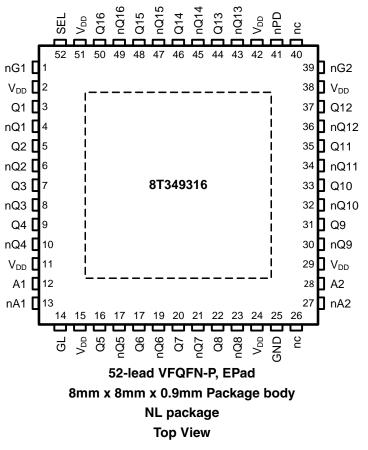

8T349316

DATASHEET

General Description

The 8T349316 is a 2.5V differential clock buffer with sixteen LVDS outputs. The fanout from a differential input to the sixteen LVDS outputs reduces loading on the preceding driver and provides an efficient clock distribution network. The 8T349316 can act as a translator from a differential HSTL, LVPECL, CML or LVDS input to LVDS output signals. A single-ended 3.3V, 2.5V LVCMOS/LVTTL input can also be used to translate to LVDS outputs. The redundant input capability allows for an asynchronous change-over from a primary clock source to a secondary clock source. Selectable reference inputs are controlled by SEL. The 8T349316 outputs can be asynchronously enabled/disabled. When disabled, the outputs will drive to the value selected by the GL pin. Multiple power and grounds reduce noise. The extended temperature range supports wireless infrastructure, telecommunication and networking end equipment requirements. The device is a member of the high-performance clock family from IDT.


Block Diagram

Features

- Clock signal selection and fanout to 16 LVDS outputs
- Guaranteed Low Skew < 50ps (max)
- Low output pulse skew < 125ps (max)
- Propagation delay < 1.75ns (max)
- Up to 1GHz clock signal operation
- Support the following input types: HSTL, LVPECL, HCSL, LVTTL
- Selectable differential input
- Power-down mode
- Full 2.5V power supply
- -40°C to +85°C ambient operating temperature
- Lead-free (RoHS 6) 52-lead VFQFN-P packaging
- Replacement device for the 5T9316

Pin Assignment

Pin Description and Pin Characteristic Tables

Table 1: Pin Descriptions

Number	Name	Туре	Description
1	nG1	Input -	Output enable control input for the Q[1:8] differential outputs. See <i>Table 3C</i> . LVCMOS/LVTTL interface levels.
2	V _{DD}	Power	Positive power supply voltage.
3	Q1	Output	Differential clock output Q1. LVDS interface signals.
4	nQ1	Output	Differential clock output Q1. LVDS interface signals.
5	Q2	Output	Differential clock output Q2. LVDS interface signals.
6	nQ2	Output	Differential clock output Q2. LVDS interface signals.
7	Q3	Output	Differential clock output Q3. LVDS interface signals.
8	nQ3	Output	Differential clock output Q3. LVDS interface signals.
9	Q4	Output	Differential clock output Q4. LVDS interface signals.
10	nQ4	Output	Differential clock output Q4. LVDS interface signals.
11	V _{DD}	Power	Positive power supply voltage.
12	A1	Input -	Differential clock signal input 1.
13	nA1	Input -	Differential clock signal input 1.
14	GL	Input -	Control input for the output level for outputs in disable state. See <i>Table 3C</i> and <i>Table 3D</i> . LVCMOS/LVTTL interface levels.
15	V _{DD}	Power	Positive power supply voltage.
16	Q5	Output	Differential clock output Q5. LVDS interface signals.
17	nQ5	Output	Differential clock output Q5. LVDS interface signals.
18	Q6	Output	Differential clock output Q6. LVDS interface signals.
19	nQ6	Output	Differential clock output Q6. LVDS interface signals.
20	Q7	Output	Differential clock output Q7. LVDS interface signals.
21	nQ7	Output	Differential clock output Q7. LVDS interface signals.
22	Q8	Output	Differential clock output Q8. LVDS interface signals.
23	nQ8	Output	Differential clock output Q8. LVDS interface signals.
24	V _{DD}	Power	Positive power supply voltage.
25	GND	Power	Power Supply Ground.
26	nc		Not connected. It is recommended to connect this pin to board GND (0V).
27	nA2	Input -	Differential clock signal input 2.
28	A2	Input -	Differential clock signal input 2.
29	V _{DD}	Power	Positive power supply voltage.
30	nQ9	Output	Differential clock output Q9. LVDS interface signals.
31	Q9	Output	Differential clock output Q9. LVDS interface signals.
32	nQ10	Output	Differential clock output Q10. LVDS interface signals.
33	Q10	Output	Differential clock output Q10. LVDS interface signals.
34	nQ11	Output	Differential clock output Q11. LVDS interface signals.

