S, T · S, T		800μA max 800μA max	All digital inputs = V _{INH}		
I _{DD} I _{SS}	All All	S, T S, T		500μA max 500μA max	All digital inputs = V _{INL}		

ADCOLUTE MANIMUM DATINGS+

ABSOLUTE MAXIMUM RATINGS*									
V _{DD} to GND									
V _{SS} to GND									
Overvoltage at $V_D(V_S)$									
(1 second surge) V _{DD} +25V									
or $V_{SS} - 25V$									
(Continuous)									
or $V_{SS} - 20V$									
or 20mA, Whichever Occurs First									
Switch Current (I _{DS} , Continuous) 50mA									
Switch Current (I _{DS} , Surge)									
1ms Duration, 10% Duty Cycle 150mA									
Digital Input Voltage Range $\dots \dots 0V$ to $V_{DD} + 0.3V$									
Power Dissipation (Any Package)									
Up to +75°C									

Lead Temperature (Soldering, 10sec)			
Storage Temperature	•		-65°C to $+150^{\circ}\text{C}$
Operating Temperature			
Commercial (KN, KP Versions) .			0 to $+70^{\circ}$ C
Industrial (KQ Versions)			-25°C to $+85$ °C
Extended (SQ, TQ, SE, TE Version			

^{*}Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION .

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

NOTES
1 100% tested.

 $^{^{2}}$ A pullup resistor, typically 1-2k Ω is required to make AD7511DISQ and AD7512DISQ TTL compatible.

³Guaranteed, not production tested.

Specifications subject to change without notice.

—Circuit Description

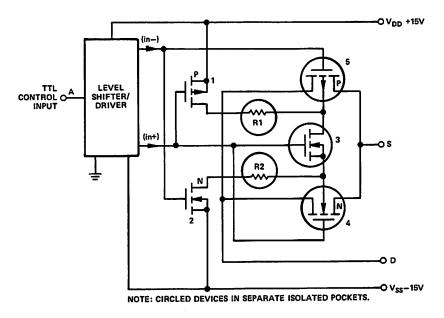


Figure 1. Typical Output Switch Circuitry of AD7510DI Series

CIRCUIT DESCRIPTION

CMOS devices make excellent analog switches; however, problems with overvoltage and latch-up phenomenon necessitated protection circuitry. These protection circuits, however, either caused degradation of important switch parameters such as R_{ON} or leakage, or provided only limited protection in the event of overvoltage.

The AD7510DI series switches utilize a dielectrically isolated CMOS fabrication process to eliminate the four-layer substrate found in junction-isolated CMOS, thus providing latch-free operation.

A typical switch channel is shown in Figure 2. The output switching element is comprised of device numbers 4 and 5. Operation is as follows: for an "ON" switch, (in+) is V_{DD} and (in-) is V_{SS} from the driver circuits. Device numbers 1 and 2 are "OFF" and number 3 in "ON". Hence, the backgates of the P- and N-channel output devices (numbers 4 and 5) are tied together and floating. The circled devices are located in separate dielectrically isolated pockets. Floating the output switch backgates with the signal input increases the effective threshold voltage for an applied analog signal, thus providing a flatter R_{ON} versus V_{S} response.

For an "OFF" switch, device number 3 is "OFF," and the backgates of devices 4 and 5 are tied through $1k\Omega$ resistors (R1 and R2) to the respective supply voltages through the "ON" devices 1 and 2.

If a voltage is applied to the S or D (OUT) terminal which exceeds $V_{\rm DD}$ or $V_{\rm SS}$, the S- or D-to-backgate diode is forward biased; however, R1 and R2 provide current limiting action to the supplies.

An equivalent circuit of the output switch element in Figure 3 shows that, indeed, the $1k\Omega$ limiting resistors are in series with the backgates of the P- and N-channel output devices – not in series with the signal path between the S and D terminals.

It is possible to turn on an "OFF" switch by applying a voltage in excess of $V_{\rm DD}$ or $V_{\rm SS}$ to the S or D terminal. If a positive stress voltage is applied to the S or D terminal which exceeds $V_{\rm DD}$ by a threshold, then the P-channel (device 5) will turn on creating a low impedance path between the S and D terminals. A similar situation exists for negative stress voltages which exceed $V_{\rm SS}$. In this case the N-channel provides the low impedance path between the S and D terminals. The limiting factor on the overvoltage protection is the power dissipation of the package and is $\pm 20 \rm V$ continuous (or $20 \rm mA$ whichever occurs first) above the supply voltages.

