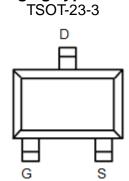
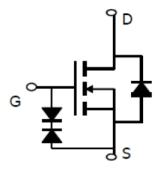


N-Channel Enhancement Mode Field Effect Transistor with ESD Protection

Description

The ACE1512E uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. They offer operation over a wide gate drive range from 1.8V to 8V. It is ESD protected.


Features


- V_{DS} (V)=20V
- I_D=6.5A (V_{GS}=4.5V)
- RDS(ON)<21m Ω (V_{GS}=4.5V)
- RDS(ON)<25m Ω (V_{GS}=2.5V)
- RDS(ON)<33m Ω (V_{GS}=1.8V)
- ESD Protected: 2000V

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Unit	
Drain-Source Voltage		V_{DSS}	20	٧	
Gate-Source Voltage		V_{GSS}	±8	V	
Drain Current (Continuous)*AC	T _A =25°C		6.5	Α	
	T _A =70°C	l _D	5.2	A	
Drain Current (Pulsed)*B		I _{DM}	24	Α	
Power Dissipation	T _A =25°C	В	1	W	
	T _A =70°C	P _D	0.64		
Operating temperature / storage temperature		T _J /T _{STG}	-55~150	$^{\circ}\!\mathbb{C}$	

Packaging Type

FICE

ACE1512E

N-Channel Enhancement Mode Field Effect Transistor with ESD Protection

Ordering information

ACE1512EBMS + H	
	Halogen - free
	Pb - free
	BMS : TSOT-23-3

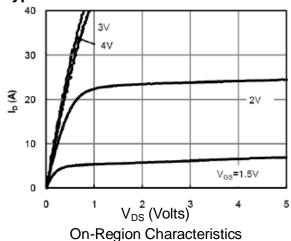
Electrical Characteristics

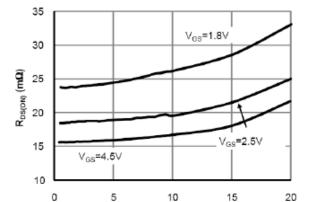
T_A=25°C, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static							
Drain-source breakdown voltage	$V_{(BR)DSS}$	V_{GS} =0V, I_D =250 μ A	20			V	
Zero gate voltage drain current	I _{DSS}	V_{DS} =20V, V_{GS} =0V			1	μΑ	
Gate threshold voltage	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{DS}=250\mu A$	0.4	0.52	1	V	
Gate leakage current	I _{GSS}	$V_{GS}=\pm 8V$, $V_{DS}=0V$			10	μΑ	
		V_{GS} =4.5 V , I_D =6.5 A		16.2	21	mΩ	
Drain-source on-state resistance	R _{DS(ON)}	V_{GS} =2.5V, I_{D} =5.5A		19.4	25		
		V_{GS} =1.8V, I_{D} =5A		24.4	33		
Forward transconductance	g FS	V_{DS} =5V, I_{D} =6.5A		13		S	
Diode forward voltage	V_{SD}	I_{SD} =2.5A, V_{GS} =0V		0.67	1.6	>	
Maximum body-diode continuous current	Is				2.5	Α	
Switching							
Total gate charge	Q_g	V _{GS} =4.5V, V _{DS} =10V, I _D =8A		13.8	17.94	nC	
Gate-source charge	Q_{gs}			4.1	5.33		
Gate-drain charge	Q_gd			5.6	7.28		
Turn-on delay time	t _{d(on)}			6.2	12.4		
Turn-on rise time	t _r	V_{GS} =5V, V_{DS} =10V R_L =1.5 Ω , R_{GEN} =3 Ω		12.7	25.4	ns	
Turn-off delay time	t _{d(off)}			51.7	103.4		
Turn-off fall time	t _f			16	32		
Dynamic							
Input capacitance	C _{iss}	V _{GS} =0V, V _{DS} =10V, f=1MHz		1160			
Output capacitance	C _{oss}			104		pF	
Reverse transfer capacitance	C_{rss}			29			

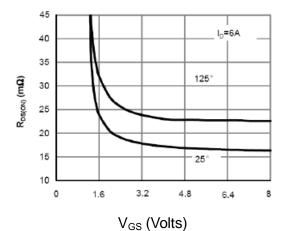
Note:

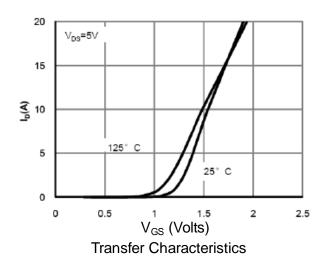
A: The value of R0JA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The value in any given application depends on the user's specific board design.