RENESAS

Table 1: Pin Descriptions

Number	Name	Туре	Description
35	Q11	Output	Differential clock output Q11. LVDS interface signals.
36	nQ12	Output	Differential clock output Q12. LVDS interface signals.
37	Q12	Output	Differential clock output Q12. LVDS interface signals.
38	V _{DD}	Power	Positive power supply voltage.
39	nG2	Input	Output enable control input for the Q[9:16] differential outputs. See <i>Table 3D</i> . LVCMOS/LVTTL interface levels.
40	nc	-	- Not connected. It is recommended to connect this pin to board GND (0V).
41	nPD	Input	- Device power-down control input. See <i>Table 3B</i> . LVCMOS/LVTTL interface levels.
42	V _{DD}	Power	Positive power supply voltage.
43	nQ13	Output	Differential clock output Q13. LVDS interface signals.
44	Q13	Output	Differential clock output Q13. LVDS interface signals.
45	nQ14	Output	Differential clock output Q14. LVDS interface signals.
46	Q14	Output	Differential clock output Q14. LVDS interface signals.
47	nQ15	Output	Differential clock output Q15. LVDS interface signals.
48	Q15	Output	Differential clock output Q15. LVDS interface signals.
49	nQ16	Output	Differential clock output Q16. LVDS interface signals.
50	Q16	Output	Differential clock output Q16. LVDS interface signals.
51	V _{DD}	Power	Positive power supply voltage.
52	SEL	Input	Reference input signal select control pin. See <i>Table 3A</i> . LVCMOS/LVTTL interface levels.
—	GND	Power	Exposed package ground supply voltage (GND). Connect to board GND.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance	GL, nG1, nG2, nPD, SEL			3	pF

Logic Truth Tables

Table 3A: Input Signal Source Select¹

SEL	Input Selection
0	A2
1	A1

1. Asynchronous control.

Table 3B. Device Power-down control¹

nPD	Power-down Operation				
0	Power-down mode of the entire device. Input and outputs disable and the output voltage is V_{DD} (for each Q1, nQ1 to Q16, nQ16 pair) ²				
1	Normal Operation				
1 Asynchron	Asynchronous control				

Asynchronous control.

2. Disable outputs by setting nG1 = nG2 = 1 before entering power-down mode and while in power-down mode. To enter normal device operation, first enable the outputs by setting nG1 = nG2 = 0 before setting nPD = 1.

Table 3C. Output Q[1:8] Enable Control¹

GL	nG1	Q1 to Q8 Output State
Х	0	Enabled (active)
0	1	Disabled, output state is logic low (Q[1:8] = L, nQ[1:8] = H)
1	1	Disabled, output state is logic high (Q[1:8] = H, nQ[1:8] = L)

1. Asynchronous controls.

Table 3D. Output Q[9:16] Enable Control¹

GL	nG2	Q9 to Q16 Output State
х	0	Enabled (active)
0	1	Disabled, output state is logic low (Q[9:16] = L, nQ[9:16] = H)
1	1	Disabled, output state is logic high (Q[9:16] = H, nQ[9:16] = L)