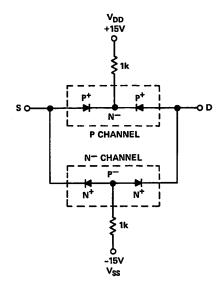
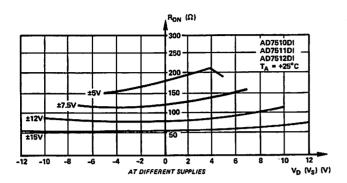
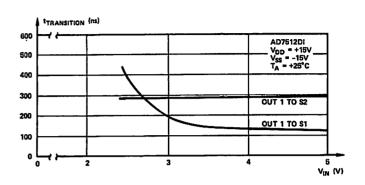
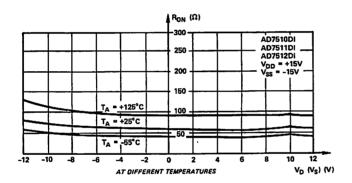
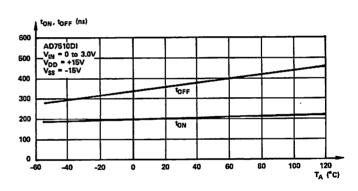
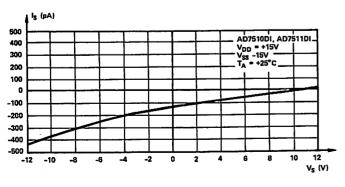
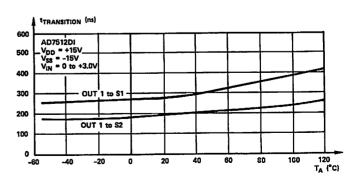




Figure 2. AD7510DI Series Output Switch Diode Equivalent Circuit

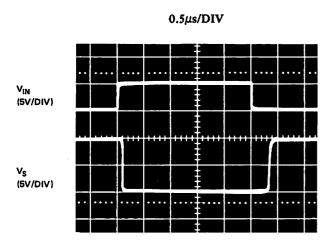

Typical Performance Characteristics—

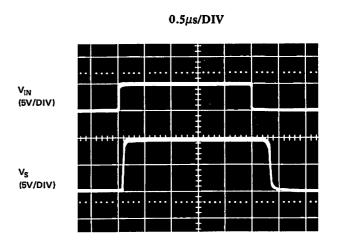

RON as a Function of VD (VS)


trransition as a Function of Digital Input Voltage

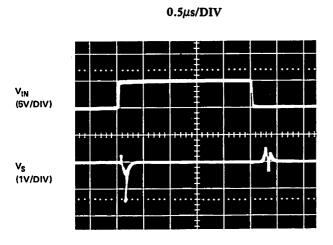

 R_{ON} as a Function of V_D (V_S)

