AiT Semiconductor Inc.

# DESCRIPTION

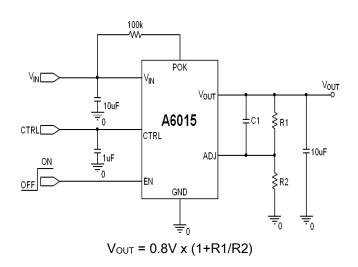
The A6015 is a high performance positive voltage regulator designed for use in applications requiring very low Input voltage and very low dropout voltage at up to 1.5A. It operates with a  $V_{IN}$  as low as 1.1V and  $V_{DD}$  voltage 3V with output voltage programmable as low as 0.8V. The significant feature includes ultra low dropout, ideal for applications where  $V_{OUT}$  is very close to  $V_{IN}$ . Additionally, there is an enable pin to further reduce power dissipation while shutdown.

The A6015 provides excellent regulation over variations in line, load and temperature. And provides a power OK signal to indicate if the voltage level of  $V_{OUT}$  reaches 90% of its rating value.

The A6015 is available in PSOP8 package.

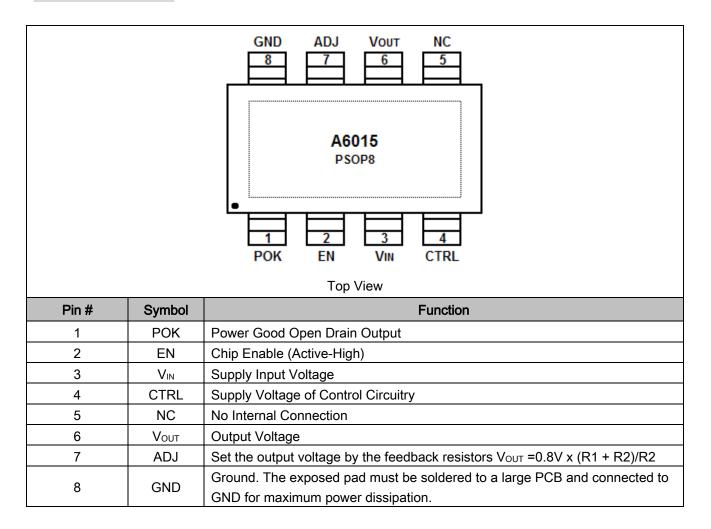
## ORDERING INFORMATION

| Package Type                            | Part Number                               |            |  |
|-----------------------------------------|-------------------------------------------|------------|--|
| PSOP8                                   | MP8                                       | A6015MP8R  |  |
|                                         |                                           | A6015MP8VR |  |
|                                         | R: Tape & Reel<br>V: Halogen free Package |            |  |
| Note                                    |                                           |            |  |
|                                         | ADJ only                                  |            |  |
| AiT provides all RoHS products          |                                           |            |  |
| Suffix " V " means Halogen free Package |                                           |            |  |


## FEATURES

- Maximum 1.5A Low-Dropout Voltage Regulator
- High Accuracy Output Voltage ±1.5%
- Typically 150mV Dropout at 1.5A
- Power Good Output
- Output Voltage Pull Low Resistance when Disable
- Thermal and Over Current Protection
- Available in PSOP8 Package

## APPLICATION


- Front Side Bus V<sub>TT</sub> (1.2V/1.5A)
- NoteBook PC Applications
- Motherboard Applications

## TYPICAL APPLICATION





## PIN DESCRIPTION



## THERMAL INFORMATION

| Parameter                                           | Symbol          | Max  | Units |
|-----------------------------------------------------|-----------------|------|-------|
| Thermal Resistance (Junction to Ambient)            | θյΑ             | 90   | °C/W  |
| Thermal Resistance (Junction to Case)               | θ <sub>JC</sub> | 11   | °C/W  |
| Internal Power Dissipation (@ $T_A = 25^{\circ}C$ ) | PD              | 1100 | mW    |



# ABSOLUTE MAXIMUM RATINGS

| V <sub>IN</sub> , CTRL, Input Voltage | 6.0V                        |
|---------------------------------------|-----------------------------|
| Output Current                        | 1.5A                        |
| Output Pin Voltage                    | GND-0.3V to $V_{IN}$ + 0.3V |
| Lead Soldering Temperature (5 sec)    | 260°C                       |
| Storage Temperature                   | -65°C to 150°C              |
| ESD Rating                            | Class B                     |