1. Asynchronous controls.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4. Absolute Maximum Ratings

Item	Rating	
Supply Voltage, V _{DD}	-0.5V to 3.6V	
Input Voltage	-0.5V to 3.6V	
Output Voltage	-0.5V to V _{DD} + 0.5V and <3.6V	
Outputs, I _O (LVDS) Continuous Current Surge Current	10mA 15mA	
Storage Temperature	-65°C to 150°C	
Thermal Junction Temperature, T _J	125°C	

Table 5. Recommended Operating Range

Item	Minimum	Typical	Maximum	Units
Supply Voltage, V _{DD}	2.3	2.5	2.7	V
Ambient Temperature	-40		+85	°C

DC Electrical Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.3	2.5	2.7	V
I _{DD}	Core and Output Power Supply Current	V _{DD} = 2.7V, f _{REF} = 1GHz			360	mA
I _{DDQ}	Core and Output Power Supply Current	V _{DD} = Maximum, A1, nA1 and A2, nA2 at Logic Low Level, Q[1:16] outputs Enabled			350	mA
I _{DD, PD}	Power-down Core and Output Power Supply Current	nPD = 0			5	mA

Table 6A. Power Supply DC Characteristics, V_{DD} = 2.5V±10%, T_A = -40°C to +85°C

Table 6B. LVCMOS/LVTTL DC Characteristics, V_{DD} = 2.5V ±10%, T_{A} = -40°C to +85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I _{IH}	Input High Voltage	nPD, nG1, nG2, GL	V _{DD} = 2.7V			150	μA
I _{IL}	Input Low Voltage	nPD, nG1, nG2, GL	V _{DD} = 2.7V	-10			μA
V _{IH}	DC Input High	nPD, nG1, nG2, GL		1.7		3.6	V
V _{IL}	DC Input Low	nPD, nG1, nG2, GL		-0.3		0.7	V

Table 6C. Differential Input DC Characteristics, $V_{DD} = 2.5V \pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C^{-1}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
IIH	Input High Voltage	A1, nA1, A2, nA2	V _{DD} = 2.7V			150	μA
IIL	Input Low Voltage	A1, nA1, A2, nA2	V _{DD} = 2.7V	-10			μA
V _{PP}	Peak-to-Peak Voltage1			0.15		3.6	V
V _{CMR}	Common Mode	e Input Voltage ^{1, 2}		0.5		V _{DD}	V

V_{IL} should not be less than -0.3V.
 Common mode input voltage is defined at the crosspoint.

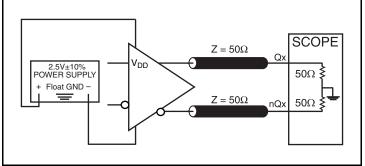
Table 6D. LVDS DC Characteristics, $V_{DD} = 2.5V \pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		247		454	mV
ΔV_{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.125	1.2	1.375	V
ΔV_{OS}	V _{OS} Magnitude Change				50	mV
IOS	Outputs Short Circuit Current	Q_X and $nQ_X = 0V$		12	24	mA
IOSD	Differential Outputs Short Circuit Current	$Q_X = nQ_X$		6	12	mA

AC Electrical Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical Maximum	Units	
f _{OUT}	Output Frequency	Q[1:16]				1	GHz
t _{PD}	Propagation Delay	LH and HL	A1, A2 to Q[1:16]		1.4	1.75	ns
		Output Enable	nG1, nG2 to Q[1:16]			3.5	ns
		Output Disable	nG1, nG2 to Q[1:16]			3.5	ns
		Powered-down	nPD to Q, $nQ = V_{DD}$			100	μs
		Powered-down	nPD to Q, nQ = Logic Level defined by the Selected Input			100	μs
<i>t</i> sk(o)	Output Skew ^{2 3}	Q[1:16]			12	50	ps
<i>t</i> sk(p)	Output Pulse Skew	Q[1:16]			20	125	ps
<i>t</i> sk(pp)	Part-to-Part Skew ⁴	Q[1:16]				300	ps

