DATASHEET

Description

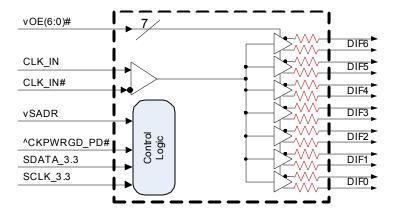
The 9DBL07x1 devices are 3.3V members of IDT's Full-Featured PCIe clock family. The 9DBL07x1 devices support PCIe Gen1–4 Common Clocked (CC) and PCIe Separate Reference Independent Spread (SRIS) systems. They offer a choice of integrated output terminations providing direct connection to 85Ω or 100Ω transmission lines. The 9DBL07P1 can be factory programmed with a user-defined power up default SMBus configuration.

Recommended Application

PCIe Gen1–4 clock distribution for Riser Cards, Storage, Networking, JBOD, Communications, Access Points

Output Features

- 7 1-200 MHz Low-Power (LP) HCSL DIF pairs
 - 9DBL0741 default Zout = 100Ω
 - 9DBL0751 default Zout = 85Ω
 - 9DBL07P1 factory programmable defaults
- Easy AC-coupling to other logic families, see IDT application note <u>AN-891</u>.


Key Specifications

- DIF additive cycle-to-cycle jitter < 5ps
- DIF output-to-output skew < 50ps
- Additive phase jitter is 0ps (typical rms) for PCIe Gen1–4 CC, SRIS
- Additive phase jitter 111fs rms typ. at 156.25M (1.5M to 10M)

Block Diagram



- Direct connection to 100Ω (xx41) or 85Ω (xx51) transmission lines; saves 28 resistors compared to standard PCIe devices
- 134mW typical power consumption; eliminate thermal concerns
- VDDIO allows 50% power savings at optional 1.05V; maximum power savings
- SMBus-selectable features allows optimization to customer requirements:
 - control input polarity
 - control input pull up/downs
 - slew rate for each output
 - differential output amplitude
 - output impedance for each output
- Customer defined SMBus power up default can be programmed into P1 device; allows exact optimization to customer requirements
- OE# pins; support DIF power management
- HCSL differential input; can be driven by common clock sources
- · Spread Spectrum tolerant; allows reduction of EMI
- Device contains default configuration; SMBus interface not required for device operation
- Three selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 40-pin 5 x 5mm VFQFPN; minimal board space

Note: Resistors default to internal on 41/51 devices. P1 devices have programmable default impedances on an output-by-output basis.

Pin Configuration

40-VFQFPN, 5x5mm 0.4mm pin pitch

 ^v prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2)
 v prefix indicates internal 120KOhm pull down resistor
 ^ prefix indicates internal 120KOhm pull up resistor

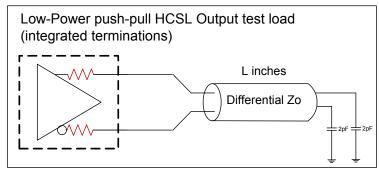
SMBus Address Selection Table

	SADR	Address	+ Read/Write bit
State of SADR on first application of	0	1101011	x
CKPWRGD PD#	М	1101100	x
	1	1101101	х

Power Management Table

CKPWRGD PD#	CLK IN	SMBus	OEx# Pin	DIFx			
		OEx bit		True O/P	Comp. O/P		
0	Х	Х	Х	Low ¹	Low ¹		
1	Running	0	Х	Low ¹	Low ¹		
1	Running	1	0	Running	Running		
1	Running	1	1	Low ¹	Low ¹		

1. The output state is set by B11[1:0] (Low/Low default)


Power Connections

Pin Number			Description
VDD	VDDIO	/DDIO GND	
			Input
5		41	receiver
			analog
11		8	Digital Power
16,25,31	12,17,26,32,39	41	DIF outputs

Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	vSADR_tri	LATCHED IN	Tri-level latch to select SMBus Address. See SMBus Address Selection Table.
2	^OE6#	IN	Active low input for enabling DIF pair 6. This pin has an internal pull-up resistor.
3	DIF6	OUT	1 =disable outputs, 0 = enable outputs Differential true clock output
4	DIF6 DIF6#	OUT	Differential Complementary clock output
4		001	3.3V power for differential input clock (receiver). This VDD should be treated as an Analog
5	VDDR3.3	PWR	power rail and filtered appropriately.
6	CLK_IN	IN	True Input for differential reference clock.
7	CLK_IN#	IN	Complementary Input for differential reference clock.
8	GNDDIG	GND	Ground pin for digital circuitry
9	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
10	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
11	VDDDIG3.3	PWR	3.3V digital power (dirty power)
12	VDDIO	PWR	Power supply for differential outputs
			Active low input for enabling DIF pair 0. This pin has an internal pull-down.
13	vOE0#	IN	1 =disable outputs, 0 = enable outputs
14	DIF0	OUT	Differential true clock output
15	DIF0#	OUT	Differential Complementary clock output
16	VDD3.3	PWR	Power supply, nominal 3.3V
17	VDDIO	PWR	Power supply for differential outputs
18	DIF1	OUT	Differential true clock output
19	DIF1#	OUT	Differential Complementary clock output
	NC	N/A	No Connection.
20		IN/A	
21	vOE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
22	DIF2	OUT	Differential true clock output
23	DIF2#	OUT	Differential Complementary clock output
20		001	Active low input for enabling DIF pair 2. This pin has an internal pull-down.
24	vOE2#	IN	1 =disable outputs, 0 = enable outputs
25	VDD3.3	PWR	Power supply, nominal 3.3V
26	VDDIO	PWR	Power supply for differential outputs
27	DIF3	OUT	Differential true clock output
28	DIF3#	OUT	Differential Complementary clock output
			Active low input for enabling DIF pair 3. This pin has an internal pull-down.
29	vOE3#	IN	1 =disable outputs, 0 = enable outputs
30	NC	N/A	No Connection.
31	VDD3.3	PWR	Power supply, nominal 3.3V
32	VDDIO	PWR	Power supply for differential outputs
33	DIF4	OUT	Differential true clock output
34	DIF4#	OUT	Differential Complementary clock output
			Active low input for enabling DIF pair 4. This pin has an internal pull-down.
35	vOE4#	IN	1 =disable outputs, 0 = enable outputs
36	DIF5	OUT	Differential true clock output
37	DIF5#	OUT	Differential Complementary clock output
			Active low input for enabling DIF pair 5. This pin has an internal pull-down.
38	vOE5#	IN	1 =disable outputs, 0 = enable outputs
39	VDDIO	PWR	Power supply for differential outputs
			Input notifies device to sample latched inputs and start up on first high assertion. Low enters
40	^CKPWRGD_PD#	IN	Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal
			pull-up resistor.
41	ePAD	GND	Connect paddle to ground.
h			

Test Loads

Terminations		
Device	Ζο (Ω)	Rs (Ω)
9DBL0741	100	None needed
9DBL0751	100	7.5
9DBL07P1	100	Prog.
9DBL0741	85	N/A
9DBL0751	85	None needed
9DBL07P1	85	Prog.

L = 5 inches

Alternate Terminations

The 9DBL family can easily drive LVPECL, LVDS, and CML logic. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with</u> <u>IDT's "Universal" Low-Power HCSL Outputs</u>" for details.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBL07x1. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx				4.6	V	1,2
Input Voltage	V _{IN}		-0.5		V _{DD} +0.5	V	1,3
Input High Voltage, SMBus	VIHSMB	SMBus clock and data pins			3.9	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2500			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 4.6V.

Electrical Characteristics–SMBus Parameters

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SMBus Input Low Voltage	VILSMB	$V_{\text{DDSMB}} = 3.3V$			0.8	V	
SMBus Input High Voltage	VIHSMB	$V_{\text{DDSMB}} = 3.3V$	2.1		3.6	V	
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V _{DDSMB}		2.7		3.6	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{SMB}	SMBus operating frequency			500	kHz	2,3

¹ Guaranteed by design and characterization, not 100% tested in production.

