INTEL CORP (UP/PRPHLS)

intal.

E?7E D I 482L17?5 0127369 521

PRELIMINARY

Intel486™ DX
MICROPROCESSOR

Binary Compatible with Large
Software Base

— MS-DOS*, 0S/2**, Windows*
— UNIX*** System V/386

— iRMX®, iRMK Kernels

High Integration Enables On-Chip

-8 Kbyte Code and Data Cache

— Floating Point Unit

— Paged, Virtual Memory Management

Easy To Use

-~ Built-In Self Test

— Hardware Debugging Support

— Intel Software Support

— Extensive Third Party Software
Support

IEEE 1149.1 Boundary Scan
Compatibility
— Available on 50 MHz Version Only

Upgradable to Intel OverDrive™
Processor

168-Pin Grid Array Package

High Performance Design

— RISC integer Core with Frequent
Instructions Executing in One Clock

— 25 MHz, 33 MHz, and 50 MHz Clock

— 80, 106, 160 Mbyte/sec Burst Bus

— CHMOS IV and CHMOS V Process
Technology

- Dynamic Bus Sizing for 8-, 16-, and
32-Bit Busses

Complete 32-Bit Architecture
— Address and Data Busses

— Registers

— 8-, 16- and 32-Bit Data Types

Multiprocessor Support

— Multiprocessor Instructions

- Cache Consistency Protocols

- Support for Second Level Cache

The Intel486 CPU offers the highest performance for DOS, 0S/2, Windows, and UNIX System V/386 applica-
tions. It is 100% binary compatible with the Intel386™ CPU. Over one million transistors integrate the RISC
integer core, 8 Kbyte cache memory, floating point hardware, and memory management on-chip while retain-
ing binary compatibility with previous members of the Intel386/intel486 architectural family. The RISC integer
core executes frequently-used instructions in one cycle, providing leadership performance levels. An 8 Kbyte
unified code and data cache allow the high performance levels to be sustained. A 160 MByte/sec burst bus at
50 MHz ensures high system throughput even with inexpensive DRAMSs.

Intel486™ Microprocessor Pipelined 32-Bit Microarchitecture

44 it tnterunit Transter Bus

November 1383
Order Number: 240440-008

£
[32-bit Data Bus /
|4 31
32-bit Dola Bus y A
31
Linser Address Bus
b 3 3 Bue intertooe AZ-A31,
S o€09-pEI#
Segmentation 1| Fco, PoT
Borrel shitr | Som/ it Foore A Cache Unit £ Addrons Drivers [guuomeetp
32
red Owwcriptor " weite Buth
Ragleter File = I 20 a Byle - %80
2 Shysioal Cache 37 Becemcccenncan
Limit and Tranelation Address DO-D31
ALY Attributs Lackaslde Data Bus e
[,V Buffer ADS® W/Re D/CS
> Y i Rore Loks ocxe
r '"3 Bus Contrel BOFF® AZOM® BREQ
i
uset Sequencer
e/ Pt - Hond oo
mioro-instrugtion 52 -
Code 32 Byte Code BROY® WASTS
h 4 v Streom a. Surst Sue Control
Floating Control and £ P N j—
h_—-’ Point Test METY Bytas 5160 BS8
H unlit ontt o Decade 2 Bus Size Contral
" Decoded KEN® FLUSH®
ANOL -
F.P. Register Centrol '”"‘;"“"‘" Cache Controb
Flis ou P — lecemeacanaa- ol
Perity Generation DPO-0PY
and
e
Roundary Scan
Centrel 1——;#
{50 unz aaty) T00
240440-1

2-211

MITLY

INTEL CORP (UP/PRPHLS) L7E D EE 4826175 0127370 243 EEITLL

Intel486™ DX MICROPROCESSOR an @

New features enhance multiprocessing systems; new instructions speed manipulation of memory-based sem-
aphores; and on-chip hardware ensures cache consistency and provides hooks for muitilevel caches.

The built-in self-test extensively tests on-chip logic, cache memory, and the on-chip paging translation cache.
Debug features include breakpoint traps on code execution and data accesses.

The Intel OverDrive Processor provides optional overall performance upgrade capability for users who want to
increase their system performance up to 70% on DOS, Windows, 0S/2 and Unix applications.