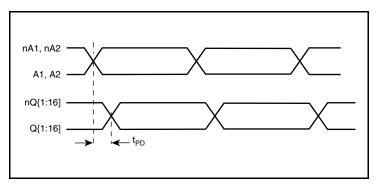
Table 7. AC Characteristics, $V_{DD} = 2.5V \pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C^1$

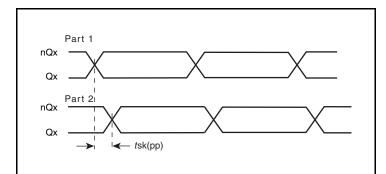

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

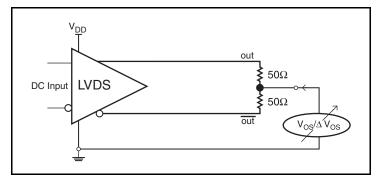
2. This parameter is defined in accordance with JEDEC standard 65.

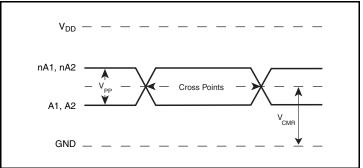
3. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross point.

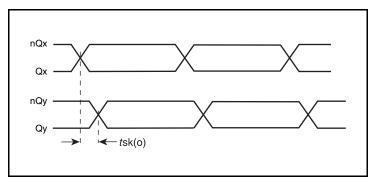
4. Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross point.

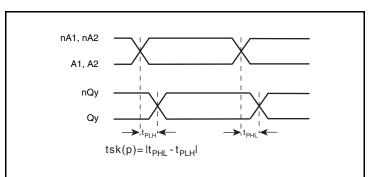

Parameter Measurement Information

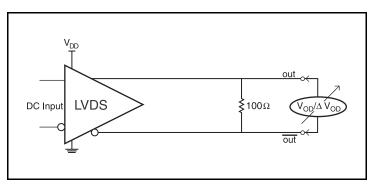





Propagation Delay


Part-to-Part Skew


Offset Voltage Setup


Differential Input Level

Pulse Skew

Differential Output Voltage Setup

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

Ax/nAx Clock Inputs

For applications not requiring the use of the differential input, Ax should be pulled up with a $10k\Omega$ resistor and nAx pulled down with a $10k\Omega$ resistor.

LVCMOS Control Pins

All control pins have internal pullup or pulldown resistors; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Outputs:

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, there should be no trace attached.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_1 = V_{DD}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V₁ in the center of the input voltage swing. For example, if the input clock swing is 2.5V and V_{DD} = 3.3V, R1 and R2 value should be adjusted to set V₁ at 1.25V. The values below are for when both the single ended swing and V_{DD} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50 Ω applications, R3 and R4 can be 100 Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3V and V_{IH} cannot be more than V_{DD} + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.



Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels.

LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90 Ω and 132 Ω . The actual value should be selected to match the differential impedance (Z_0) of your transmission line. A typical point-to-point LVDS design uses a 100 Ω parallel resistor at the receiver and a 100 Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in *Figure 2A* can be used

with either type of output structure. *Figure 2B*, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

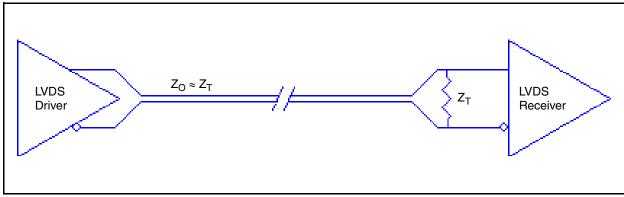


Figure 2A. Standard LVDS Termination

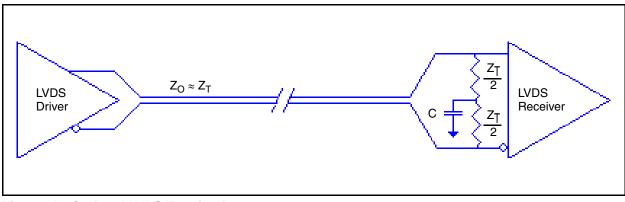


Figure 2B. Optional LVDS Termination

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 3*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

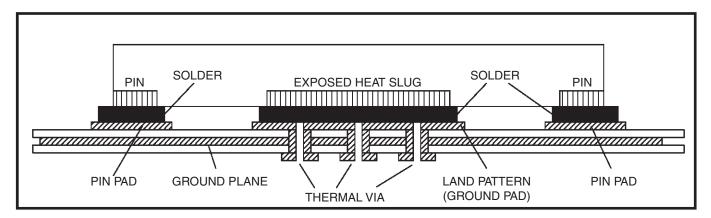


Figure 3. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale).