^{2.} The device must be powered up for the SMBus to function.

^{3.} The differential input clock must be running for the SMBus to be active

Electrical Characteristics–Clock Input Parameters

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input Crossover Voltage - DIF_IN	V _{CROSS}	Cross Over Voltage	150		900	mV	1
Input Swing - DIF_IN	V _{SWING}	Differential value	300			mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d _{tin}	Measurement from differential waveform	45		55	%	1
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		125	ps	1
Input Leakage Current Input Duty Cycle	I _{IN} d _{tin}	$V_{IN} = V_{DD}$, $V_{IN} = GND$ Measurement from differential waveform	-5		5 55	uA %	

¹ Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating Conditions

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

		I					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	3.135	3.3	3.465	V	
Output Supply Voltage	VDDIO	Supply voltage for Low Power HCSL Outputs	0.95	1.05-3.3	3.465	V	
Ambient Operating Temperature	T _{AMB}	Industrial range	-40	25	85	°C	
Input High Voltage	$V_{\rm IH}$	Single-ended inputs, except SMBus	0.75 V _{DDx}		V _{DDx} + 0.3	V	
Input Low Voltage	V _{IL}		-0.3		$0.25 V_{DDx}$	V	
Input High Voltage	V _{IHtri}		0.75 V _{DDx}		$V_{DD} + 0.3$	V	
Input Mid Voltage	V _{IMtri}	Single-ended tri-level inputs ('_tri' suffix)	0.4 V _{DDx}	$0.5 V_{DDx}$	0.6 V _{DDx}	V	
Input Low Voltage	V _{ILtri}		-0.3		0.25 V _{DDx}	V	
	I _{IN}	Single-ended inputs, V _{IN} = GND, V _{IN} = VDD	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs $V_{IN} = 0 V$; Inputs with internal pull-up resistors $V_{IN} = VDD$; Inputs with internal pull-down resistors	-50		50	uA	
Input Frequency	F _{IN}		1		200	MHz	2
Pin Inductance	L _{pin}				7	nH	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCIe	f _{MODINPCIe}	Allowable Frequency for PCIe Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCIe	f _{MODIN}	Allowable Frequency for non-PCIe Applications (Triangular Modulation)	0		66	kHz	
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

Electrical Characteristics–DIF Low-Power HCSL Outputs

TA = T_{AMB}. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

AMD,	1						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting	1.7	2.7	4	V/ns	1,2,3
Slew late	dV/dt	Scope averaging on, slow setting	0.8	1.9	2.8	V/ns	1,2,3
Slew rate matching	∆dV/dt	Slew rate matching		6	20	%	1,4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	783	850	mV	7
Voltage Low	V _{LOW}	averaging on)	-150	-17	150		7
Max Voltage	Vmax	Measurement on single ended signal using		818	1150	mV	7
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-54		IIIV	7
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	377	550	mV	1,5
Crossing Voltage (var)	∆-Vcross	Scope averaging off		18	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ -Vcross to be smaller than Vcross absolute.

⁷ At default SMBus settings.

Electrical Characteristics–Current Consumption

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

,							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	I _{DD}	VDD + VDDR All outputs active @100MHz, 100∆ Loads		12	16	mA	
Operating Supply Current	I _{DDDIG}	VDDDIG All outputs active @100MHz, 100∆ Loads		0.4	0.8	mA	
	I _{DDIO}	VDDIO All outputs active @100MHz, 100∆ Loads		28	32	mA	
	I _{DDPD}	VDD + VDDR, CKPWRGD_PD#=0		1.4	2	mA	2
Powerdown Current	IDDDIGPD	VDDDIG, CKPWRGD_PD#=0		0.4	0.8	mA	2
	IDDIOPD	VDDIO, CKPWRGD_PD#=0		0.0	0.1	mA	2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Input clock stopped.

