

DESCRIPTION

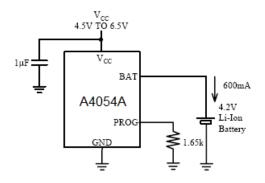
The A4054A is a complete constant current / constant voltage linear charger for single cell Lithium-Ion batteries. No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be programmed externally with a single resistor. The A4054A automatically terminates the charge cycle when the charge current drops to 1/10 the programmed value after the final float voltage is reached.

When the input supply (wall adapter or USB supply) is removed, the A4054A automatically enters a low current state, dropping the battery drain current to less than 2µA. The A4054A can be put into shutdown mode, reducing the supply current to 25µA. Other features include charge current monitor, under-voltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage. A4054A will check the battery voltage first, it will not start charging unless the battery voltage is below the auto-rechrage threshold.

ORDERING INFORMATION

The A4054A is available in SOT-25 packages.

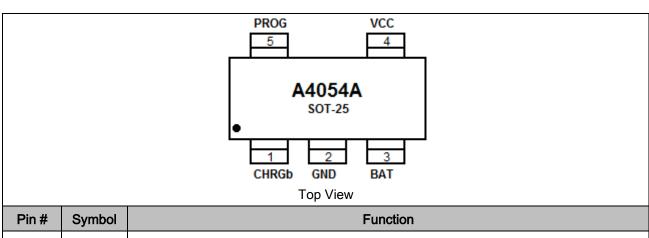
Package Type	Part Number		
SOT-25	E5	A4054AE5R	
501-25	EO	A4054AE5VR	
Note	R: Tape & Reel		
Note	V: Halogen free Package		
AiT provides all RoHS products			
Suffix "V" means Halogen free Package			


FEATURES

- Programmable Charge Current Up to 800mA
- No MOSFET, Sense Resistor or Blocking Diode Required
- Preset 4.2V Charge Voltage with ±1%
 Accuracy
- Charge Current Monitor Output for Gas Gauging
- Thermal Regulation Maximizes Charge Rate
 Without Risk of Overheating
- Charges Single Cell Li-lon Batteries Directly from USB Port
- Over-Voltage Protect
- Automatic Recharge
- Charge Status Output Pin
- C/10 Charge Termination
- 25μA Supply Current in Shutdown
- 2.9V Trickle Charge Threshold
- Soft-Start Limits Inrush Current
- Available in SOT-25 Packages

APPLICATION

- Cellular and Smart Phones
- Charging Docks and Cradles
- Blue Tooth Applications
- PDAs
- MP3/MP4/MP5 Players


TYPICAL APPLICATION

600mA Application Circuit

PIN DESCRIPTION

Pin#	Symbol	Function			
		Open-Drain Charge Status Output. When the battery is charging, the CHRGb pin is			
1 CHRGb		pulled low by an internal N-channel MOSFET. When the charge cycle is completed, a			
		weak pull-down of approximately $12\mu A$ is connected to the CHRGb pin, indicating an			
		"AC present" condition. When the A4054A detects an under-voltage lockout condition,			
		CHRGb is forced high impedance.			
2	GND	Ground			
		Charge Current Output. Provides charge current to the battery and regulates the final			
3	BAT	float voltage to 4.2V. An internal precision resistor divider from this pin sets the float			
		voltage which is disconnected in shutdown mode.			
		Positive Input Supply Voltage. Provides power to the charger. Vcc can range from			
4	Vcc	4.25V to 6.5V and should be bypassed with at least a 1µF capacitor. When V _{CC} drops			
-	V CC	to within 30mV of the BAT pin voltage, the A4054A enters shutdown mode, dropping			
		I _{BAT} to less than 2μA.			
		Charge Current Program, Charge Current Monitor and Shutdown Pin. The charge			
		current is Programmed by connecting a 1% resistor, R _{PROG} , from this pin to ground.			
		When charging in constant-current mode, this pin servos to 1V. In all modes, the voltage on			
		this pin can be used to measure the charge current using the following formula:			
		I _{BAT} = (V _{PROG} / R _{PROG}) • 1000			
5	PROG	The PROG pin can also be used to shut down the charger. Disconnecting the Program			
		resistor from ground allows a 3µA current to pull the PROG pin high. When it reaches			
		the 1.21V shutdown threshold voltage, the charger enters shutdown mode, charging			
		stops and the input supply current drops to 25µA. This pin is also clamped to			
		approximately 2.4V. Driving this pin to voltages beyond the clamp voltage will draw			
		currents as high as 1.5mA. Reconnecting R _{PROG} to ground will return the charger to			
		normal operation.			