Power Considerations

This section provides information on power dissipation and junction temperature for the 8T349316. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8T349316 is the sum of the core power plus the output power dissipation due to the load. The following is the power dissipation for $V_{DD} = 2.5V + 10\% = 2.700V$, which gives worst case results.

The maximum current at 85°C is as follows:

 $I_{DD_MAX} = 360 \text{mA}$

Power (core)MAX = V_{DD_MAX} * I_{DD_MAX} = 2.7V * 360mA = 972mW
 Total Power MAX = 972mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + TA

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 33°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.972W * 33^{\circ}C/W = 117.1^{\circ}C$. This is below the limit of $125^{\circ}C$.

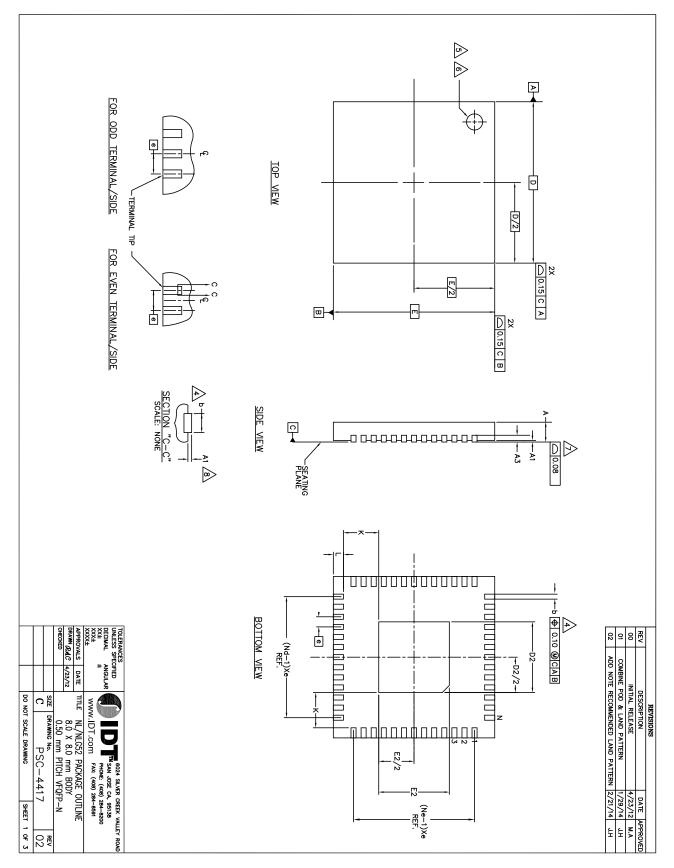
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 52-Lead VFQFN, Forced Convection

θ_{JA} at 0 Air Flow					
Meters per Second	0	1	2		
Multi-Layer PCB, JEDEC Standard Test Boards	33.0°C/W	29.76°C/W	28.27°C/W		

