1024x1 BIT BIPOLAR RAM (82S10) TRI-STATE (8211) 82S10 82S11 OPEN COLLECTOR (82S10) TRI-STATE (8211)

FEBURARY 1975 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S10/11 is a high speed 1024-bit random access memory organized as 1024 words X 1 bit. With a typical access time of 30ns, it is ideal for cache buffer applications and for systems requiring very high speed main memory.

Both the 82S10 and 82S11 require a single +5 volts power supply and feature very low current PNP input structures. They are fully TTL compatible, and include on-chip decoding and a chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.

Both 82S10 and 82S11 devices are available in the commercial and military temperature ranges. For the commercial temperature range (0°C to +75°C) specify N82S10/11, I. For the military temperature range (-55°C to +125°C) specify S82S10/11, I.

FEATURES

- ORGANIZATION 1024 X 1
- ADDRESS ACCESS TIME:

S82S10/11 - 70ns, MAXIMUM N82S10/11 - 45ns, MAXIMUM

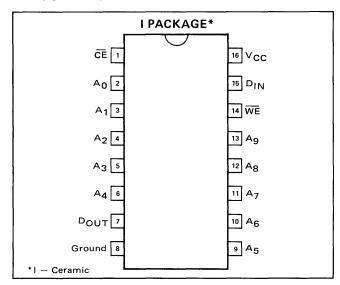
WRITE CYCLE TIME:

S82S10/11 - 75ns, MAXIMUM N82S10/11 - 45ns, MAXIMUM

- POWER DISSIPATION 0.5mW/BIT, TYPICAL
- INPUT LOADING:

 $$82$10/11 - (-150\mu A) MAXIMUM$ $N82S10/11 - (-100\mu A) MAXIMUM$

- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS:

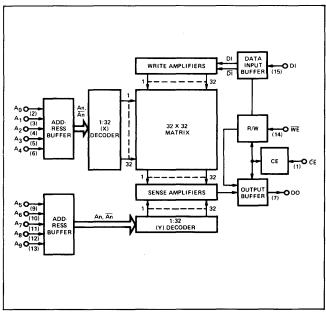

82S10 - OPEN COLLECTOR **82S11 - TRI-STATE**

- NON-INVERTING OUTPUT
- BLANKED OUTPUT DURING WRITE
- 16 PIN CERAMIC PACKAGE

APPLICATIONS

HIGH SPEED MAIN FRAME CACHE MEMORY BUFFER STORAGE WRITABLE CONTROL STORE

PIN CONFIGURATION



TRUTH TABLE

MODE	CE W	WE	DIN	DOUT				
			- 114	82S10	82\$11			
READ	0	1	Х	STORED	STORED			
				DATA	DATA			
WRITE "0"	0	0	0	1	High-Z			
WRITE "1"	0	0	1	1	High-Z			
DISABLED	1	Х	Х	1	High-Z			

X = Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

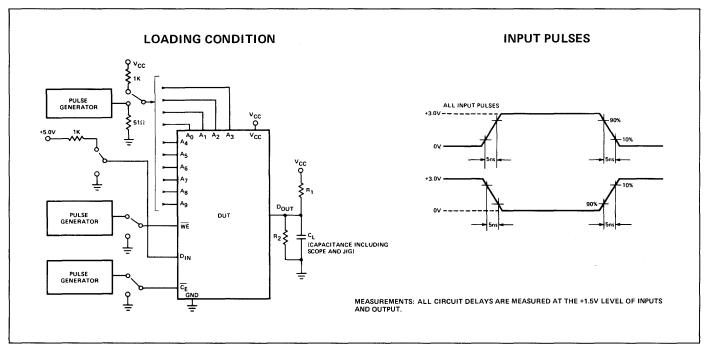
	PARAMETER ¹	RATING	UNIT	
V _{CC}	Power Supply Voltage	+7	Vdc	
V _{in}	Input Voltage	+5.5	Vdc	
V _{OH}	High Level Output Voltage (82S10)	+5.5	Vdc	
v _o	Off-State Output Voltage (82S11)	+5.5	Vdc	
TA	Operating Temperature Range (N82S10/11) (S82S10/11)	0° to +75° -55° to +125°	°c °c	
T _{stg}	Storage Temperature Range	-65° to +150°	°C	

ELECTRICAL CHARACTERISTICS9

S82S10/11 -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5 N82S10/11 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25

PARAMETER		77.07.001.01.01.0	\$82\$10/11			N82S10/11			
		TEST CONDITIONS	MIN	TYP ²	MAX	MIN	TYP ²	MAX	UNIT
V _{IL}	Low Level Input Voltage	V _{CC} = MIN (Note 1)			.80			.85	٧
V_{IH}	High Level Input Voltage	V _{CC} = MAX (Note 1)	2.1			2.1			V
V _{IC}	Input Clamp Voltage	V _{CC} = MIN, I _{IN} = -12mA (Note 1, 7)		-1.0	-1.5		-1.0	-1.5	V
V _{OL}	Low Level Output Voltage	V _{CC} = MIN, I _{OL} = 16mA (Note 1, 8)		0.35	0.50	!	0.35	0.45	V
V _{OH}	High Level Output Voltage (82S11)	V _{CC} = MIN, I _{OH} = -2mA (Note 1, 5)	2.4			2.4			V
I _{OLK}	Output Leakage Current (82S10)	V _{CC} = MAX, V _{OUT} = 5.5V (Note 6)		1	60		1	40	μΑ
I _{O(OFF)}	Hi-Z State Output Current (82S11)	$V_{CC} = MAX, V_{OUT} = 5.5V$ $V_{CC} = MAX, V_{OUT} = 0.45V$ (Note 6)		1 -1	100 -100		1 -1	60 -60	μA μA
I _{IL}	Low Level Input Current	V _{IN} = 0.45V		-10	-150		-10	-100	μΑ
l _{IH}	High Level Input Current	V _{IN} = 5.5V	İ	1	40		1	25	μΑ
los	Short Circuit Output Current (82S11)	$V_{CC} = MAX, V_{OUT} = 0V$ (Note 3)	-20		-100	-20		-100	mA
Icc	V _{CC} Supply Current	$V_{CC} = MAX \text{ (Note 4)}$ $0 < T_A < 25^{\circ}C$ $T_A \ge 25^{\circ}C$ $T_A \le 0^{\circ}C$		120 95	155 130 170		120 95	155 130 170	mA mA mA
C _{IN}	Input Capacitance	$V_{CC} = 5.0V, V_{IN} = 2.0V$		4			4		pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V, V_{OUT} = 2.0V$		7			7		pF