ABSOLUTE MAXIMUM RATINGS

-0.3V to +6V
-0.3V to +V _{CC}
-0.3V to 6V
-0.3V to 6V
Continuous
800mA
800uA
125°C
-40°C to 85°C
-65°C to 125°C
300°C

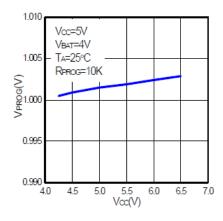
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: The A4054A is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

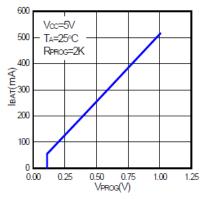
ELECTRICAL CHARACTERISTICSNOTE2

 V_{CC} = 5V, T_A = 25°C, unless otherwise noted.

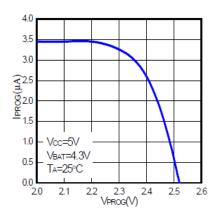
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OL N. I. O. I. O. I. NOTES	Isplychrg	R _{PROG} =2kΩ		300	2000	μΑ
Charge Mode Supply Current NOTE3		R _{PROG} =10kΩ				
Olassa Mada Batta a Olassa I	IBATCHRG	R _{PROG} =2kΩ	465	500	535	mA
Charge Mode Battery Current		R _{PROG} =10kΩ	93	100	107	
DDOC Dia Valtana	V _{PROGCHRG}	R _{PROG} =2kΩ	0.02	1	1.07	V
PROG Pin Voltage		R _{PROG} =10kΩ	0.93			
Standby Mode Supply Current	ISPLYSTBY			100	500	μΑ
Standby Mode Battery Current	Іватѕтву			-2.5	-6	μΑ
Manual Shutdown Mode Supply Current	Isplymsd				90	μΑ
Manual Shutdown Mode Battery Current	IBATMSD		-2	0	2	μΑ
PROG Pin Clamp Voltage	V _{PROGCLMP}		2		3	V
Automatic Shutdown Mode Supply Current	ISPLYASD			25	50	μΑ
Automatic Shutdown Mode Battery Current	Ibatasd		-2	0	2	μΑ
UVLO Mode Supply Current	Isplyuvlo			25	50	μA
UVLO Mode Battery Current	I BATUVLO		-2		2	μA
Sleep Mode Battery Current	IBATSLEEP		-1		1	μΑ
Float Voltage	V_{FLOAT}		4.158	4.2	4.242	V
Trickle Charge Current	I _{TRIKL}	R _{PROG} =2kΩ	20	50	70	mA
Trickle Charge Current		R _{PROG} =10kΩ	5	10	15	
Trickle Charge Threshold	V _{TRIKL}		2.8	2.9	3	V
Trickle Charge Hysteresis	V _{TRIKL} , HYS		60	100	150	mV
UVLO Threshold	V _{UVLO}		3.7	3.9	4.1	V
UVLO Hysteresis	V _{UVLO, HYS}		150	200	300	mV
Input Over-Voltage Protect Threshold	V _{OVP}		6.8	7	7.2	V
Input Over-Voltage Protect Hysteresis	Vovp, HYS			200		mV