Reliability Information

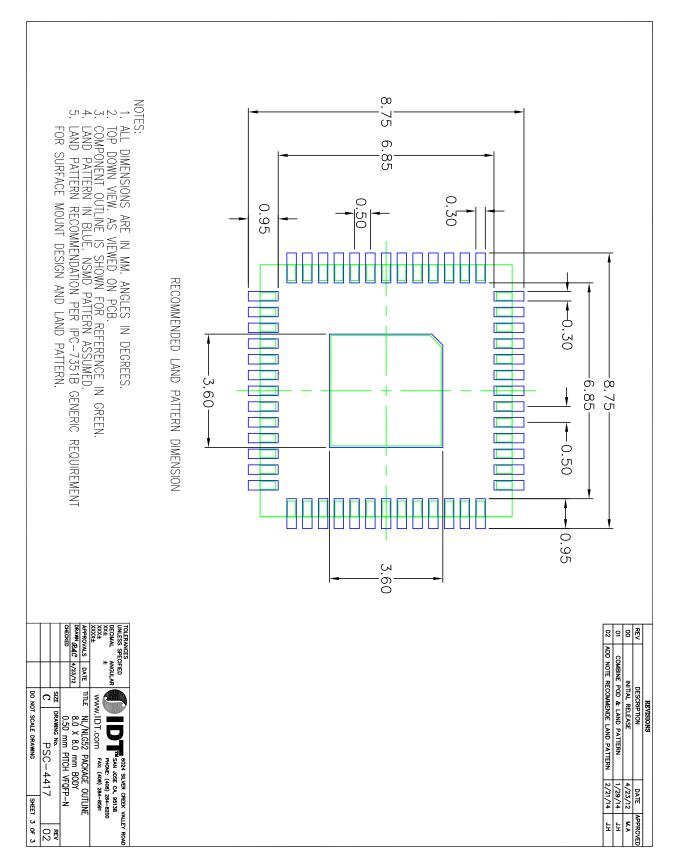
Table 8. θ_{JA} vs. Air Flow Table for a 52-lead VFQFN Package


θ_{JA} vs. Air Flow					
Meters per Second	0	1	2		
Multi-Layer PCB, JEDEC Standard Test Boards	33.0°C/W	29.76°C/W	28.27°C/W		

Transistor Count

The transistor count for 8T349316 is: 1821

52-Lead VFQFN Package Outline


52-Lead VFQFN Package Outline, (continued)

RENESAS

TOLERANCES UNLESS SPECIFIED DECMAL XXXL BORTIFISM JOSE CA, 19178 DECMAL XXXL March Less XXXL March Less XXXL March Less XXXL March Less XXXL APPROVALS XXXL DATE TITLE NL/NLG52 PACKAGE OUTLINE MARCH AL2X/YZ 0.50 mm MDTCH VFQFP-N REV REV OECKED C DRAWNG No. REV Q2 OD NOT SCALE DRAWNG SHEET 2 OF 3	 <u>VOT</u> AN ACTUAL IO. 10. THIS OUTLINES CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-220, VARIATION VLLD-1, VLLD-2, VLLD-4 & VLLD-5 WITH THE EXCEPTION OF D2 & E2. 11. DIMENSIONS D2 & E2 VARY DEPENDING ON DEVICE, SUPPLIER, ETC.
	 NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M 1994. 2. N IS THE NUMBER OF TERMINALS. Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION & Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION. 3. ALL DIMENSIONS ARE IN MILLIMETERS. ADIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.30mm FROM TERMINAL TIP. BETWEEN 0.20 AND 0.30mm FROM TERMINAL TIP. BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY. APPLIED TO EXPOSED FAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING. APPLIED ONLY FOR TERMINALS.
	N VARIATION VLD-4 N N NOM MAX N N N 0.50 BSC N N N N N N 0.50 BSC 13 2 N
REV DESCRIPTION DATE APPROVED 00 INITIAL RELEASE 4/23/12 M.A 01 COMBINE POD & LAND PATTERN 1/25/14 J.H 02 ADD NOTE RECOMMENDED LAND PATTERN 2/21/14 J.H	

2.5V LVDS 1:16 CLOCK FANOUT BUFFER

RENESAS

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8T349316NLGI	IDT8T349316NLGI	"Lead-free" 52-lead VFQFN-P	Tray	-40°C to +85°C
8T349316NLGI8	IDT8T349316NLGI	"Lead-free" 52-lead VFQFN-P	Tape & Reel	-40°C to +85°C

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.