Intel386, Intel387, Inteld86, i486, OverDrive, and OverDrive Ready are trademarks of Intel Corporation.
*MS-DOS and Windows are registered trademarks of Microsoft Corporation.
**0S/2 is a trademark of International Business Machines Corporation.
***UNIX is a trademark of UNIX Systems Laboratories,

2212 - PRELIMINARY I

INTEL CORP (UP/PRPHLS) G7E D EH 482b6175 0127371 LAT EEITLI

Intel486™ MICROPROCESSOR

CONTENTS PAGE CONTENTS PAGE
1.0 TABLE OF CONTENTS 2213 2-;2 2"’“2'9 F:”_"t' N 2-260
. .7.9 Floating Point Interrup
Pinout ... 2-217 VECIOTS .+ oo, 2.260
Quick PinReference 2-225
Component and RevisioniD 2.230 3:0 REAL MODE ARCHITECTURE2-262
3.1 Real Mode Introduction 2-262
20 ARCH'TECTURAL OVERVIEW2:231 3.2 Memory Addressing 2.262
21 Reglther SeAt h """""""""" 2231 3.3 Reserved Locations 2-263
2.1.1 Base Architecture
ROGISIEMS - ereeerereneeen. 2.232 34interruptscoiiiiiiin,

2.1.2 System Level Registers 2-236 3.5 Shutdown and Halt

2.1.3 Floating Point Registers 2-240 4.0 PROTECTED MODE

2.1.4 Debug and Test Registers .. 2-247 ARCH”ECTPRE """"""""""

2.1.5 Register Accessibility 2.247 4.1 Introduction

2.1.6 Compatibility 2.248 4.2 Addressing Mechanism 2-264
2.2 Instruction Set 2-249 4.3 Segmentation 2265
2.3 Memory Organization 2-249 4.3.1 Segmentation Introduction .. 2-265

2.3.1 Address Spaces 2.249 432 Termiur\ology """""""" 2-265

2.3.2 Segment Register Usage ... 2250 4.3.3 Descriptor Tables 2-265
2.41/O SPACE +vvveeeeaeaannnn 2.950 4.3.4 Descriptors 2-267
25 Addressing Modesoeuun.n, 2.251 4.4 Protectionoviiiiiiinainnn 2-275

2.5.1 Addressing Modes 4.4 1 Protection Concepts 2-275

Overviewcooeen 2.251 4.4.2 Rules of Privilege 2-276

2.5.2 Register and Immediate 4.4.3 Privilege Levels 2-276

Modes st e 2251 4.4 .4 Privilege Level Transfers 2-277
2'%%35;8“ Memory Addressing 2.251 445CallGates 2-280
2 5.4 Differences between 16- and 446 Ta_tsk §w1tchmg s 2-280
32-Bit Addresses 2-253 4.4.7 Initialization and Transition to
2.6 Data Formats 0053 ProtectedMode 2-281
Ly e 4.4.8 Tools for Building Protected
26.1 Ea‘a Types e 2253 SYSTOMS . ovvrenreinnnnnnns 2282
2.6.2 Little Endian vs Big Endian : .
Data FOrmatsoooomonnn 5.057 4.5 Paging RIS ERRRERELE 2-282
27Interrupts ... 2257 4.5.1 Paging Concepts 2-282
2.7.1 Interrupts and Exceptions ... 2-257 ::g Eagmi Orglaslz:mofn """" 2:283
; .5.3 Page Level Protection

2.7.2 Interrupt Processing 2.257 (R/W, U/SBUS) «...oeeenennnn 2.284

2.7.3 Maskable Interrupt 2-258 4.5.4 Page Cacheability

2.7.4 Non-Maskable interrupt 2-259 _ (PWT,PCDBits) 2-285

2.7.5 Software Interrupts 2.259 4.5.5 Translation Lookaside

276 lnterrupt and Exception Bufferccooiil 2-285

Prioritiescooiinl 2-259 4.5.6 Paging Operation 2-286

2.7.7 Instruction Restart 2-260 4.5.7 Operating System

Responsibilities 2-287

INTEL CORP (UP/PRPHLS)