Electrical Characteristics–Output Duty Cycle, Jitter, and Skew Characteristics

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	t _{DCD}	Measured differentially, 100MHz	-1	-0.1	1	%	1,3
Skew, Input to Output	t _{pd}	V _T = 50%	2200	2982	4000	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%		43	50	ps	1,4
Jitter, Cycle to cycle	t _{jcyc-cyc}	Additive Jitter		0.1	1	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

⁴ All outputs at default slew rate

Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Common Clocked (CC) Architectures^{1,5}

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
<i>Additive</i> Phase Jitter	t _{jphPCleG1-CC}	PCIe Gen 1		0.4	2		ps (p-p)	2,3
	t _{jphPCleG2-CC}	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz (PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)		0.0	0.1		ps (rms)	2,4
		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz) (PLL BW of 5-16MHz or 8-5MHz, CDR = 5MHz)		0.24	0.5	n/a	ps (rms)	2,4
	t _{jphPCleG3-CC}	PCIe Gen 3 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		0.07	0.15		ps (rms)	2,4
	t _{jphPCleG4-CC}	PCIe Gen 4 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		0.07	0.15		ps (rms)	2,4

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Based on PCIe Base Specification Rev4.0 version 0.7draft. See http://www.pcisig.com for latest specifications.

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ For RMS values additive jitter is calculated by solving the following equation for b [a²+b²=c²] where a is rms input jitter and c is rms total jitter.

⁵ Driven by 9FGL0841 or equivalent

Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Separate Reference Independent Spread (SRIS) Architectures¹

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
<i>Additive</i> Phase Jitter	t _{jphPCleG1} . SRIS	PCIe Gen 1		TBD			ps (pk-pk)	2,3
	t _{jphPCleG2} . SRIS	PCIe Gen 2 (PLL BW of 16MHz,CDR = 5MHz)		0.3	0.4	Note 5	ps (rms)	2
	t _{jphPCleG3} . SRIS	PCIe Gen 3 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		0.03	0.13	Note 5	ps (rms)	2
	t _{jphPCleG4} - SRIS	PCIe Gen 4 (PLL BW of 2-4MHz or 2-5MHz, CDR = 10MHz)		TBD			ps (rms)	2

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Based PCIe Base Specification Rev3.1a filters. These filters are different than Common Clock filters. See http://www.pcisig.com for latest specifications and are not defined for Gen1 or Gen4

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ For RMS values, additive jitter is calculated by solving the following equation for b [a²+b²=c²] where a is rms input jitter and c is rms total jitter.

⁵ As of PCIe Base Specification Rev4.0 draft 0.7, SRIS limits are defined as implementation dependent.

Electrical Characteristics–Unfiltered Phase Jitter Parameters¹

 $TA = T_{AMB}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

						INDUSTRY		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	LIMIT	UNITS	Notes
Additive Phase Jitter	t _{jph156M}	156.25MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		111		N/A	fs (rms)	2,3
	t _{jph156M12k} - 20	156.25MHz, 12kHz to 20MHz, -20dB/decade rollover <12kHz, -40db/decade rolloff > 20MHz		272		N/A	fs (rms)	2,3

¹ Applies to all differential outputs, guaranteed by design and characterization.

² Driven by Rohde & Schartz SMA100

³ For RMS values, additive jitter is calculated by solving the following equation for b [a²+b²=c²] where a is rms input jitter and c is rms total jitter.

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will **acknowledge**
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index BI	ock \	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	g Byte N		
			ACK
0		\times	
0		X Byte	0
0		Ð	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Note: SMBus Address is Latched on SADR pin. Unless otherwise indicated, default values are for the x41 and xx51. P1 devices are fully factory programmable.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	lead O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
		-	ACK
Begi	nning Byte = N	-	
		-	ACK
RT	Repeat starT	-	
SI	ave Address		
RD	ReaD		
			ACK
		-	Data Byte Count=X
	ACK		
		-	Beginning Byte N
	ACK	-	
		ę	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function	Туре	0	1	Default	
Bit 7	DIF OE5	Output Enable	RW	Low/Low	Enabled	1	
Bit 6	DIF OE4	Output Enable	RW	Low/Low	Enabled	1	
Bit 5	Reserved						
Bit 4	DIF OE3	Output Enable	RW	Low/Low	Enabled	1	
Bit 3	DIF OE2	Output Enable	RW	Low/Low	Enabled	1	
Bit 2	DIF OE1	Output Enable	RW	Low/Low	Enabled	1	
Bit 1	Reserved						
Bit 0	DIF OE0	Output Enable	RW	Low/Low	Enabled	1	