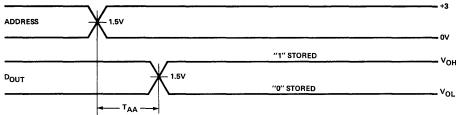
NOTES:

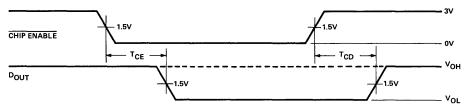

- 1. All voltage values are with respect to network ground terminal.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.
- 3. Duration of the short-circuit should not exceed one second.
- 4. I_{CC} is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5V, and the output open.
- 5. Measured with V_{IL} applied to \overline{CE} and a logic "1" stored.
- 6. Measured with V_{IH} applied to CE.
- 7. Test each input one at the time.
- 8. Measured with a logic "0" stored. Output sink current is supplied through a resistor to $V_{\hbox{\footnotesize{CC}}}$.
- 9. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
 - $\phi_{
 m JA}$ Junction to Ambient at 400 fpm air flow 50 $^{\circ}$ C/Watt
 - $\phi_{
 m JA}$ Junction to Ambient still air 90° C/Watt
 - $\phi_{
 m JA}$ Junction to Case 20 $^{\circ}$ C/Watt

SWITCHING CHARACTERISTICS³

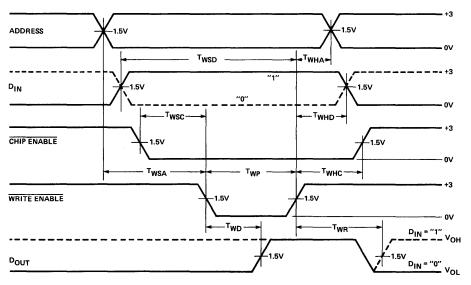
S82S10/11 -55° C \leq T_A \leq +125 $^{\circ}$ C, 4.5V \leq V_{CC} \leq 5.5 N82S10/11 0° C \leq T_A \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25


PARAMETER		TEST CONDITIONS	S82S10/11			N82S10/11			LINIT
			MIN	TYP ¹	MAX	MIN	TYP ¹	MAX	UNIT
Propaga	ation Delays								
T _{AA}	Address Access Time			30	70		30	45	ns
T_{CE}	Chip Enable Access Time			15	45		15	30	ns
T _{CD}	Chip Enable Output Disable Time			15	45		15	30	ns
T _{WD}	Write Enable to Output Disable Time			20	45		20	30	ns
T _{WR}	Write Recovery Time	1		20	45		20	30	ns
Write Set-up Times		C _L = 30pF							i
T _{WSA}	Address to Write Enable	$R_1 = 270\Omega$ $R_2 = 600\Omega$	15	0		5	0		ns
T _{WSD}	Data In to Write Enable	2	55	35		40	35		ns
T_{WSC}	CE to Write Enable		5	0		5	0		ns
Write Hold Times									
T _{WHA}	Address to Write Enable		10	0		5	0	<u> </u>	ns
T_{WHD}	Data In to Write Enable		5	0		5	0		ns
T _{WHC}	CE to Write Enable		5	0		5	0		ns
T_{WP}	Write Enable Pulse Width (Note 2)		50	25		35	25	İ	ns


AC TEST LOAD


- 1. Typical values are at V_{CC} = +5.0V, and T_A = +25° C. 2. Minimum required to guarantee a WRITE into the slowest bit.
- 3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
 - $heta_{ extsf{JA}}$ Junction to Ambient at 400 fpm air flow 50 $^{\circ}$ C/Watt
 - $\theta_{\rm JA}$ Junction to Ambient still air 90° C/Watt $\theta_{\rm JA}$ Junction to Case 20° C/Watt

SWITCHING PARAMETERS MEASUREMENT INFORMATION



CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

READ CYCLE

MEMORY TIMING DEFINITIONS

T _{WR}	Delay between end of WRITE ENABLE pulse and when DATA OUTPUT becomes valid. (Assuming	T _{WHD}	Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.
	ADDRESS still valid—not as shown.)	T_{WP}	Width of WRITE ENABLE pulse.
T _{CE}	Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT		Required delay between beginning of valid ADD-RESS and beginning of WRITE ENABLE pulse.
T _{CD}	becomes valid. Delay between when CHIP ENABLE becomes high	T _{WSD}	Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
TAA	and DATA OUTPUT is in off state. Delay between beginning of valid ADDRESS (with	T_{WD}	Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT is in off state.
· AA	CHIP ENABLE low) and when DATA OUTPUT becomes valid.		Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
T _{WSC}	Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.	T_{WHA}	Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.