2.-214

G?E D W 482bLl7?5 0127372 0lb EMITLL

CONTENTS PAGE CONTENTS PAGE
4.6 Virtual 8389 Environment 2-287 6.2.6 BusControl 2-301
4.6.1 Executing 8389 Programs ... 2.287 Address Status Output
4 6 2 Vlrtua' 8389 Address‘ng (AD #) 2'301
Mechanism 2-287 Non-Burst Ready Input
4.6.3 Paging in Virtual Mode 2.287 (RDY#) ..o 2801
4.6.4 Protection and Virtual 8389 6.2.7 Burst Control 2-301
Mode to 1/0 Permission Burst Ready Input
Bitmapc.ovveeiieiiia 2-288 (BRDY#)eentn.... 2301
4.6.5 Interrupt Handling 2-289 Burst Last Output
4.6.6 Entering and Leaving Virtual (BLAST#)c.eeee 2.302
8389 Modeh.l 2-290 6.2.8 Interrupt Signals 2-302
5.0 ON-CHIP CACHE 2208 Reset Input (RESET) 2:302
- : Maskable Interrupt Request ’
5.1 Cache Organization 2-293 INPUt INTR) +.voe e 2.302
5.2 CacheControl 2-294 Non-Maskable Interrupt
5.3CachelineFills 2294 Request input (NM)) 2-302
5.4 Cache Line Invalidations 2-295 6.2.9 Bus Arbitration Signals 2-302
5.5 Cache Replacement 2-295 Bus Request Output
5.6 Page Cacheability 2.296 éBHiQ)IJF-‘ -------- e 2-302
: ’ us Hold Request Input
:'Z ga°:9 F'f“‘"? e 2297 (HOLD)cccvrvennnn... 2.302
.8 Caching Translation Lookaside Bus Hold Acknowledge
BufferEntries 2-297 Output (HLDA) ...vvoreoeo 2.303
6.0 HARDWARE INTERFACE 2.298 Backoff input (BOFF #) 2-303
6.1 Introduction 2-298 6.2.10 Cache invalidation 2-303
6.2 Signal Descriptions 2-299 Address Hold Request Input
6.2.1 Clock (CLK) vvvvvvnnn.n. .. 2.209 g‘HOL'-':)A-d-é ~~~~~ P 2-303
6.2.2 Address Bus xterna ress Valid Input
(A31 _A2, BEO# _BES #) 2-299 (EAD) ------------- . ------- 2‘303
6.2.3 Data Lines (D31-D0) 2.300 6.231 Cathe Con'trol 2-304
: ache Enable Input
6'2;‘ t"i""_’&‘l' PPN 2-300 (KEN#) ..o 2-304
B Dpgy NPut/Lutputs Cache Flush Input
:DD??;;P?) o 2-300 (FLUSH#) .o 2.304
anity Status Dutpu 6.2.12 Page Cacheablllty Outputs
(PCHK#) e 2-300 (PWT,PCD) oo 2.304
e'zjllglf %"/‘210337::" """" 2:300 6.2.13 Numeric Error Reporting ... 2-304
: ! g Floating Point Error Output
g”‘p:‘ts e 2300 (FERR#)ocvennnne.. 2304
us Lock Outpu
g nore Numeric Error input
'(DLOC: *Z P 2300 (ERRE S oo crorinet 2305
seudo-Lock Outpu
6.2.14 Bus Size Control
(PLOCK#)cooivvnnnn.nn, 2-301 (BS16#, BSBH) 2.305

INTEL CORP (UP/PRPHLS)

CONTENTS PAGE
6.2.15 Address Bit 20 Mask '
(A20M#) ... 2-305
6.2.16 Boundary Scan Test
Signalscoiiiiiinnen. 2-305
Test Clock (TCK) 2-305
Test Mode Select (TMS) 2-305
Test Data Input (TD{) 2-306
Test Data Output (TDO) 2-306
6.3 WriteBuffers 2-306
6.3.1 Write Buffers and I/0 '
Cyclesccovvvvivininene 2-307
6.3.2 Write Buffers Implications on
Locked Bus Cycles 2-307
6.4 Interrupt and Non-Maskable
Interrupt Interface 2-307
6.4.1 Interrupt Logic 2-307
6.42NMlLogic 2-308
6.5 Reset and Initialization 2-308
6.5.1 Pin State during Reset 2-309
7.0 BUS OPERATION 2-311
7.1 Data Transfer Mechanism 2-311

7.1.1 Memory and 1/0 Spaces 2-311

7.1.2 Memory and I/O Space
Organization 2312

7.1.3 Dynamic Data Bus Sizing ... 2-313
7.1.4 Interfacing with 8-, 16- and

32-bit Memories 2-314
7.1.5 Dynamic Bus Sizing during

Cache LineFills 2-318
7.1.6 Operand Alignment 2-316

7.2 Bus Functional Description 2-317

7.2.1 Non-Cacheable Non-Burst

SingleCycle 2-317
7.2.2 Multiple and Burst Cycle Bus

Transfers ...l 2-318
7.2.3 Cacheable Cycles 2-322
7.2.4 BurstMode Details 2-325
7.25 8-and 16-BitCycles 2-329
7.26 LockedCycles 2-331
7.2.7 Pseudo-Locked Cycles2-332
7.28 InvalidateCycles 2.332
7.29 BusHold 2-336

7.2.10 Interrupt Acknowledge 2-336

CONTENTS PAGE
. 7.2.11 Special Bus Cycles 2-339
7.2.12BusCycle Restart 2-340
7.213BusStates 2-341
7.2.14 Floating Point Error
HandlingoL0 2-342
7.2.15 Floating Point Error Handling
in AT Compatible Systems 2-342
8.0 TESTABILITYcccoveeunn 2-344
8.1 Built-in Self Test (BIST) 2-344
8.2 On-Chip Cache Testing 2-344
8.2.1 Cache Testing Registers TR3,
TR4andTRS
Cache Data Test Register:
TR