1. A low on these bits will override the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

SMBus Table: Output Enable and Output Amplitude Control Register

Byte 1	Name	Control Function	Туре	0	1	Default
Bit 7	Reserved					
Bit 6	Reserved					
Bit 5	DIF OE6	Output Enable	RW	Low/Low	Enabled	1
Bit 4	Reserved					
Bit 3		Reserved				1
Bit 2		Reserved				1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01= 0.68V	1
Bit 0	AMPLITUDE 0		RW	10 = 0.75V	11 = 0.85V	0

1. A low on these bits will override the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Туре	0	1	Default	
Bit 7	SLEWRATESEL DIF5	Adjust Slew Rate	RW	Slow Setting	Fast Setting	1	
Bit 6	SLEWRATESEL DIF4	Adjust Slew Rate	RW	Slow Setting	Fast Setting	1	
Bit 5	Reserved						
Bit 4	SLEWRATESEL DIF3	Adjust Slew Rate	RW	Slow Setting	Fast Setting	1	
Bit 3	SLEWRATESEL DIF2	Adjust Slew Rate	RW	Slow Setting	Fast Setting	1	
Bit 2	SLEWRATESEL DIF1	Adjust Slew Rate	RW	Slow Setting	Fast Setting	1	
Bit 1	Reserved						
Bit 0	SLEWRATESEL DIF0	Adjust Slew Rate	RW	Slow Setting	Fast Setting	1	

SMBus Table: DIF Slew Rate Control Register

Byte 3	Name	Control Function	Туре	0	1	Default	
Bit 7	Reserved						
Bit 6	Reserved						
Bit 5		Reserved					
Bit 4	Reserved						
Bit 3		Reserved				0	
Bit 2		Reserved				1	
Bit 1	Reserved						
Bit 0	SLEWRATESEL DIF6	Adjust Slew Rate	RW	Slow Setting	Fast Setting	1	

Byte 4 is Reserved and reads back 'hFF

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R		0	
Bit 6	RID2	Revision ID	R	B rov-	0	
Bit 5	RID1		R	B rev = 0001		0
Bit 4	RID0		R			1
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001		0
Bit 1	VID1		R	- 0001 = IDT		0
Bit 0	VID0		R			1

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	Device Type1	Device Type	R	00 = FGx,	01 = DBx,	1
Bit 6	Device Type0	_ Device Type	R	10 = DMx, 11= DBx w/oPLL		1
Bit 5	Device ID5		R			0
Bit 4	Device ID4	7	R			0
Bit 3	Device ID3	Device ID	R	000111 bipa	n/ or 07 box	0
Bit 2	Device ID2		R		000111 binary or 07 hex	
Bit 1	Device ID1	7	R			1
Bit 0	Device ID0	7	R			1

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Туре	0	1	Default	
Bit 7	Reserved						
Bit 6	Reserved						
Bit 5	Reserved						
Bit 4	BC4		RW			0	
Bit 3	BC3		RW	Writing to this regist	er will configure how	1	
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0	
Bit 1	BC1		RW	= 8 b	ytes.	0	
Bit 0	BC0		RW			0	

Bytes 8 and 9 are Reserved

SMBus Table: PLL MN Enable, PD_Restore

Byte 10	Name Control Function		Туре	0	1	Default
Bit 7		Reserved				1
Bit 6	Power-Down (PD) Restore	Restore Default Config. In PD	RW	Clear Config in PD	Keep Config in PD	1
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2		Reserved				0
Bit 1	Reserved			0		
Bit 0		Reserved			0	