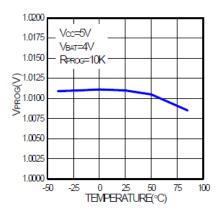

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Manual Shutdown Threshold, PROG rising	V _{MSD} , RISE		1.15	1.21	1.3	V
Manual Shutdown Threshold, PROG falling	VMSD, FALL		0.95	1.0	1.05	V
Automatic Shutdown Threshold, BAT rising	V _{ASD, RISE}		5	30	50	mV
Automatic Shutdown Threshold, BAT falling	Vasd, fall		70	100	140	mV
C/10 Termination Current Threshold	I _{TERM}		85	100	115	mV
Auto Recharge Battery Voltage	V _{RECHRG}		4	4.05	4.1	٧
CHRGb Pin Weak Pull-down Current	ICHRGb		8	12	35	μΑ
CHRGb Pin Output Low Voltage	Vchrgb			0.35	0.6	V
Junction Temperature In Constant Temperature Mode	T _{LIM}			120		°C
Power FET ON Resistance	Ron			600		mΩ
Soft-Start Time	T _{SS}	R _{PROG} =2kΩ		50		μs
Recharge Comparator Filter Time	Trechrg		0.75	2	4.5	ms
Termination Comparator Filter Time	T _{TERM}		0.4	1	2.5	ms
PROG Pin Pull-up Current	I _{PROG}			3		μΑ

NOTE2: 100% production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization. NOTE3: Supply current includes PROG pin current (approximately $100\mu A$) but does not include any current delivered to the battery through the BAT pin (approximately 100mA).

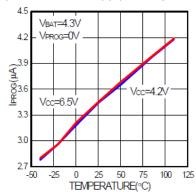


TYPICAL PERFORMANCE CHARACTERISTICS

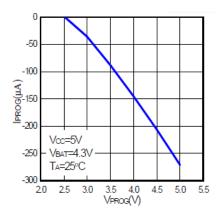

 PROG Pin Voltage vs. Supply Voltage (Constant Current Mode)


3. Charge Current vs. PROG Pin Voltage

 PROG Pin Current vs. PROG Pin Voltage (Pull-Up Current)

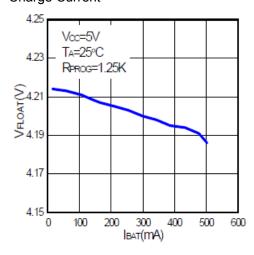


2. PROG Pin Voltage vs. Temperature

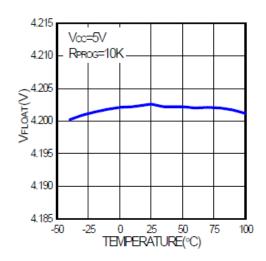


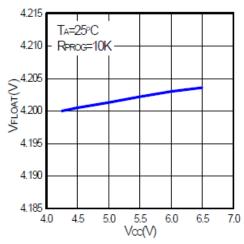
4. PROG Pin Pull-Up Current vs.

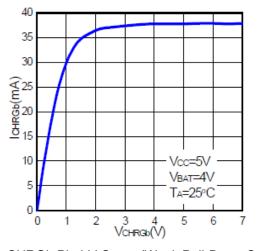
Temperature and Supply Voltage

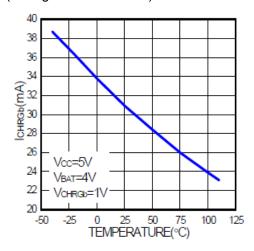


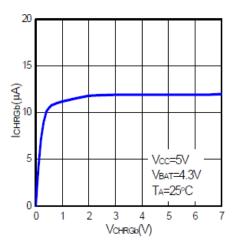
PROG Pin Current vs. PROG Pin Voltage (Clamp Current)



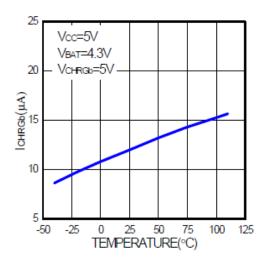

Regulated Output (Float) Voltage vs. 7. **Charge Current**


Regulated Output (Float) Voltage vs. Temperature 8.

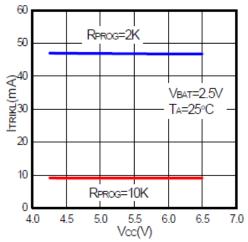

9.