......................... 2-345
Cache Control Test Register:
......................... 2-345
8.2.2 Cache Testability Write 2-345
8.2.3 Cache Testability Read 2-347
8.24FlushCache 2-347
8.3 Translation Lookaside Buffer (TLB)
Testingoovvvviiiiiiiiiienan 2-347
8.3.1 Translation Lookaside Buffer
Organization 2-347
8.3.2 TLB Test Registers: TR6 and
TR7 e 2-348
Command Test Register:
......................... 2-349
Data Test Register: TR7 2-349
833TLBWriteTest 2-350
8.3.4 TLB Lookup Test 2-350
8.4 Tristate Output Test Mode 2-350
8.5 intel486™ Microprocessor
Boundary Scan (JTAG) 2-350
8.5.1 Boundary Scan
Architecture 2-351
8.5.2 Data Registers 2-351
8.5.3 Instruction Register 2.352
8.5.4 Test Access Port (TAP)
Controller 2-354
8.5.5 Boundary Scan Register
Cell ... 2-356
8.5.6 TAP Controller
Initialization 2.357
8.5.7 Boundary Scan Description
Language (BSDL) 2-357
2-215

L?E D EN 4426175 0127373 TS52 EMITLL

INTEL CORP {UP/PRPHLS?

CONTENTS PAGE
9.0 DEBUGGING SUPPORT 2.358
9.1 Breakpoint Instructions 2-358
9.2 Single Step Instructions 2-358
9.3 Debug Registers 2-358
9.3.1 Linear Address Breakpoint

Registerscoiil 2-358
9.3.2 Debug Control Register 2-358
9.3.3 Debug Status Register 2-361

9.3.4 Use of Resume Flag (RF) in
FlagRegister 2-361

10.0 INSTRUCTION SET SUMMARY .. 2-362

10.1 Inteld86™™ Microprocessor
Instruction Encoding and Clock

CountSummarycoeeeveee 2-362
10.2 Instruction Encoding 2-381
10.2.1 Overview 2-381
10.2.2 32-Bit Extensions of the
InstructionSet 2.382
10.2.3 Encoding of Integer
Instruction Fields 2-382
10.2.4 Encoding of Floating Point
Instruction Fields 2-388
11.0 DIFFERENCES WITH THE 386
MICROPROCESSOR 2-389
12.0 OVERDRIVE PROCESSOR
SOCKET ... 2-390
12.1 OverDrive Processor
OVeIrVIBW ...vvviieiereiennnnns 2-390
12.1.1 Hardware Interface 2-390
12.1.2 Testability 2-391

12.1.3 Instruction Set Summary ... 2-391

12.2 Intel OverDrive Processor Circuit
Designcooviiiiiiiiiian, 2-393

12.2.1 Upgrade Circuit for PGA
Intel486 DX Based Systems 2-393

12.3 SocketLayout 2-394
12.3.1 Physical Dimensions 2-394
12.3.2 “End User Easy”

Upgradability 2-397
12.3.3 ZIF and LIF Socket
Vendorsooiiiiiinnn.. 2-398
2-216

L7E D WR
CONTENTS PAGE
12.4 Thermal Management 2-398
12.4.1 Thermal Calculations for
Hypothetical System 2-398
12.4.2 OverDrive Heat Sinks 2-399
12.5 BIOS and Software PR 2.399
12.5.1 Intel OverDrive Processor
Detection 2-399

12.5.2 Timing Dependent Loops .. 2-400
12.6 OverDrive Processor Socket

Pinout ..., 2-401
12.7 D.C./A.C. Specifications 2-404
13.0 ELECTRICALDATA 2-405
13.1 Power and Grounding 2-405
13.2 Maximum Ratings 2-405
13.3 D.C. Specifications 2-406
13.4 A.C. Specifications 2-407
13.5 Designing for ICD-486 2-416
14.0 MECHANICAL DATA 2-420
14.1 Package Thermal '
Specifications 2-421
15.0 LOW POWER Intel486™ DX
MICROPROCESSOR 2-423
15.1 Introduction 2-423
15.2Pinoutooiiiii 2-425
15.3 Pin Cross Reference
(Intel486TM DX CPU) 2427
15.4 Pin Description 2-427
16.5 Signal Description 2-428
15.6 Architecture Overview 2-431
15.7 Variable CPU Frequency 2-431
15.8 D.C./A.C. Specifications 2-433
15.8.1 D.C. Specifications 2-433
15.8.2 Power Supply Current vs
Frequencyccvvvnenn. 2-434
15.8.3 A.C. Spacifications 2-434
16.0 SUGGESTED SOURCES FOR
Intel486™ ACCESSORIES 2.437
17.0 REVISION HISTORY 2-438
APPENDIX Accv 2-441