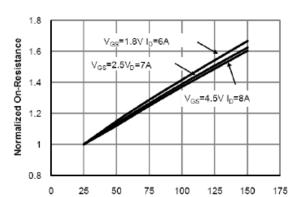

B: Repetitive rating, pulse width limited by junction temperature.


C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

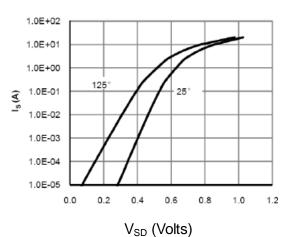
N-Channel Enhancement Mode Field Effect Transistor with ESD Protection


Typical Performance Characteristics



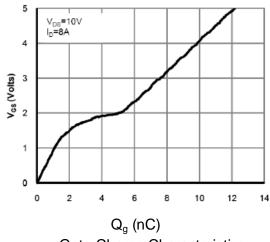

On-Resistance vs. Drain Current and Gate Gate Voltage

 $I_D(A)$

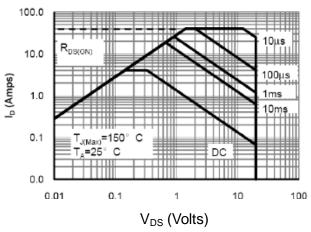


On-Resistance vs. Gate-Source Voltage

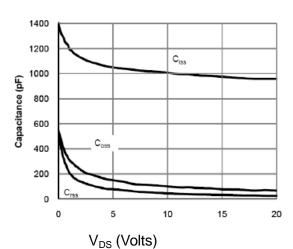
Temperature (^OC)
On-Resistance vs. Junction Temperature

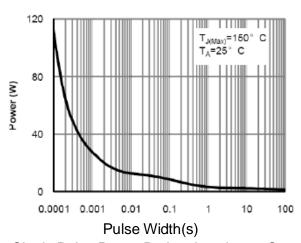


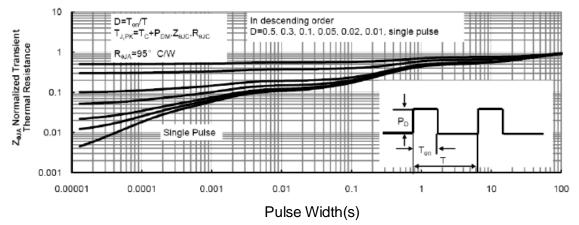
Body-Diode Characteristics



N-Channel Enhancement Mode Field Effect Transistor with ESD Protection

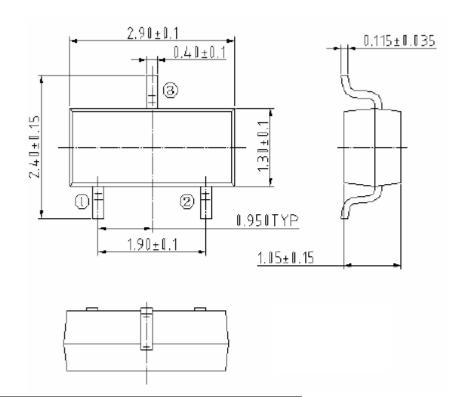

Typical Performance Characteristics


Gate-Charge Characteristics


Maximum Forward Biased Safe Operating Area

Capacitance Characteristics

Single Pulse Power Rating Junction-to-Case


Normalized Maximum Transient Thermal Impedance

N-Channel Enhancement Mode Field Effect Transistor with ESD Protection

Packing Information

TSOT-23-3

CVMDOLC	DIMENSIONS IN MILLIMETERS			
SYMBOLS	MIN	NOM	MAX	
Α	0.935	0.95	1.10	
A1	0.01		0.10	
A2	0.85	0.90	0.925	
В	0.30	0.40	0.50	
С	0.10	0.15	0.25	
D	2.70	2.90	3.10	
E	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
е	0.95BSC			
e1	1.90BSC			
L	0.30 0.40		0.60	
L1	0.60REF			
L2	0.25BSC			
R	0.10			
Θ	0°	4°	8°	
Θ1	7°NOM			

N-Channel Enhancement Mode Field Effect Transistor with ESD Protection

nit: mm

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/