SMBus Table: Impedance Control

Byte 11	Name	Control Function Type 0 1				Default
Bit 7	DIF6_imp[1]	Set Zout	RW	00=33 _Ω DIF Zout	10=100 _Ω DIF Zout	see Note
Bit 6	DIF6_imp[0]		RW	01=85 _Ω DIF Zout	11 = Reserved	See Note
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2		Reserved				0
Bit 1	STP[1]	True/Complement DIF Output RW 00 = Low/Low 10 = High/Low				0
Bit 0	STP[0]	Disable State RW 01 = HiZ/HiZ 11 = Low/High				0

Note: xx41 = 10, xx51 = 01, P1 = factory programmable.

SMBus Table: Impedance Control

Byte 12	Name	Control Function	Туре	0	1	Default
Bit 7	DIF2_imp[1]	Set Zout	RW	00=33 _Ω DIF Zout	10=100 _Ω DIF Zout	
Bit 6	DIF2_imp[0]	Set Zout	RW	01=85 _Ω DIF Zout	11 = Reserved	
Bit 5	DIF1_imp[1]	Set Zout	RW	00=33 _Ω DIF Zout	10=100 _Ω DIF Zout	
Bit 4	DIF1_imp[0]	Set 200t	RW	01=85 _Ω DIF Zout	11 = Reserved	see Note
Bit 3		Reserved				SEE NULE
Bit 2		Reserved				
Bit 1	DIF0_imp[1]	Set Zout	RW	00=33 _Ω DIF Zout	10=100 _Ω DIF Zout	
Bit 0	DIF0_imp[0]	Set 2001	RW	01=85 _Ω DIF Zout	11 = Reserved	

Note: xx41 = 10, xx51 = 01, P1 = factory programmable.

SMBus Table: Impedance Control

Byte 13	Name	Control Function		0	1	Default
Bit 7	DIF5_imp[1]	Set Zout	RW	00=33 _Ω DIF Zout	$10=100_{\Omega}$ DIF Zout	
Bit 6	DIF5_imp[0]		RW	01=85 _Ω DIF Zout	11 = Reserved	
Bit 5	DIF4_imp[1]	Set Zout	RW	00=33 _Ω DIF Zout	10=100 _Ω DIF Zout	
Bit 4	DIF4_imp[0]		RW	01=85 _Ω DIF Zout	11 = Reserved	see Note
Bit 3		Reserved				SEE NULE
Bit 2		Reserved				
Bit 1	DIF3_imp[1]	Set Zout	RW	00=33 _Ω DIF Zout	10=100 _Ω DIF Zout	
Bit 0	DIF3_imp[0]		RW	01=85 _Ω DIF Zout	11 = Reserved	

Note: xx41 = 10, xx51 = 01, P1 = factory programmable.

SMBus Table: Pull-up Pull-down Control

Byte 14	Name	e Control Function Typ		0	1	Default
Bit 7	OE2_pu/pd[1]	Set Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE2_pu/pd[0]	Pull-down(Pdwn)	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE1_pu/pd[1]	Set Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE1_pu/pd[0]	Pull-down(Pdwn)	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3		Reserved				0
Bit 2		Reserved				1
Bit 1	OE0_pu/pd[1]	Set Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 0	OE0_pu/pd[0]	Pull-down(Pdwn)	01=Pdwn	11 = Pup+Pdwn	1	

Note: These values are for xx41 and xx51. P1 is factory programmable.

SMBus Table: Pull-up Pull-down Control

Byte 15	Name	Control Function	Туре	0	1	Default
Bit 7	OE5_pu/pd[1]	Set Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE5_pu/pd[0]	Pull-down(Pdwn)	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE4_pu/pd[1]	Set Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE4_pu/pd[0]	Pull-down(Pdwn)	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3		Reserved				0
Bit 2		Reserved				1
Bit 1	OE3_pu/pd[1]	B_pu/pd[1] Set Pull-up(PuP)/ R	RW	00=None	10=Pup	0
Bit 0	OE3_pu/pd[0]	Pull-down(Pdwn)	RW	01=Pdwn	11 = Pup+Pdwn	1

Note: These values are for xx41 and xx51. P1 is factory programmable.

