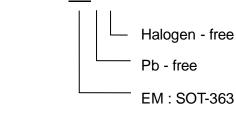
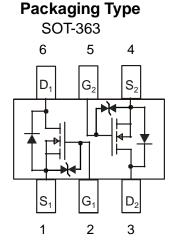


Dual N-Channel Enhancement Mode Field Effect Transistor

Description

The ACE4922B is the Dual N-Channel enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance and provide superior switching performance.


These devices are particularly suited for low voltage applications such as notebook computer power management and other battery powered circuits where high-side switching, low in-line power loss, and resistance to transients are needed.


APPLICATIONS

- Low On-Resistance
- Fast Switching Speed
- Low-voltage drive
- Easily designed drive circuits
- Pb-Free Package is available. The suffix G means Pb-free package
- ESD Protected : 2000V

Ordering information

Dual N-Channel Enhancement Mode Field Effect Transistor

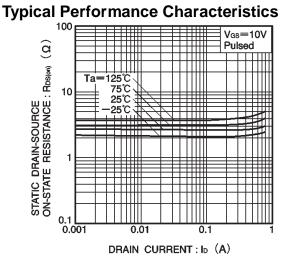
Absolute Maximum Ratings

Parameter		Symbol	Max	Unit	
Drain-Source Voltage		V_{DSS}	60	V	
Gate-Source Voltage			±20	V	
Drain Current	Continuous	I _D	115	mA	
	Pulsed	I _{DP} *1	800		
Reverse Drain Current	Continuous	I _{DR}	115	mA	
	Pulsed	I _{DR} *1	800		
Total Power Dissipation		P _d *2	225	mW	
Channel Temperature		Tch	150	°C	
Storage Temperature Range		Tstg	-55 to150	°C	

Note:

1. Pw \leq 10µs, Duty cycle \leq 1 % $^{\circ}$

2. When mounted on a 1*0.75*0.062 inch glass epoxy board \circ


Electrical Characteristics T_A =25 $^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
OFF CHARACTERISTICS(Note 2)									
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	VGS=0V, ID=10µA	60			V			
Zero Gate Voltage Drain Current	I _{DSS}	VDS=60V, VGS=0V			1.0	uA			
Gate-source Leakage	I _{GSS}	VGS=±20V, VDS=0V			±10	nA			
ON CHARACTERISTICS(Note 2)									
Gate Threshold Voltage	V _{GS(th)}	VDS=VGS , ID= 250uA	1.0	1.85	2.5	V			
Static Drain-Source On-Resistance	R _{DS(ON)}	VGS=10V, ID=0.5A			7.5	Ω			
		VGS=5V, ID=0.05A			7.5				
Forward transfer admittance	g fs	VDS=10V, ID=0.2A	80			S			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C _{iss}			25	50				
Output Capacitance	C _{oss}	VDS=25V VGS=0V f=1.0MHz		10	25	pF			
Reverse Transfer Capacitance	C _{rss}			3.0	5.0				
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	T _{d(on)}	ID=0.2A,VDD=30V,		12	20				
Turn-Off Delay Time	T _{d(off)}	VGS=10V,RL=150Ω,RG=10Ω		20	30	ns			

Note: Pw $\ \leq \ 300 \ \mu s$, Duty cycle $\ \leq \ 1\%$

Fig.1 Static drain-source on-state resistance VS drain current (I)

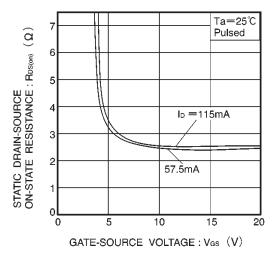
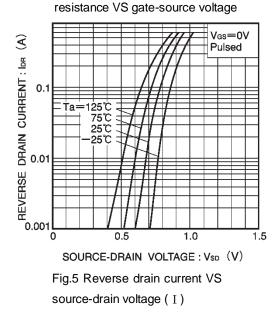



Fig.3 Static drain-source on-state

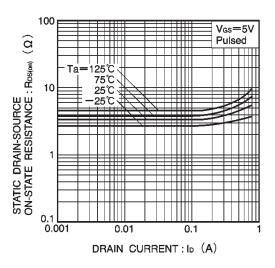


Fig.2 Static drain-source on-state resistance VS drain current ($\rm II$)

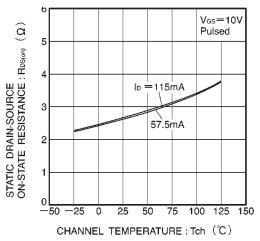
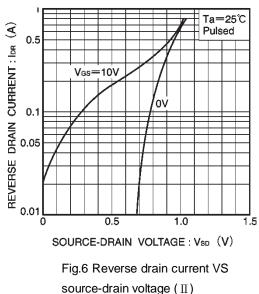



Fig.4 Static drain-source on-state resistance VS channel temperature

Dual N-Channel Enhancement Mode Field Effect Transistor

VS drain current

drain-source voltage

Electrical characteristic curves

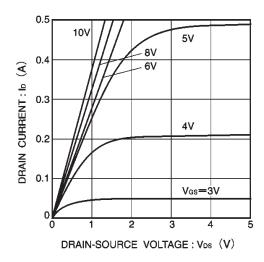
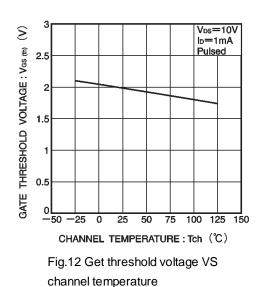


Fig.10 Typical output characteristics



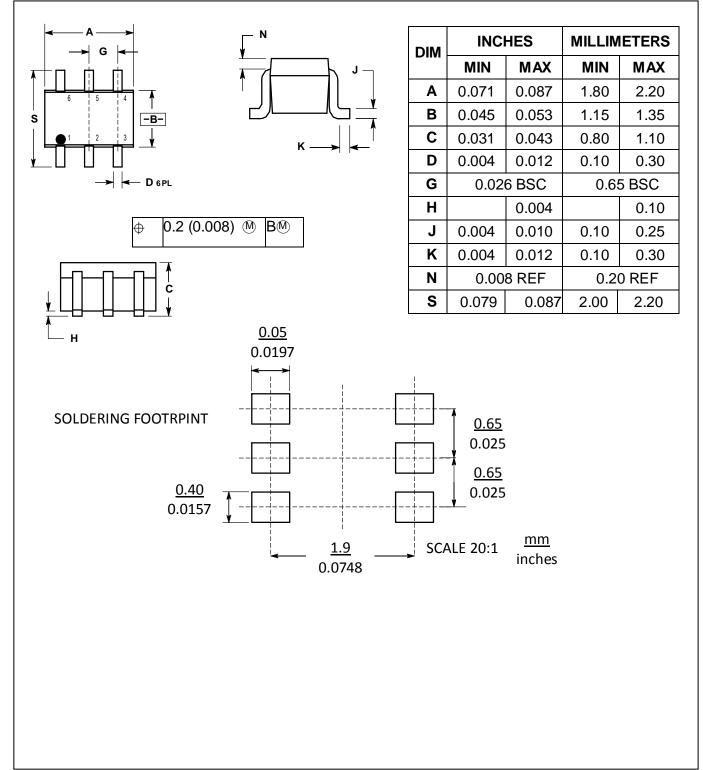


Fig.11 Typical transfer characteristics

Dual N-Channel Enhancement Mode Field Effect Transistor

Packing Information SOT-363

ACE4922BEM Dual N-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/