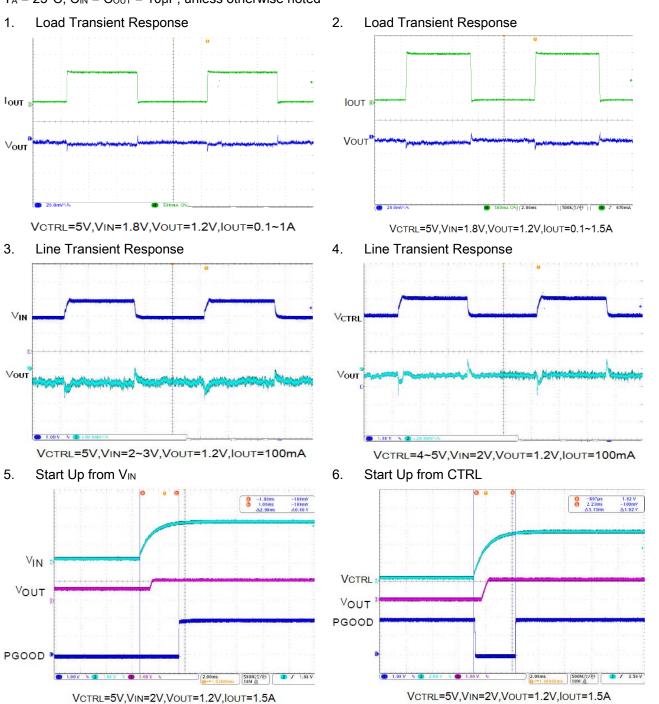
Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **RECOMMENDED OPERATING CONDITIONS**

| Maximum Supply Voltage     | 5.5V           |
|----------------------------|----------------|
| Junction Temperature Range | -40°C to 125°C |
| Operation Temperature      | -40°C to 85°C  |



# ELECTRICAL CHARACTERISTICS

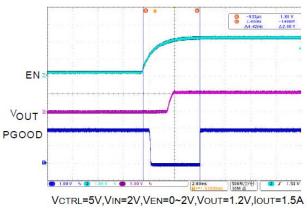

 $V_{IN} = V_{OUT} + 0.5V$ ,  $V_{CTRL} = V_{EN} = 5V$ ,  $T_A = 25^{\circ}C$ ,  $C_{IN} = C_{OUT} = 10\mu$ F, unless otherwise noted.

