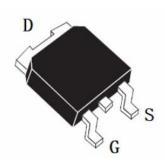


P-Channel Enhancement Mode Field Effect Transistor

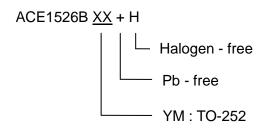
Description

ACE1526B uses advanced trench technology to provide excellent R_{DS(ON)}. This device particularly suits for low voltage application such as power management of desktop computer or notebook computer power management, DC/DC converter.

Features


- VDS(V) = -30V
- $ID = -6A (VGS = -10V) RDS(ON) < 75m\Omega (VGS = -10V)$
- $RDS(ON) < 80m\Omega (VGS = -4.5V)$

Absolute Maximum Ratings


Absolute maximum ratings									
Parameter	Symbol	Max	Unit						
Drain-Source Voltage		V_{DSS}	-30	V					
Gate-Source Voltage		V_{GSS}	±20	V					
Drain Current (Continuous) *AC	T _A =25°C	ı	-6	- A					
	T _A =70°C	I _D	-4.8						
Drain Current (Pulse) *B	IDM	-30	Α						
Power Dissipation	T _A =25°C	P_D	50	W					
1 ower bissipation	T _A =70°C	י ט	25						
Operating Temperature/ Storage Temperature		$T_{J}/\!/T_{STG}$	-55~150	$^{\circ}\!\mathbb{C}$					

Packaging Type

TO-252

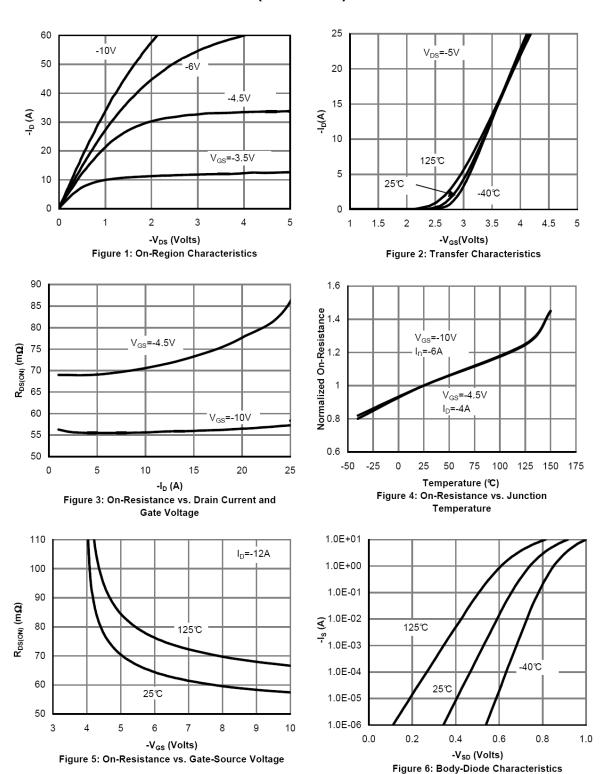
Ordering information

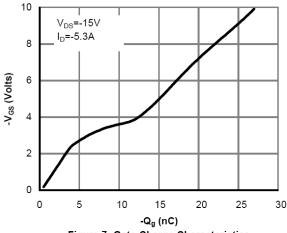
P-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics T_A=25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Static									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250uA	-30			V			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V, V _{GS} =0V			-1	uA			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{GS}=V_{GS}$, $I_{DS}=-250uA$	-1	-1.4	-6	V			
Gate Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$			100	nA			
Drain-Source	D	V _{GS} =-10V, I _D =-6A		55	75				
On-Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-3A		68	80	mΩ			
Forward Transconductance	g FS	V _{DS} =-10V,I _D =-5.3A		10		S			
Diode Forward Voltage	V_{SD}	I _S =-1.7A, V _{GS} =0V		-0.82	-1.2	V			
		Switching							
Total Gate Charge	Qg			28	36.4	nC			
Gate-Source Charge	Qgs	V_{GS} = -10V, V_{DS} =-15V, I_{D} = -5.3A		3	3.9				
Gate-Drain Charge	Qgd			7	9.1				
Turn-on Delay Time	$t_{d(on)}$			9	18	ns			
Turn-on Rise Time	t _r	V _{GS} =-10V,V _{DS} =-15V, R _L =15Ω,		15	30				
Turn-off Delay Time	$t_{\rm d(off)}$	R_{GEN} =6 Ω		75	150				
Turn-off Fall Time	t _f			40	80				
		Dynamic							
Input Capacitance	C _{iss}			745		_ _ pF			
Output Capacitance	C _{oss}	V_{GS} =0V, V_{DS} =-15V, f=1MHz		440					
Reverse Transfer Capacitance	C _{rss}			120					