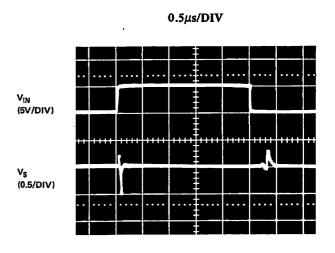
ton, toff as a Function of Temperature


Is, (ID)OFF vs Vs

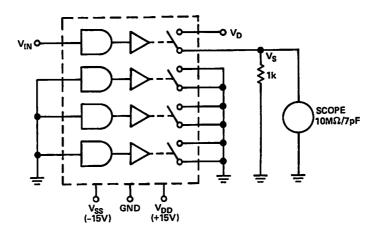

tTRANSITION as a Function of Temperature

TYPICAL SWITCHING CHARACTERISTICS

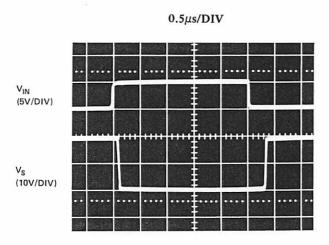

AD7510DI, AD7511DI


Switching Waveforms for $V_D = -10V$

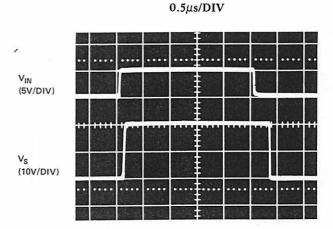
Switching Waveforms for $V_D = +10V$



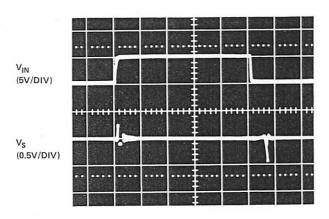
Switching Waveforms for $V_D = Open$



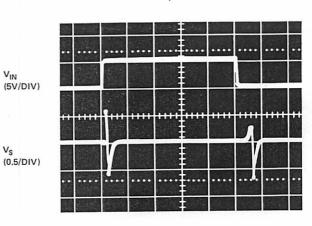
Switching Waveforms for $V_D = 0V$

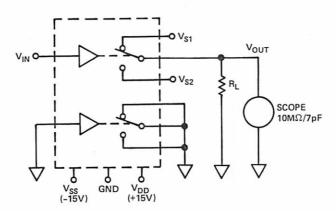

AD7510DI, AD7511DI TEST CIRCUIT

AD7512DI



Switching Waveforms for $V_{S1} = -10V$, $V_{S2} = +10V$, $R_L = 1k$

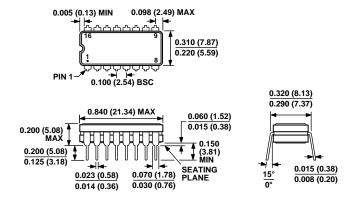

Switching Waveforms for $V_{S1} = +10V$, $V_{S2} = -10V$, $R_L = \infty$


Switching Waveforms for V_{S1} and $V_{S2} = 0V$, $R_L = \infty$

$0.5 \mu s/DIV$

Switching Waveforms for V_{S1} and V_{S2} = Open, R_L = 1k

AD7512DI TEST CIRCUIT



AD7511

TERMINOLOGY

Ron	Ohmic resistance between terminals D and S.	$C_{DD}(C_{SS})$	Capacitance between terminals D(S) of any		
R _{ON} Drift Match	Difference between the R_{ON} drift of any two switches.		two switches. (This will determine the cross coupling between switches vs. frequency.)		
R _{ON} Match	Difference between the R _{ON} of any two switches.	ton .	Delay time between the 50% points of the digital input and switch "ON" condition.		
$I_D(I_S)_{OFF}$	Current at terminals D or S. This is a leakage current when the switch is "OFF".	toff	Delay time between the 50% points of the digital input and switch "OFF" condition.		
I _D (I _S) _{ON}	Leakage current that flows from the closed switch into the body. (This leakage will	t _{TRANSITION}	Delay time when switching from one address state to another.		
	show up as the difference between the	V_{INL}	Maximum input voltage for a logic low.		
	current I_D going into the switch and the outgoing current I_S .)	V_{INH}	Minimum input voltage for a logic high.		
		$I_{INL}(I_{INH})$	Input current of the digital input.		
$V_D(V_S)$	Analog voltage on terminal D (S).	C _{IN}	Input capacitance to ground of the digital		
$C_S(C_D)$	Capacitance between terminal S(D) and		input.		
	ground. (This capacitance is specified for the switch open and closed.)	V_{DD}	Most positive voltage supply.		
C_{DS}	Capacitance between terminals D and S.	V_{SS}	Most negative voltage supply.		
	(This will determine the switch isolation	I_{DD}	Positive supply current.		
	over frequency.)	I _{ss}	Negative supply current.		

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 3. 16-Lead Ceramic Dual In-Line Package [CERDIP] (Q-16) Dimensions shown in inches and (millimeters)

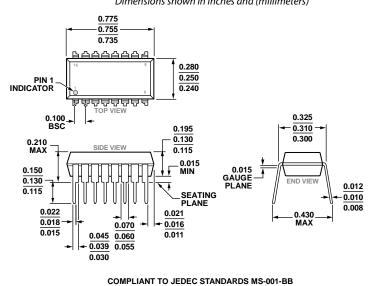


Figure 4. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-16) Dimensions shown in inches

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option	
AD7511DIJN	0°C to 70°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16	
AD7511DIJNZ	0°C to 70°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16	
AD7511DIKNZ	0°C to 70°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16	
AD7511DIKQ	−25°C to +85°C	16-Lead Ceramic Dual In-Line Package [CERDIP]	Q-16	
AD7511DISQ/883B	−55°C to +125°C	16-Lead Ceramic Dual In-Line Package [CERDIP]	Q-16	

¹ Z = RoHS Compliant Part.

² AD7511DISQ/883B is a MIL-STD-883, Class B, processed part.

AD7511

REVISION HISTORY

12/2016—Rev. A to Rev. B	
Added AD7510 and AD7512 Obsolete Note]
Updated Outline Dimensions	9
Changes to Ordering Guide	9