4826275 0127374 999 MW ITLL

INTEL CORP (UP/PRPHLS) L7E D EE 4826175 0127375 825 MITLY

L]
Intel o Intel486™ DX MICROPROCESSOR
t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
S A27 A28 A2} NC Al4 VSS AI2Z VSS VSS VSS VSS VSS A10 VSS AS A4 ADS# S
©o 0o 0o o 0 0 0 0 o o0 0 0 o0 o0 o o0 o
R A28 A25 VCC VSS A18 VCC AI5 VCC VCC VCC veC Al A8 vce A3 BLAST# NC R
© 0 © 0 0o o 0o o 0o 0o o o0 O 0 0 0 O©
Q A3l VSS A17 A19 A21 A24 A22 A20 A1E At3 A9 AS A7 A2 BREQ PLOCK# PCHK# o
© o o © 0o 0 o o 0 & 0 0 0 ©6 o0 o o
P Do A28 A30 HLDA vCC VSS P
o o o o o o
N 02 ot OPO LOCK# M/10# W/R# N
o o o o o o
vsS vCC D4 D/c#® vec vsS
M o o o ' o o o M
L vss 08 07 PWT VCC vSS L
o o o o o o
K ¥SS VvVCC D14 BEQs vCC VvsSs K
o o o Intel486™ MICROPROCESSOR o o o
vee 05 D18 BE2# SE1# PCO
J o o o 25 MHz AND 33 MHz VERSIONS o o o J
¥sS 03 DOP2 PlN SlDE VIEw BROY# vCC vsSs
H o o o o o o H
VS$s vce D12 NC veC VsS
G o o o o o o G
F ok 2] 018 KEN# RDY# BE3# F
o o o o o o
E ¥SS VCC Dio HOLD vCC vss E
o o o o o o
D b9 D13 ot7 A20M# BS8¥ BOFF# D
o o o o o o
C D11 D18 ClK VCC vCC D27 D28 D28 D30 NC NC NC NC FERR® FLUSH# RESET BS16# c
© 0 0o o 0o 0o o ©o 0 0 0 0 0 0 0 0 O°
B 019 D21 VSS VSS VSS D25 vCC 031 vce NC vee NC NC NC NuMl NC EADS# B
© 0 o © o o o o0 o o 0 0 o0 O o0 o0 o
A D20 D22 NC 023 OP3 D24 V¥SS D29 V5SS NC vss NC NC NC IGNNE# INTR AHOLD A
\) © 0o 0 o ¢ 0o 0o o 0 0 0O 0 o 0 0 o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
240440-2

Figure 1.1

I PRELIMINARY 2217

INTEL CORP (UP/PRPHLS) b7E D W 482bL1l7?5 012737k 7Ll ERMITL]

L]
Intel486™ DX MICROPROCESSOR Intel o

17 16 15 14 13 12 11 10 9 8 7 & S 4 3 2 1

ADS® A4 At VSS A10 V¥SS VSS VSS VSS VSS A12 VSS A4 A28 A27

BS16# RESET FLUSH® FERR®
o [¢) o) o
EADS® NC LU NC
o} o} (o} e}
NC
(¢}

NC NC D30 D28 D28 D27 VYT VCC CLK D18 DIt

o} o ¢} (¢} [+ o} o] o (o} (o] (o]
YCC NC VCC D31 VCC D25 VSS vSsS ¥SS D21 D19
o o o} o o o}] o o o
¥VSS NC VSS 028 VSS D24 OP3 D23 NC D22 D20

(o] Q ¢] [o] o} o] (o] o] o (o] (/

17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1
240440-3

AHOLD INTR IGNNE#
o] o (o]

S NC A23 S
Q [o] o] [o] [o] [o] o] o] o] o] (o] (o] (o] (o] o] o o

R NC BLAST#® A3 vee A8 At veC vee yce vee AlS vee At8 vSsS yee A28 A28 R
(o] (o} o} [} [o) [o] [o] Q [o] (o) (o] o o] o] o] (o] Q

Q PCHK® PLOCK# BREQ A2 A7 AS A% A13 A8 A20 A22 A24 A21 Al9 A7 V§S A3t Q
o] 0 Q o] o o) Q (o} (o] [e] o [o] [o] (o] o} o] o

P YSsS YCC HLDA A30 A29 0o P
(s} [o] (] o] (o] [o]

N W/R#® M/10# LOCK® v] D1 D2 N
[} [o] [o] [o] [o] (o]
vsS vee D/C# [3 vee vss

M (o] o [o] o] e} [o] M

L VSS VCC PWTY b7 06 VSS L
o o o . o o o
vSsS VYCC BEO# D14 vCcC vsSS

K 6 o o Inte!486™ MICROPROCESSOR o o o K

J PCO BEI® BE2e 25MHz AND 33 MHz VERSIONS D16 05 vec J
(o] o o (o] (o] o)

H vss YCC BRDY# TOP S|DE VIEW DP2 p3 vsS H
o] o] [0} [o] (o] o
vsS vce NC D12 vce vssS

G [s} o o ‘ o (o) o) G

F BE3# ROY# KENW D13 D8 DPY F
(o] o] (] o) (o] (o]