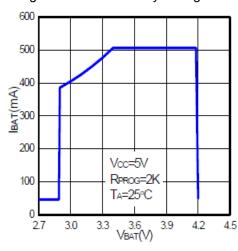

Regulated Output (Float) Voltage vs. Temperature 10. CHRGb Pin I-V Curve (Strong Pull-Down State)

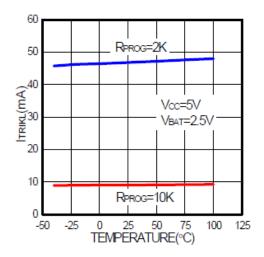
11. CHRGb Pin Current vs. Temperature (Strong Pull-Down State)

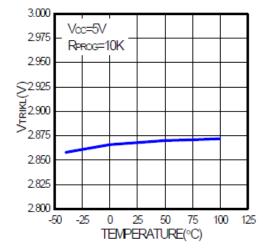


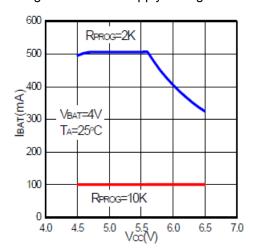
12. CHRGb Pin I-V Curve (Weak Pull-Down State)



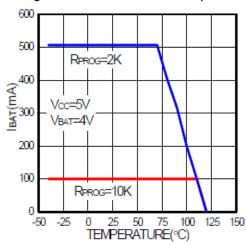

 CHRGb Pin Current vs. Temperature (Weak Pull-Down State)


15. Trickle Charge Current vs. Supply Voltage

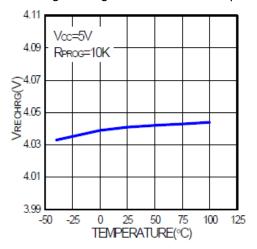

17. Charge Current vs. Battery Voltage


14. Trickle Charge Current vs. Temperature

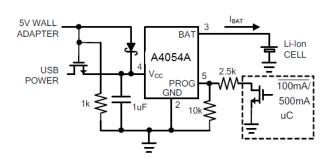
16. Trickle Charge Threshold vs. Temperature

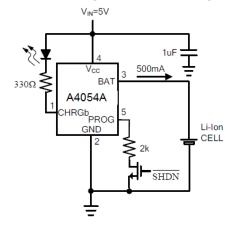


18. Charge Current vs. Supply Voltage

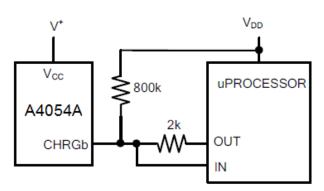

19. Charge Current vs. Ambient Temperature

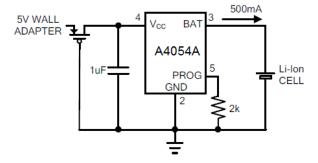
21. Power FET "ON" Resistance vs. Temperature

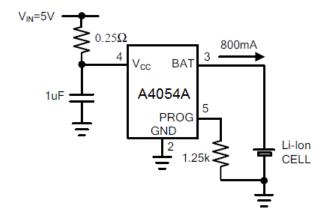

20. Recharge Voltage Threshold vs. Temperature



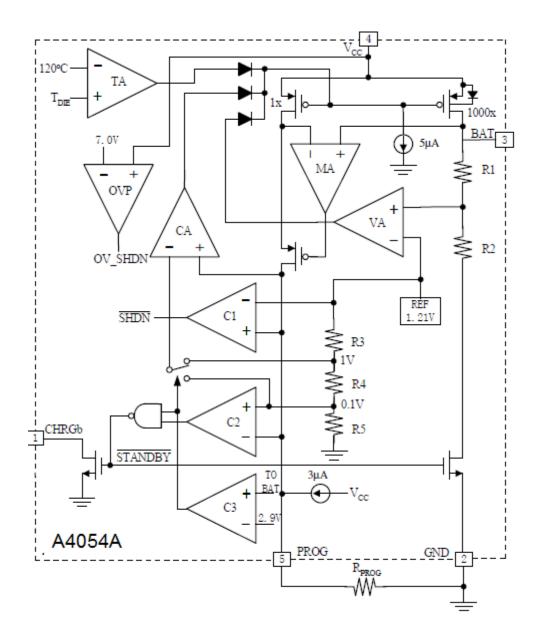
TEST CIRCUIT


1. USB/Wall Adapter Power Li-lon Charger


2. Full Featured Single Cell Li-Ion Charger


 Using a Microprocessor to Determine CHRGb State

4. Basic Li-Ion Charger with Reverse Polarity Input Protection



800mA Li-Ion Charger with External Power Dissipation

BLOCK DIAGRAM

DETAILED INFORMATION

Operation

The A4054A is a single cell Lithium-Ion battery charger using a constant current / constant voltage algorithm. It can deliver up to 800mA of charge current (using a good thermal PCB layout) with a final float voltage accuracy of 1%. The A4054A includes an internal P-channel power MOSFET and thermal regulation circuitry. No blocking diode or external current sense resistor is required; thus, the basic charger circuit requires only two external components. Furthermore, the A4054A is capable of operating from a USB power source.