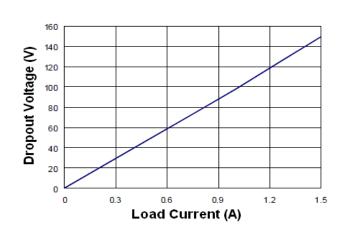
| Parameter                     | Symbol                 | Conditions                                                   | Min   | Тур. | Max   | Unit   |
|-------------------------------|------------------------|--------------------------------------------------------------|-------|------|-------|--------|
| V <sub>IN</sub> Input Voltage | VIN                    | V <sub>OUT</sub> = V <sub>REF</sub>                          | 1.1   | -    | 5.5   | V      |
| CTRL Input Voltage            | V <sub>CTRL</sub>      |                                                              | 3     | -    | 5.5   | V      |
| POR Threshold                 | VTH_CTRL               |                                                              | 2.5   | 2.7  |       |        |
|                               | VTH_VIN                |                                                              | 0.8   | 0.9  | -     | V      |
|                               | V <sub>Y HS_CTRL</sub> |                                                              |       | 0.4  |       | V      |
| POR Hysteresis                | VY HS_VIN              |                                                              |       | 0.5  |       |        |
| Quiescent Current             | la                     | I <sub>OUT</sub> = 0mA                                       | -     | 0.5  | 1.2   | mA     |
| CTRL Input Current in         | •                      | $\lambda = 0 \lambda$                                        | -     | _    | -     | uA     |
| Shutdown                      |                        | $V_{EN} = 0V$                                                |       | 5    |       |        |
| CTRL Input Current in         |                        | N/ 0)/                                                       |       |      |       |        |
| Shutdown                      | I <sub>SD_VIN</sub>    | $V_{EN} = 0V$                                                | -     | -    | 1     | uA     |
| Output Voltage Accuracy       | V <sub>OUT</sub>       | I <sub>OUT</sub> = 1mA to 1.5A                               | -1.5  | -    | 1.5   | %      |
| Current Limit                 | Іоит                   |                                                              | -     | 3    | -     | Α      |
| Short Current                 | ISHORT                 | V <sub>OUT</sub> = 0V                                        | -     | 1    | -     | А      |
| Feedback Voltage              | $V_{REF}$              | V <sub>OUT</sub> = V <sub>REF</sub>                          | 0.788 | 0.8  | 0.812 | V      |
| Feedback Leakage Current      | I <sub>REF</sub>       |                                                              | -     | -    | 20    | nA     |
| Dropout Voltage               | Vdrop                  | Iout = 1A                                                    |       | 100  |       |        |
|                               |                        | Ι <sub>ΟUT</sub> = 1.5Α                                      | -     | 150  | -     | mV     |
| Line Degulation               |                        | louт = 1mA,                                                  | 0.15  | 0.1  | 0.15  | %/V    |
| Line Regulation               | LNR                    | $V_{IN} = V_{OUT} + 0.5V$ to 5.5V                            | -0.15 |      |       |        |
| Load Pogulation               | LDR                    | $V_{IN} = V_{OUT} + 1V,$                                     | -2    | 0.2  | 2     | %      |
| Load Regulation               |                        | IOUT = 1mA to 1.5A                                           |       |      |       |        |
| VOUT Pull Low Resistor        | $R_PL$                 | V <sub>EN</sub> = 0V                                         | -     | 100  | -     | Ω      |
| Temperature Coefficient       | Tc                     | Iout = 1mA                                                   | -     | 40   | -     | ppm/°C |
| Over Temperature Shutdown     | OTS                    | Iout = 1mA                                                   | -     | 170  | -     | °C     |
| Over Temperature Hysteresis   | OTH                    | I <sub>OUT</sub> = 1mA                                       | -     | 40   | -     | °C     |
| Power Supply Ripple           |                        | f=100Hz                                                      | 65    |      | 40    |        |
| Rejection                     | PSRR                   | V <sub>PP</sub> = 200mV f=1kHz                               | -     | 60   | ] -   | dB     |
| EN Bias Current               | I <sub>EN</sub>        | $V_{EN} = V_{CTRL} = 5V$                                     | -     | 5    | -     | uA     |
| EN Input High Threshold       | VIH                    | $V_{IN}$ = 2.5V to 5V                                        | 1.5   | -    | -     | V      |
| EN Input Low Threshold        | VIL                    | $V_{IN}$ = 2.5V to 5V                                        | -     | -    | 0.3   | V      |
| POK Threshold Voltage         | $V_{\text{TH}_{OK}}$   | V <sub>REF</sub> Rising                                      | 90    | -    | 94    | %      |
| POK Hysteresis                | -                      |                                                              | 3     | 10   | -     | %      |
| POK Pull Low Voltage          | -                      | POK sinks 5mA Current                                        | -     | 0.2  | 0.4   | V      |
| POK Delay Time                | TDELAY                 | From $V_{REF}$ = $V_{TH_OK}$ to rising edge of the $V_{POK}$ | 1     | 2    | 4     | mS     |

NOTE: Output current is limited by  $P_D$ , maximum  $I_{OUT} = P_D / (V_{IN (MAX)} - V_{OUT})$ .

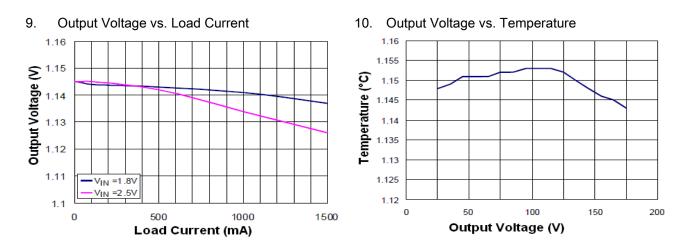


## TYPICAL PERFORMANCE CHARACTERISTICS





 $T_A = 25^{\circ}C$ ,  $C_{IN} = C_{OUT} = 10\mu F$ , unless otherwise noted

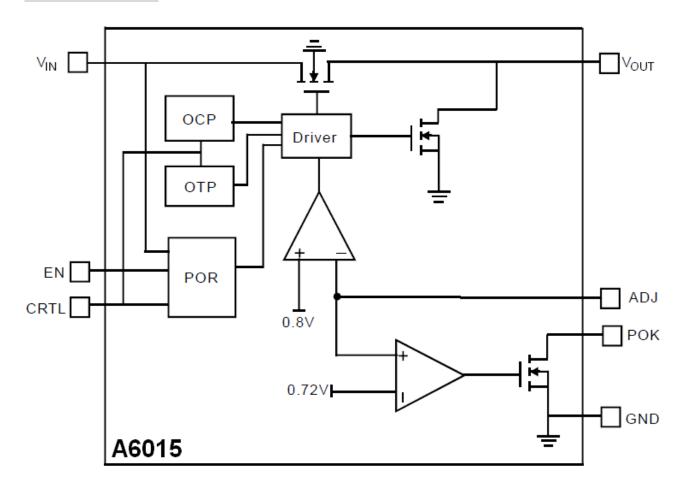



 $T_A = 25^{\circ}C$ ,  $C_{IN} = C_{OUT} = 10\mu F$ , unless otherwise noted.

