

概况

A2633 采用 CMOS 制程,具有优异的光学导航性能而且使用数量极少的外围电子元器件,它完全兼容微软 IntelliMouse 3D 与 IBM PS/2 鼠标,支持机械式 Z 轴编码器, 是一款性价比很高的 PS/2 光学鼠标单芯片。A2633 还与 A2636 脚对脚兼容。

特征

- PS/2 接口
- 单 5V 供电
- 兼容微软 IntelliMouse 3D 及IBM PS/2 鼠标.
- 支持微软 Windows Vista, 2000, XP, ME and 98 等操作系统
- 按键支持: 左,中,右; 支持 X, Y, Z 三轴及机械式 Z 轴编码器
- 光学位移预测技术
- 符合微软 WHQL
- DPI 最高可达 1600
- 灵活性的 DPI 设置:可以通过设置成固定 800/1600 DPI, 或者是 800 与 1600 动态切换
- 内置去开关接触片弹跳影响
- 内置通电复位电路
- 内置稳压电路
- 内置 LED 驱动电路
- 内置时钟发生器, 免晶振设计
- 最少的外围元件
- 绿色环保的错列双排插封装

应用

- PS/2 光电鼠标
- 轨迹球

订购信息

产品编号	封装	描叙
A2633	S-DIP12	PS/2 光电鼠标单芯片

技术指标

工作电压	4.5~5.5 伏
接口类型	PS2
透镜放大比	1:1
系统时钟	24 兆赫内部时钟
解析度	800(缺省)/1600 DPI
帧频	高达 4000 帧/秒
工作电流	15 毫安(移动情况下)
	10毫安(待命状态下)
封装	错列式双排插 S-DIP12

1. 内部方块图

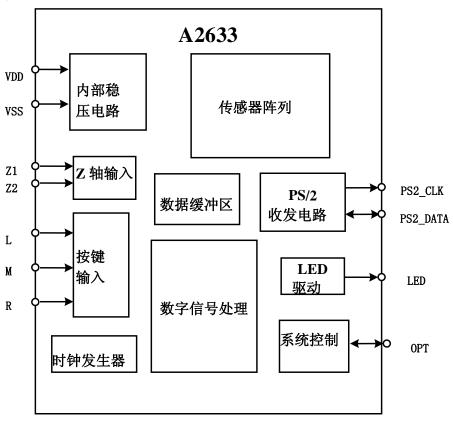


图 1. 功能块图

2. 管脚分配

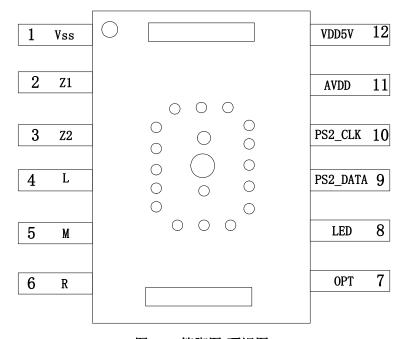


图 2. 管脚图(顶视图)

3. 引脚描叙

引脚编号	引脚名	I/O	描叙
1	VSS	_	电源地
2	Z1	I	Z轴输入1
,3	Z2	I	Z轴输入2
4	L	I	左键
5	M	I	中键
6	R	I	右键
7	OPT	I/O	DPI设置脚
8	LED	0	LED 驱动
9	PS2_DATA	I/O	PS/2 数据
10	PS2_CLK	I/O	PS/2 时钟
11	AVDD	I	内置稳压电路退耦
12	VDD5V	-	电源正

4. 极限参数 (环境温度=25℃)

标识符	描叙	最小	最大	单位	注解
T_{STG}	储存温度	-50	+125	摄氏度	
T _{OPR}	工作温度	-15	+55	摄氏度	
	引脚焊锡温度		260	摄氏度	焊锡时间在 10 秒内, 浸锡高度不超过 1.6 毫米
V_{CC}	电源电压	-0.3	5.5	伏	
$V_{\rm I}$	输入电平范围	V_{SS} -0.3	5.5	伏	
ESD	静电防护	2		千伏	人体接触方式, 见美国军标 MIL STD 883G 方 法 3015.7

注意: 极限参数是指本器件能承受的最大参数,超过这些参数会造成器件物理性的损坏!