Normal Charge Cycle

A charge cycle begins when the voltage at the V_{CC} pin rises above the UVLO threshold level and a 1% program resistor is connected from the PROG pin to ground or when a battery is connected to the charger output. If the BAT pin is less than 2.9V, the charger enters trickle charge mode. In this mode, the A4054A supplies approximately 1/10 the programmed charge current to bring the battery voltage up to a safe level for full current charging.

When the BAT pin voltage rises above 2.9V, the charger enters constant-current mode, where the programmed charge current is supplied to the battery. If the battery voltage is above 2.9V at power-on, A4054A will perform one more check. If the battery voltage is below the auto-recharge threshold, A4054A enters the constant current mode, otherwise it goes to standby mode.

When the BAT pin approaches the final float voltage (4.2V), the A4054A enters constant-voltage mode and the charge current begins to decrease. When the charge current drops to 1/10 of the programmed value, the charge cycle ends.

Programming Charge Current

The charge current is programmed using a single resistor from the PROG pin to ground. The battery charge current is 1000 times the current out of the PROG pin. The program resistor and the charge current are calculated using the following equations:

$$R_{\text{PROG}} = \frac{1000 \text{V}}{I_{\text{CHG}}} \qquad I_{\text{CHG}} = \frac{1000 \text{V}}{R_{\text{PROG}}}$$

The charge current out of the BAT pin can be determined at any time by monitoring the PROG pin voltage using the following equation:

$$I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \bullet 1000$$

Charge Termination

A charge cycle is terminated when the charge current falls to 1/10 the programmed value after the final float voltage is reached. This condition is detected by using an internal, filtered comparator to monitor the PROG pin. When the PROG pin voltage falls below 100mV for longer than T_{TERM} (typically 1ms), charging is terminated. The charge current is latched off and the A4054A enters standby mode, where the input supply current drops to 100µA. (NOTE: C/10 termination is disabled in trickle charging mode).

When charging, transient loads on the BAT pin can cause the PROG pin to fall below 100mV for short periods of time before the DC charge current has dropped to 1/10 the programmed value. The 1ms filter time (T_{TERM}) on the termination comparator ensures that transient loads of this nature do not result in premature charge cycle termination. Once the average charge current drops below 1/10 the programmed value, the A4054A terminates the charge cycle and ceases to provide any current through the BAT pin. In this state, all loads on the BAT pin must be supplied by the battery.

The A4054A constantly monitor the BAT pin voltage in standby mode. If this voltage drops below the 4.05V recharge threshold (V_{RECHRG}), another charge cycle begins and current is once again supplied to the battery. To manually restart a charge cycle when in standby mode, the input voltage must be removed and reapplied, or the charger must be shut down and restarted using the PROG pin.

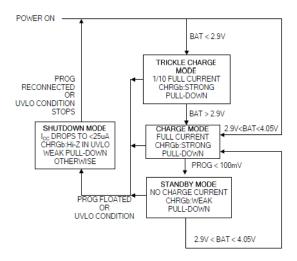


Figure 1. State Diagram of A4054A Charge Cycle

Charge Status Indicator (CHRGb)

The charge status output has three different states: strong pull-down (\sim 10mA), weak pull-down (\sim 12 μ A) and high impedance. The strong pull-down state indicates that the A4054A is in a charge cycle. Once the charge cycle has terminated, the pin state is determined by under-voltage lockout conditions. A weak pull-down indicates that V_{CC} meets the UVLO conditions and the A4054A is ready to charge. High impedance indicates that the A4054A is in under voltage lockout mode: either V_{CC} is less than 100mV above the BAT pin voltage or insufficient voltage is applied to the V_{CC} pin. A microprocessor can be used to distinguish between these three states—the application circuit of this method is shown in the Typical Applications section.