7. Start Up from EN






Dropout Voltage vs. Load Current



8.



# **BLOCK DIAGRAM**





## DETAILED INFORMATION

### Capacitor Selection and Regulator Stability

Similar to any low dropout regulator, the external capacitors used with the A6015 must be carefully selected for regulator stability and performance.

A capacitor  $C_{IN}$  of more than  $10\mu$ F can be employed in the input pin, while there is no upper limit for the capacitance of  $C_{IN}$ . Please note that the distance between  $C_{IN}$  and the input pin of the A6015 should not exceed 0.5 inch. Ceramic capacitors are suitable for the A6015. Capacitors with larger values and lower ESR (equivalent series resistance) provide better PSRR and line-transient response.

The A6015 is designed specifically to work with low ESR ceramic output capacitors in order to save space and improve performance. Using an output ceramic capacitor whose value is >  $10\mu$ F with ESR >  $5m\Omega$ ensures stability.

### Shutdown Input Operation

The A6015 is shut down by pulling the EN input low, and is turned on by tying the EN input to CTRL or leaving the EN input floating.

### Input-Output (Dropout) Voltage

A regulator's minimum input-output voltage difference (or dropout voltage) determines the lowest usable supply voltage. The A6015 has a typical 150mV dropout voltage.

### **Current Limit and Short Circuit Protection**

The A6015 features a current limit, which monitors and controls the gate voltage of the pass transistor. The output current can be limited to 3A by regulating the gate voltage. The A6015 also has a built-in short circuit current limit.

### Thermal considerations

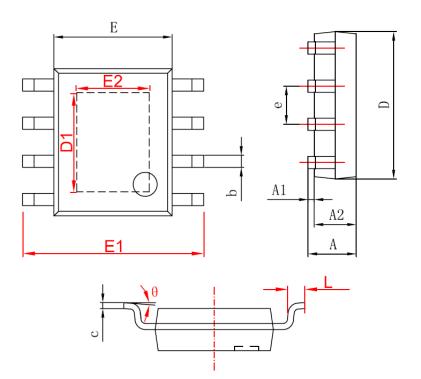
Thermal protection limits power dissipation in the A6015. When the junction temperature exceeds 170°C, the OTP (Over Temperature Protection) starts the thermal shutdown and turns the pass transistor off. The pass transistor resumes operation after the junction temperature drops below 130°C.



For continuous operation, the junction temperature should be maintained below 125°C. The power dissipation is defined as:

$$\mathsf{P}_{\mathsf{D}} = (\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}})^* \mathsf{I}_{\mathsf{O}} + \mathsf{V}_{\mathsf{IN}}^* \mathsf{I}_{\mathsf{GND}}$$

The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surrounding airflow and temperature difference between junction and ambient. The maximum power dissipation can be calculated by the following formula:


$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}})/\Theta_{\mathsf{JA}}$$

Where  $T_{J(MAX)}$  is the maximum allowable junction temperature 125°C,  $T_A$  is the ambient temperature and  $\theta_{JA}$  is the thermal resistance from the junction to the ambient.



# PACKAGE INFORMATION

Dimension in PSOP8 Package (Unit: mm)



| Symbol | Min        | Max   |  |
|--------|------------|-------|--|
| A      | 1.350      | 1.750 |  |
| A1     | 0.050      | 0.150 |  |
| A2     | 1.350      | 1.550 |  |
| b      | 0.350      | 0.49  |  |
| С      | 0.190      | 0.250 |  |
| D      | 4.800      | 5.000 |  |
| D1     | 2.280      | 3.300 |  |
| E      | 3.800      | 4.000 |  |
| E1     | 5.800      | 6.200 |  |
| E2     | 2.280      | 2.410 |  |
| е      | 1.270(BSC) |       |  |
| L      | 0.400      | 1.270 |  |
| θ      | 0°         | 8°    |  |



## IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.