SMBus Table: Pull-up Pull-down Control

Byte 16	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				1
Bit 4		Reserved				0
Bit 3	OE6_pu/pd[1]	Set Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 2	OE6_pu/pd[0]	Pull-down(Pdwn)	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	CKPWRGD_PD_pu/pd[1]	CKPWRGD_PD Pull-up(PuP)/ RW		00=None	10=Pup	1
Bit 0	CKPWRGD_PD_pu/pd[0]	Pull-down(Pdwn) control	Pull-down(Pdwn) control RW 01=Pdwn 11 = Pup+Pdwn			

Note: These values are for xx41 and xx51. P1 is factory programmable.

Bytes 17 is Reserved and reads back 0h00.

SMBus Table: Polarity Control

Byte 18	Name	Name Control Function Type 0 1		Default		
Bit 7	OE5_polarity	Sets OE polarity	RW	Enabled when Low	Enabled when High	0
Bit 6	OE4_polarity	Sets OE polarity	RW	Enabled when Low	Enabled when High	0
Bit 5		Reserved				0
Bit 4	OE3_polarity	Sets OE polarity	RW	Enabled when Low	Enabled when High	0
Bit 3	OE2_polarity	Sets OE polarity	RW	Enabled when Low	Enabled when High	0
Bit 2	OE1_polarity	Sets OE polarity	RW	Enabled when Low	Enabled when High	0
Bit 1		Reserved				0
Bit 0	OE0_polarity	Sets OE polarity	RW	Enabled when Low	Enabled when High	0

SMBus Table: Polarity Control

Byte 19	Name	Name Control Function Type 0		0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4		Reserved				0
Bit 3		Reserved				0
Bit 2		Reserved				0
Bit 1	OE6_polarity	OE6_polarity Sets OE polarity RW Enabled when Low Enabled when High		0		
Bit 0	CKPWRGD_PD	Sets CKPWRGD_PD polarity	RW	Power Down when Low	Power Down when High	0

Marking Diagrams

ICS	ICS	ICS
BL0741BI	BL0751BI	7P1B000I
YYWW	YYWW	YYWW
C00	COO	COO
LOT	LOT	LOT

Notes:

- "LOT" is the lot sequence number.
 "COO" denotes country of origin.
 YYWW is the last two digits of the year and week that the part was assembled.
- 4. Line 2: truncated part number
- 5. "I" denotes industrial temperature range device.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ _{JC}	Junction to Case		42	°C/W	1
	θ_{Jb}	Junction to Base		2.4	°C/W	1
Thermal Resistance	θ _{JΑ0θ}	Junction to Air, still air	NDG40	39	°C/W	1
mermai nesistance	θ_{JA1}	Junction to Air, 1 m/s air flow	NDG40	33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		28	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board

9DBL07x1
DATASHEE'

APPROVED

JH

DATE

5/17/16

REVISIONS

DESCRIPTION

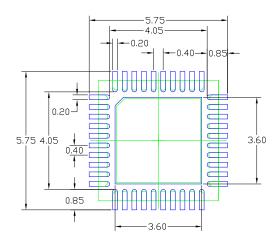
INITIAL RELEASE

REV 00

Package Outline and Dimensions (NDG40P2)