Note:


- 1. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.
- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.


P-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics (N-Channel)

P-Channel Enhancement Mode Field Effect Transistor

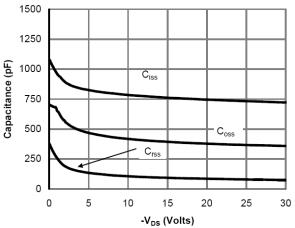


Figure 8: Capacitance Characteristics

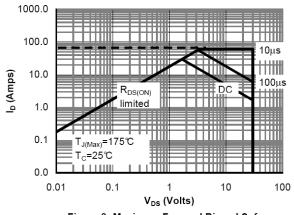


Figure 9: Maximum Forward Biased Safe Operating Area

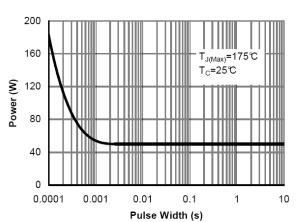


Figure 10: Single Pulse Power Rating Junction-to-Case

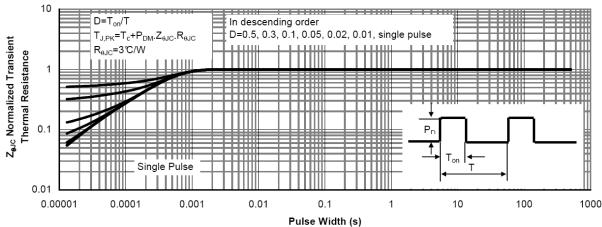
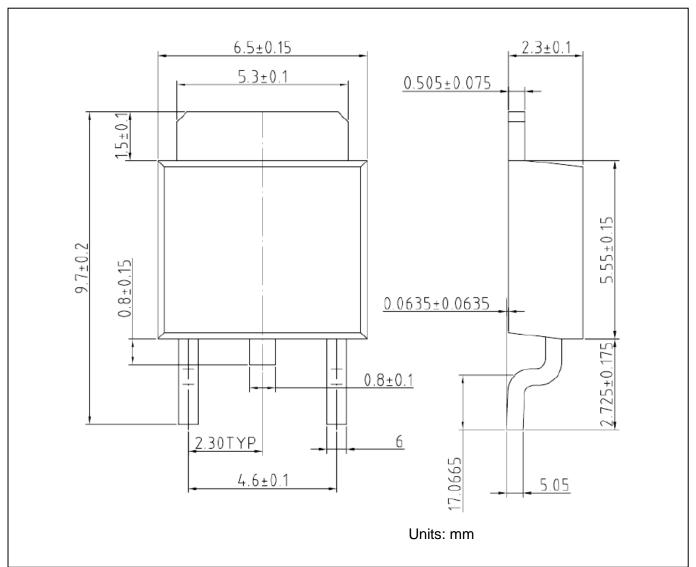



Figure 11: Normalized Maximum Transient Thermal Impedance

Packing Information TO-252

ACE1526B

P-Channel Enhancement Mode Field Effect Transistor

P-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/