Manual Shutdown

At any point in the charge cycle, the A4054A can be put into shutdown mode by removing R_{PROG} thus floating the PROG pin. This reduces the battery drain current to less than 2µA and the supply current to less than 50µA. A new charge cycle can be initiated by reconnecting the program resistor.

In manual shutdown, the CHRGb pin is in a weak pull-down state as long as V_{CC} is high enough to exceed the UVLO conditions. The CHRGb pin is in a high impedance state if the A4054A is in under voltage lockout mode: either V_{CC} is within 100mV of the BAT pin voltage or insufficient voltage is applied to the V_{CC} pin.

Over-Voltage Protect

The A4054A has an internal Over-Voltage Protect comparator, once the input voltage V_{CC} rises above 7V (V_{OVP}), this comparator will shut down the chip. This feature can prevent the A4054A from the over-voltage stress due to the input transient at hot plug in. In this state, the CHRGb pin will be high impedance. Once the V_{CC} falls back to safe range (V_{OVP} - $V_{OVP,HYS}$), normal operation continues.

Automatic Recharge

Once the charge cycle is terminated, the A4054A continuously monitors the voltage on the BAT pin using a comparator with a 2ms filter time (Trechreg). A charge cycle restarts when the battery voltage falls below 4.05V (which corresponds to approximately 80% to 90% battery capacity). This ensures that the battery is kept at or near a fully charged condition and eliminates the need for periodic charge cycle initiations. CHRGb output enters a strong pull-down state during recharge cycles.

Applications Information Stability Considerations

The constant-voltage mode feedback loop is stable without an output capacitor provided a battery is connected to the charger output. With no battery present, an output capacitor is recommended to reduce ripple voltage. When using high value, low ESR ceramic capacitors, it is recommended to add a 1Ω resistor in series with the capacitor. No series resistor is needed if tantalum capacitors are used.

In constant-current mode, the PROG pin is in the feedback loop, not the battery. The constant-current mode stability is affected by the impedance at the PROG pin. With no additional capacitance on the PROG pin, the charger is stable with program resistor values as high as 20k. However, additional capacitance on this node reduces the maximum allowed program resistor thus it should be avoided.

Average, rather than instantaneous, charge current may be of interest to the user. For example, if a switching power supply operating in low current mode is connected in parallel with the battery, the average current being pulled out of the BAT pin is typically of more interest than the instantaneous current pulses. In such a case, a simple RC filter can be used on the PROG pin to measure the average battery current as shown in Figure 2. A 10k resistor has been added between the PROG pin and the filter capacitor to ensure stability.

Thermal Limiting

An internal thermal feedback loop reduces the programmed charge current if the die temperature attempts to rise above a preset value of approximately 120°C. This feature protects the A4054A from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the A4054A. The charge current can be set according to typical (not worst-case) ambient temperature with the assurance that the charger will automatically reduce the current in worst-case conditions.

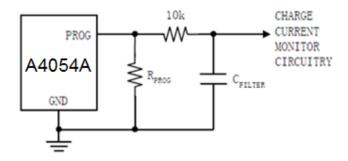


Figure 2 Isolating Capacitive Load on PROG Pin

Power Dissipation

The conditions that cause the A4054A to reduce charge current through thermal feedback can be approximated by considering the power dissipated in the IC. Nearly all of this power dissipation is generated by the internal MOSFET—this is calculated to be approximately:

$$P_D = (V_{CC} - V_{BAT}) \bullet I_{BAT}$$

where P_D is the power dissipated, V_{CC} is the input supply voltage, V_{BAT} is the battery voltage and I_{BAT} is the charge current. The approximate ambient temperature at which the thermal feedback begins to protect the IC is:

$$\begin{split} T_{\mathrm{A}} = & 120^{\circ}\mathrm{C} - \mathrm{P}_{\mathrm{D}} \bullet \theta_{\mathrm{JA}} \\ T_{\mathrm{A}} = & 120^{\circ}\mathrm{C} - (\mathrm{V}_{\mathrm{CC}} - \mathrm{V}_{\mathrm{BAT}}) \bullet \mathrm{I}_{\mathrm{BAT}} \bullet \theta_{\mathrm{JA}} \end{split}$$