7-OUTPUT 3.3V PCIE FANOUT BUFFER

INDEX AREA $(D2/2 \times E/2)$ $(D2/2 \times E$	$\begin{array}{c} \bullet \\ \hline \\$	$ \begin{array}{ c c c c c c c } \hline & $$ DIMENSION$ \\ \hline MIN & NOM & MAX \\ \hline b & 0.15 & 0.20 & 0.25 \\ \hline D & 5.00 & BSC \\ \hline E & 5.00 & BSC \\ \hline D2 & 3.40 & 3.50 & 3.60 \\ \hline E2 & 3.40 & 3.50 & 3.60 \\ \hline L & 0.30 & 0.40 & 0.50 \\ \hline e & 0.40 & BSC \\ \hline N & 40 \\ \hline ND & 10 & (note 3) \\ \hline NE & 10 & (note 3) \\ \hline NE & 10 & (note 3) \\ \hline A & 0.80 & 0.90 & 1.00 \\ \hline A1 & 0.00 & 0.02 & 0.05 \\ \hline A3 & 0.2 & REF \\ \hline aaa & 0.10 \\ \hline bbb & 0.07 \\ \hline ccc & 0.10 \\ \hline dd & 0.05 \\ \hline eee & 0.08 \\ \hline fff & 0.10 \\ \hline \end{array} $
 ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982 ALL DIMENSIONS ARE IN MILLIMETERS. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 	DRAWN MA 05/31/10 CHECKED	6024 SILVER CREEK WWW.IDT.com FAX: (408) 284-8200 FAX: (408) 284-8200 FAX: (408) 284-3572 END/NDG40 PACKAGE OUTLINE 5.0 x 5.0 mm BODY,EPAD 3.50mm 0.40 mm PICH QFN 2E DRAWING NO. PSC-4292-02 00


DI

SHEET 1 OF 2

DO NOT SCALE DRAWING

	REVISIONS		
REV	DESCRIPTION	DATE	APPROVED
00	INITIAL RELEASE	5/17/16	JH

RECOMMENDED LAND PATTERN

NOTES:

- ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
 TOP DOWN VIEW AS VIEWED ON PCB.
 COMPONENT OUTLINE SHOWS FOR REFERENCE IN GREEN.
 LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
 LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

D	OLERANCES JNLESS SPEC DECIMAL X±.1 XX±.05 (XX±.030	ANGULAR ±1*		VALLEY CA 9513 PHONE: FAX: (40	(408) 284-82 (8) 284-3572	200
	PPROVALS	DATE	TITLEN	ID/NDG40 PACKAGE OUTI	line	
D	RAWN MA	05/31/10	5	.0 x 5.0 mm BODY,EPAI) 3.50mr	n SQ.
C	HECKED		0	.40 mm PITCH QFN		
			SIZE	DRAWING No.		REV
			С	PSC-4292-	02	00
			DO NOT SCALE DRAWING SHEET 2		OF 2	

AUGUST 1, 2017

Ordering Information

Part / Order Number	Output Impedance	Shipping Packaging	Package	Temperature
9DBL0741BKILF	100Ω	Trays	40-pin VFQFPN	-40 to +85° C
9DBL0741BKILFT	10022	Tape and Reel	40-pin VFQFPN	-40 to +85° C
9DBL0751BKILF	85Ω	Trays	40-pin VFQFPN	-40 to +85° C
9DBL0751BKILFT	0352	Tape and Reel	40-pin VFQFPN	-40 to +85° C
9DBL07P1BxxxKILF	Factory configurable. Contact	Trays	40-pin VFQFPN	-40 to +85° C
9DBL07P1BxxxKILFT	IDT for addtional information.	Tape and Reel	40-pin VFQFPN	-40 to +85° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

"B" is the device revision designator (will not correlate with the datasheet revision).

"xxx" is a unique factory assigned number to identify a particular default configuration.

Revision History

Rev.	Initiator	Issue Date	Description	Page #
A	RDW	9/19/2016	 Updated front page text Changed VDDA3.3 pin to VDD3.3, since this part has no PLL Removed references to PLL mode, since this part has no PLL Regrouped IDD values to simplify the table Updated Electrical tables to latest version, including PCIe Gen4 Updated ordering information to B rev Corrected readback of SMbus B1[1:0], B3[7], B5[4], B10[7], B16[5] - most of these are reserved bits Updated footnote text under block diagram. Updated block diagram for stylistic consistency. Updated electrical tables with char data, move to final. 	Various
В	RDW	9/28/2016	Fixed corrupted ohm symbols in Bytes 11, 12, and 13 register tables	13
С	RDW	8/1/2017	Removed reference to differential waveform in slew rate matching spec	7

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales Tech Support www.IDT.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.