E VvsS YCC HOLD DI [+ vSS E
[»] [o] (o] : [o] o [e]

BOFF# BS8# A20M#* D17 D13 o}] D
D (o] Q o [e] o o]

c c

B B

A A

o05080%
o505 08
o)

Figure 1.2

2-218 PRELIMINARY I

INTEL CORP (UP/PRPHLS) G7E D I 482bL175 0127377 LTS EEITLL

L]
Intel ® Intel486™™ DX MICROPROCESSOR
A B C D F 6 H J K L M N P Q R S
1 /b0 19 b1t pe vss ppr vss vss vec vss vss vss D2 Do A3t azs az7 |4
© 0 0 o 0O 0O 0 0 0 0 o0 o o O O O
2] 022 p21 D18 b13 vec D8 VeC D3 DS VeC DS veC D1 Az VSS A28 26 | 2
O 0 0 0o 0O 0o 0o 0o O o O O 0o O O O
3] tox vss cik 017 010 DIS DIz DP2 D18 D14 D7 D4 DPO A30 A17 vec A3 | 3
0O 0O 0 0O 0o 0O 0O 0 0 O O o O O O
4] vas vss wex A9 vss N | 4
o o o O O O
51 ops vss vce A2t A1 A | 5
© O O o O ©
6| p2¢ p2s o2 A4 vec vss | 6
o O O O O O
71 vss vec D26 a2z a5 A2 17
O O O © O O
8| o o3t p2e a20 vec vss | 8
O O O ™ o O O
gl vs v 0% Intel486'™ MICROPROCESSOR ae vec vss | g
O O O 50 MHz VERSION O O O
NC NG NC A3 vee vss 110
10 o O O PIN SIDE VIEW o O O
11] vss vec e A9 vec vss | {1
O O O o O O
12] % s x AS a1y vss | 12
O O O o © O
NC NG NG A7 a8 A0 113
13 o O O o O ©O
™ TMS FERR® a2z vee vss 114
14 o O O © O O
15 | oNES Nui FLushe Azow® HOLD KEN® NG BROYS BEZ# BEQ® PWT D/C# LOCK® HLOA BREG A3 A8 | 1§
O 0 0 0O 0 0O OO0 0O 0 0O 0 0 O 0o 0o o
16| ™R 100 meser msae voc moY vec vec BEle wec vee vec M/iow vee Pucks auste A+ | {6
O 0 0O 0 0O 06O 0O 0O 0 0 0 0 0 0 O 0O o
17 | w00 mose os1se BoFFe vSS BE3H VSS VSS PCD VSS VSS VSS W/R® VSS PCHKR NG ADSe | {7
0O 0 0O 0 0 0O 0 0O 0O O 0O 0 0 O O o o
A B C D E F G H J K L M N P Q R s
240440-85

Figure 1.3

I PRELIMINARY ' 2.219

L?E D W 44626175 0127378 534 EEITLL

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

- N m <+ ! o N oo 2 S0 X0 o0~
Wo 30 0 20 20 30 %0 %0 %0 20 80 20 20 BEO mo £0 mo
30 §0 20 #0 #0 50 0 30 80 20 $0 20 20 %0 30 80 o
had L] x® ”~ o - 3
50 70 30 80 80 50 §0 80 80 20 20 20 g0 mo mo mo wo
" ~] - -
20 20 %O 3o o go
20 8o 20 20 g0 %o
30 20 0O 3 £o 3o %o
w
20 80 %o 9 20 g0 fo
m W = »
30 20 & x 5 W 2 80 @
20 30 g0 g o ¢ 50 80 go
© [+ w [» »
go 20 ZO o > a 40 30 go
NG =
-+ »
g0 g0 30 TM..bnMum $0 go go
20 20 50 g"° to 8o %o
<
g0 80 20 £ %o 80 go
o - 1-d w‘n - *
g0 %0 %0 3o 80 %o
*
30 %0 30 %0 30 jo §0 §0 20 %0 20 20 20 20 §o o mo
%0 %30 80 80 20 80 20 80 80 80 80 Z0 %20 80 20 wo 20
50 30 %0 20 0 %0 %0 40 %0 %0 0 #0 20 %0 20 10 f0O
- (3} L2 <+ wH (7] ™~ -]] o ” ™~ L] -+ wn ©w ™~

240440-88

Figure 1.4

PRELIMINARY I

2-220

INTEL CORP (UP/PRPHLS) G?7E D WM 4326175 0127379 470 EEITL]