5. 推荐使用条件

标识符	描叙	最小 值	典型 值	最大值	单位	注解
T_{OPR}	工作温度	0		40	摄氏度	
V_{DD}	供电电压	4.5	5.0	5.5	伏	
V_N	电源噪音			100	毫伏	
FR	目标面采样率	2000		4000	帧/秒	
Z	透镜底部到桌面距离 "Z"	2.3	2.4	2.5	毫米	
S	移动速度	0		24	英寸/秒	
A	加速度			16	G	
R	解析度		800	1600	点每英寸	800或者是1600DPI

6. 电气参数

条件: 环境温度=25℃, VDD=5V

标识符	描叙	最小	典型值	最大值	单位	注解
IDD	工作状态下的消耗电流e	_	15	-	毫安	
	待命状态下的消耗电流	_	10	-	毫安	
$V_{\rm IL1}$	输入输出口低电平	0	-	0.8	伏	
$V_{\rm IH1}$	输入输出口高电平	2.0	_	_	伏	
V_{IH2}	PS2口输入高电平	2.0	_	_	伏	
V_{IL2}	PS2口输入低电平	_	_	0.8	伏	
V_{POR}	上电复位有效电压	2.5	_	3.1	伏	
I_{OL1}	LED驱动电流, V _{OL} =1.0V	_	20	50	毫安	

7. 典型的光学跟踪特性

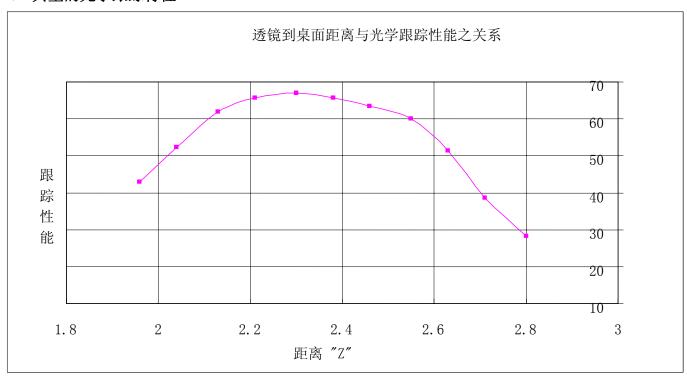


图 3. 桌面到透镜距离与光学跟踪性能的关系

8. 解析度提升

A2633 单芯片提供解析度倍增功能: 通过一个阻值大约为 51K 的电阻把第 7 脚下拉到地可以将单芯片的解析度设置为 800DPI; 如果 51K 电阻上拉到电源正极,解析度就被设置成 1600DPI(动态加速,最高 1600,下同); 在 800DPI 设置状态下,如果给第 7 脚一个高电平脉冲,800DPI 就会被设置成 1600DPI,再接着一个高电平脉冲又使 DPI 被设置回 800DPI,图 4 反映这种变化关系:

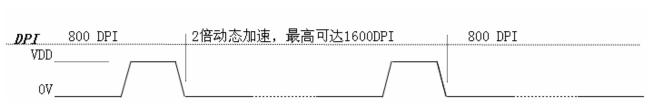


图 4. DPI 变化示意图

9. 静态解析度设置

把 A2633 第 7 脚接地,解析度就是 800DPI,如果通过一个 51K 电阻上拉到 5V 电源,解析度就被设置成了 1600DPI。

10. 典型的应用原理图

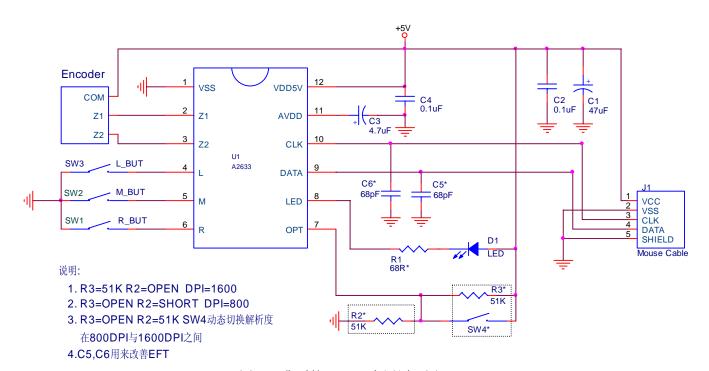


图 5. 典型的 A2633 应用原理图

限制 LED 电流的限流电阻阻值依赖于所采用的 LED 发光强度等级(mW/Sr@20mA). 一个合理的阻值才能确保足够的照明强度。

11. 装配说明

11.1 装配指导

图 6 示意单芯片与左右按键及 LED 的位置关系:

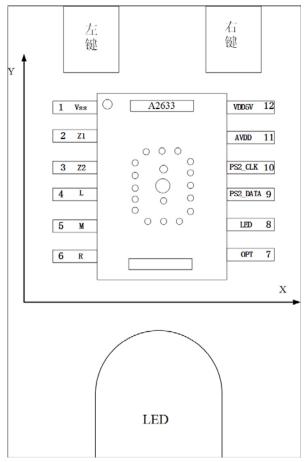
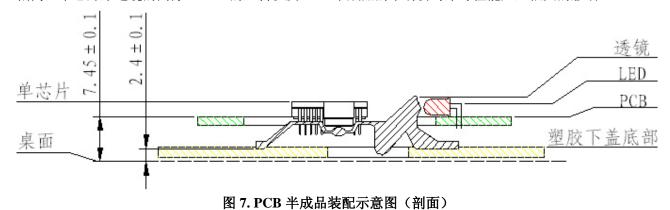
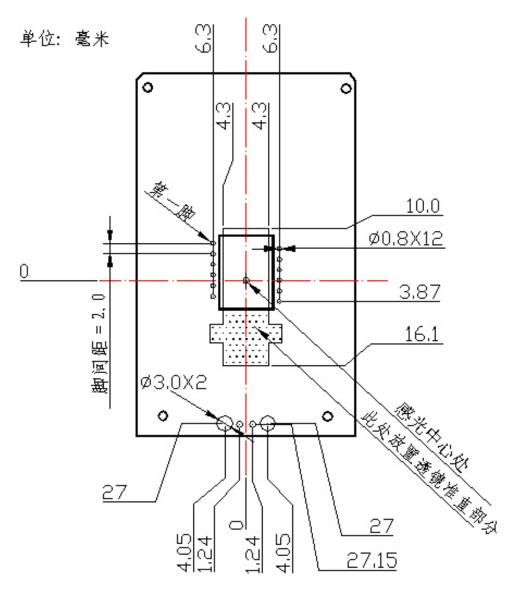



图 6. 鼠标装配示意图 (俯视)

11.2 PCB 半成品安装

距离 "Z"(从透镜底面到桌面的距离)应该设计在 2.3~2.5 毫米范围以内,请参考图 7;单芯片下盖向下 突起圆锥部分要跟透镜凹陷部分对准并紧密接触,LED 尽量与 PCB 平行,PCB 半成品要固定好,"Z"的偏离、单芯片跟透镜的间隙、LED 的歪斜以及 PCB 半成品的窜动会对跟踪性能产生很大的影响。

版本: V0.6 6/9 2008年2月27日



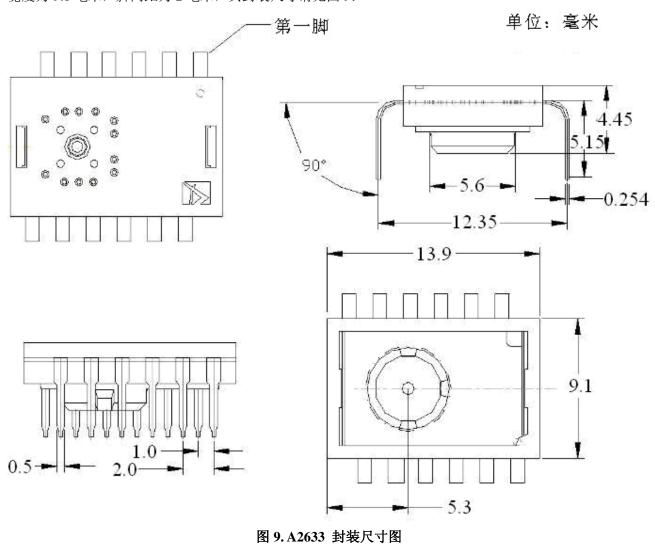

图 8. 建议的定位尺寸

图 8 所列尺寸是建议的开槽尺寸及单芯片的位置.

12. 封装信息

A2633 是一种错列式双列直插封装,共有 12 只引脚,符合绿色环保要求,其外形尺寸大小长为 13.9 毫米,宽度为 9.1 毫米,脚间距为 2 毫米,其封装尺寸请见图 9:

15. 修订版本

版本号	变更日期	变更说明
V0.2	2008年2月5日	初稿
V0.6	2008年2月27日	电气参数修正,增加 A2633 与 A2636 脚对脚兼容

中国深圳市福田区泰然工业园

苍松大厦北座 801 室

邮编: 518040

重要声明

- 1. 由于生产改进或者技术上的更新,在未通知阁下的情况下,本数据手册上所列举的参数可能会被修改。请在 使用本产品时留意是否拿到最新的版本。
- 2. 任何由于不当或者是错误的操作、使用等等造成的后果,埃派克森微电子概不负责。
- 3. 本手册中的数据与应用线路图仅仅是用来举例说明,对于由于这些数据与原理图所引起的问题,埃派克森微 电子没有义务承担责任;对于应用本产品所引起的一些伤害,埃派克森微电子也没有义务承担任何责任;埃 派克森会保留不事先通知的权利来对产品进行更新换代。

美国 上海 深圳

7966 Arjons Dr., Suite 109 中国上海市张江高科技园碧波路 San Diego, CA 92126 572 弄 115 号 18 号搂 邮编: 201203

USA

001-858-5270115 电话: 0086-21-50809600 电话: 0086-755-82049220 Fax: 001-858-5270116 传真: 0086-21-50800992 传真: 0086-755-82049219

电子邮件: techsupport@apexonemicro.com 网址: www.apexonemicro.com

版权 © 2007, 埃派克森微电子有限公司