Example: An A4054A operating from a 5V USB supply is programmed to supply 400mA full-scale current to a discharged Li-lon battery with a voltage of 3.75V. Assuming θ_{JA} is 150°C/W, the ambient temperature at which the A4054A will begin to reduce the charge current is approximately:

$$\begin{aligned} T_{A} &= 120^{\circ}\text{C} - (5\text{V} - 3.75\text{V}) \bullet 400\text{mA} \bullet 150^{\circ}\text{C} / \text{W} \\ T_{A} &= 45^{\circ}\text{C} \end{aligned}$$

The A4054A can be used above 45°C ambient, but the charge current will be reduced from 400mA. The approximate current at a given ambient temperature can be approximated by:

$$I_{BAT} = \frac{120^{\circ}C - T_{A}}{(V_{CC} - V_{BAT}) \bullet \theta_{JA}}$$

Using the previous example with an ambient temperature of 60°C, the charge current will be reduced to approximately:

IBAT =
$$\frac{120^{\circ}\text{C} - 60^{\circ}\text{C}}{(5\text{V} - 3.75\text{V}) \cdot 150^{\circ}\text{C}/\text{W}} = 320\text{mA}$$

Moreover, when thermal feedback reduces the charge current, the voltage at the PROG pin is also reduced proportionally as discussed in the Operation section.

It is important to remember that A4054A applications do not need to be designed for worst-case thermal conditions since the IC will automatically reduce power dissipation when the junction temperature reaches approximately 120°C.

Thermal Considerations

Because of the small size package, it is very important to use a good thermal PC board layout to maximize the available charge current. The thermal path for the heat generated by the IC is from the die to the copper lead frame, through the package leads, (especially the ground lead) to the PC board copper. The PC board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Feed-through vias to inner or backside copper layers are also useful in improving the overall thermal performance of the charger. Other heat sources on the board, not related to the charger, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum charge current.

The following table lists thermal resistance for several different board sizes and copper areas.

All measurements were taken in still air on 3/32" FR-4 board with the device mounted on topside.

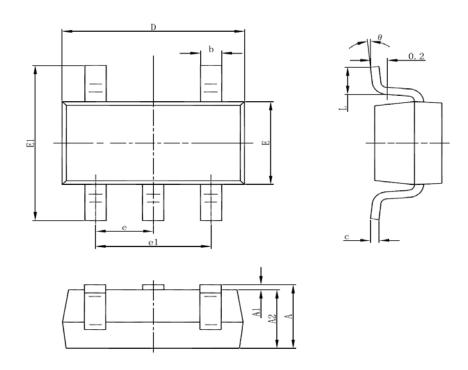
Copper Area		Board	Thermal Resistance	
Topside	Backside	Area	Junction-To-Ambient	
2500mm ²	2500mm ²	2500mm ²	125°C/W	
1000mm ²	2500mm ²	2500mm ²	125°C/W	
225mm ²	2500mm ²	2500mm ²	130°C/W	
100mm²	2500mm ²	2500mm ²	135°C/W	
50mm ²	2500mm ²	2500mm ²	150°C/W	
*Each layer uses one ounce copper				

Table 1 Measured Thermal Resistance (2-Layer Board*)

Copper Area	Board	Thermal Resistance		
(Each Side)	Area	Junction-To-Ambient		
2500mm ^{2***}	2500mm ² 80°C/W			
**Top and bottom layers use two ounce copper, inner layers use one ounce copper				
***10,000mm2 total copper area				

Table 2 Measured Thermal Resistance (4-Layer Board*)

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors. Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the charger input to a live power source. Adding a 1Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.


Charge Current Soft-Start

The A4054A includes a soft-start circuit to minimize the inrush current at the start of a charge cycle. When a charge cycle is initiated, the charge current ramps from zero to the full-scale current over a period of approximately 50µs. This has the effect of minimizing the transient current load on the power supply during start-up.

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)

Symbol	Min	Max
Α	0.889	1.295
A1	0.000	0.152
A2	0.889	1.143
b	0.356	0.559
С	0.080	0.254
D	2.692	3.099
E	1.397	1.803
E1	2.591	2.997
е	0.838	1.041
e1	1.676	2.082
L	0.300	0.610
θ	0°	8°

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.