]
|nte| , Intel486™ DX MICROPROCESSOR
Pin Cross Reference by Pin Name
Test
Address Data Control (50 MHz Only) N/C Vee Vss
Ap a4 Do P1 A20M # D15 TCK A3 A3(1) B7 A7
Ag R15 Dy N2 ADS# S17 TDI A4 A10 B9 A9
Ag S16 D2 N1 AHOLD A17 TDO B16 A12 B11 Al
As Q12 | D3 H2 | BEO# K15 | TMS B14 A13 c4 | B3
Ag S15 D4 M3 BE1# J16 A14(1) C5 B4
A7 Q13 Ds J2 BE2+# J15 B10 E2 BS
Ag R13 Dg L2 BE3# F17 B12 E16 E1
Ag Qi Dy L3 BLAST # R16 B13 G2 E17
Ao S13 Dg F2 BOFF # D17 B14(M G16 G1
Ay Ri2 | Dg D1 | BRDOY# HiS B16() | H16 | G17
Az S7 | Do E3 | BREQ ais |- c10 a H1
A;3 Q10 | Dyy C1 | BSs# D16 cii K2 H17
A4 S5 Di2 G3 BS16# c17 c12 K16 K1
Ass R7 D13 D2 CLK c3 C13 L16 K17
Atg Qs Dis K3 D/C# M15 G15 M2 U
A7 Q3 Dis F3 DPO N3 R17 Mi6 L17
Ais R5 Dis J3 DP1 F1 S4 P16 M1
Ap Q4 D47 D3 DP2 H3 R3 M17
Ay Q8 | Dig C2 | DP3 A5 rRe | P17
A2y Qs Dyg Bt | EADS# B17 R8 Q2
Ay Q7 | Dy Al | FERR# Cl4 RO | R4
Azs S3 | Dy B2 | FLUSH# Ci5 R10 | S6
Azg Q6 Da2 A2 HLDA P15 R11 S8
Aos R2 Das Ad HOLD E15 R14 S9
Asg S2 | Das A | IGNNE# A15 $10
Azy S1 Ds B6 | INTR A16 s11
Azg R1 | Dyg C7 | KEN# F15 s12
Asg P2 | Dyy ©B | LOCK# Ni5 S14
Ao P3 | Dig ©C8 | MIO# N16
Azy Q1 | Dy A8 | NMI B15
Dag co PCD J7
Dsy B8 | PCHK# Q17
PWT L15
PLOCK # Q16
RDY # F16
RESET ci6é
W/R# N17
NOTE:

1. These pins are no longer No-Connects on the 50 MHz version.

I PRELIMINARY 2.221

INTEL CORP (UP/PRPHLS) LG?E D WW 482bLl?5 0127380 192 MEITL]

a
Intel486™ DX MICROPROCESSOR Intd ®

Intel486™ DX CPU

Plastic Quad Flat Pack (PQFP)

(Top View)

Figure 1.5. Intel486TM DX CPU 196 Lead PQFP Pinout

2-222 PRELIMINARY |

INTEL CORP (UP/PRPHLS) L?E D EH 482bL17?5 0127381 029 MEITLY

[]
"Tte’ R Intel486™™ DX MICROPROCESSOR

Complete Pin Reference of intel486 DX CPU (PQFP Package)

Pin Signal Pin Signal Pin Signal Pin Signal
1 Vss 50 Vss 99 Vss 148 Vss
2 Agy 51 D2y 100 NMI 149 NC
3 Az 52 NS 101 INTR 150 A3
4 A3 53 Daa 102 FLUSH# 151 NC
5 Azq 54 Ve 103 RESET 152 Ay
6 Vee 55 Dag 104 A20M # 153 NC
7 Azs 56 NC 105 EADS# 154 As
8 Agg 57 DP3 106 PCD 155 NC
9 Agz 58 Vss 107 Vee 156 UP#
10 Agg 59 Doy 108 PWT 157 NC
11 Vss 60 NC 109 Vss 158 Ag
12 Azg 61 Das 110 D/C# 159 A7
13 Asg 62 Vee 111 M/10# 160 NC
14 Aaq 63 D2g 112 Vee 161 Ag
15 NC 64 NC 113 BE3# 162 NC
16 DPO 65 Da7 114 Vss 163 Ag
17 Do 66 Vss 115 BE2# 164 Vee
18 D4 67 D2s 116 BE1# 165 Aqo
19 Vee 68 NC 117 BEO# 166 NC
20 Dz 69 Dog 118 BREQ 167 Vss
21 Vss 70 Veo 119 Vee 168 Vss
22 Vss 71 Dag 120 W/R# 169 NC
23 D3 72 NC 121 Vss 170 Vee
24 Vee 73 NC 122 HLDA 17 NC
25 D4 74 Day 123 CLK 172 A1
26 Ds 75 NC 124 NC 173 NC
27 Dg 76 NC 125 Veo i74 Az
28 Vee 77 IGNNE # 126 Vssg 175 Vee
29 Dy 78 NC 127 NC 176 A13
30 DP1 79 NC 128 TCK 177 Vss
31 Ds 80 TDO 129 AHOLD 178 Aqg
32 Dy 81 FERR# 130 HOLD 179 Voo
33 Vss 82 NC 131 Vee 180 As
34 NC 83 NC 132 KEN # 181 Atg
35 Dio 84 Vee 133 RDY # 182 Vss
36 Vee 85 NC 134 NC 183 Aq7
a7 D13 86 Vss 135 BSB# 184 Veg
38 D12 87 NC 136 BS16# 185 TDI
39 D13 88 NC 137 BOFF# 186 NC
40 Vss 89 NC 138 BRDY # 187 TMS
41 D14 90 NC 139 PCHK # 188 NC
42 D1s 91 NC 140 NC 189 Atg
43 DP2 92 NC 141 Vss 180 NC
44 D1g 93 Vee 142 LOCK # 191 A1g
45 D47 94 NC 143 PLOCK# 192 NC
46 D1s 95 Vss 144 BLAST # 193 Azo
47 D1p 96 Vss 145 ADS# 194 Vss
48 Dao 97 NC 146 Ag 195 NC
49 Vee 98 Voo 147 Vee 196 Voo

NC pins should always remain unconnected, for other recommendations see Section 12.1.3.

I PRELIMINARY 2.223

INTEL CORP (UP/PRPHLS) B?E) W 482bL1l?5 0127382 ThS EMITLL

L]
Intel486™ DX MICROPROCESSOR InU ®

Pin Cross Reference by Signal Type (PQFP Package)

Address Data . Control NC Vee Vss
As 146 Do 17 A20M # 104 15 6 1
Az 150 D4 18 ADS # 145 34 19 11
Ag 152 D> 20 AHOLD 129 52 24 21
As 154 D3 23 BEO# 117 -56 28 22
Ag 158 D4 25 BEt# 116 60 36 k]
Az 159 Ds 26 BE2# 115 64 49 40
Ag 161 Dg 27 BE3# 113 68 54 50
Ag 163 D, 29 BLAST# 144 72 62 58
Ao 165 Dg 31 BOFF # 137 73 70 66
A1q 172 Dg 32 BRDY # 138 75 84 86
As2 174 Dio 35 BREQ 118 76 93 95
A3 176 D14 37 BS# 136 78 98 96
Ag 178 D42 38 BS16# 136 79 107 99
Ass 180 D43 39 CLK 123 82 112 109
Ag 181 Dis 41 D/C# 110 83 119 114
Ay7 183 Dis 42 bPO 16 85 125 21
Aqg 189 D1s 44 DP1 30 87 131 126
Aqg 191 Dy7 45 ppP2 43 88 147 141
Agg 193 Dia 46 DP3 57 89 164 148
Aoy 2 Dig 47 EADS# 105 90 170 167
A2z 3 Dog 48 FERR# 81 91 175 168
Ag3 4 Dz 51 FLUSH # 102 92 179 177
Az4 5 Doz 53 HLDA 122 94 184 182
Azs 7 D23 55 HOLD 130 97 196 194
Agg 8 Doy 58 IGNNE # 77 124 ’
Aoz 9 D25 61 INTR 101 127
Azg 10 - Dog 63 KEN# 132 134
Agg 12 Doy 65 LOCK# 142 140
Azo 13 Dog 67 M/I0# mnm 149
Agq 14 Dog 69 NMI 100 151

D30 71 PCD 106 153
Dgjy 74 PHCK # 139 155
PWT 108 157
PLOCK# 143 160,
RDY # 133 162
RESET 103 166
TDI 185 169
TOO 80 171
™S 187 173
W/R# 120 186
188
190
192
185

NC Pins should always remain unconnected, for other recommendations see Section 12.1.3.

2.224 : PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D HE 4826175 0127343 9T1 EMITLL

] .
|nte| o Intel486™ DX MICROPROCESSOR

QUICK PIN REFERENCE

What follows is a brief pin description. For detailed signat descriptions refer to Section 6.

Symbol | Type Name and Function
CLK | Clock provides the fundamental timing and the internal operating frequency for the -
Intei486 Microprocessor. All external timing parameters are specified with respect to
the rising edge of CLK.
ADDRESS BUS
A31-A4 170 | A31-A2 are the address lines of the microprocessor. A31-A2, together with the byte
A2-A3 0 anables BEQ # —BE3 #, define the physical area of memory or input/output space

accessed. Address lines A31-A4 are used to drive addresses into the microprocessor
to perform cache line invalidations. Input signals must meet setup and hold times tzp
and tp3. A31-A2 are not driven during bus or address hold.

BEO-3+# O | The byte enable signals indicate active bytes during read and write cycles. During the
first cycle of a cache fill, the external system should assume that all byte enables are
active. BE3 # applies to D24-D31, BE2 # appliss to D16-D23, BE1# applies to D8-
D16 and BEQ # applies to DO-D7. BEO # -BE3 # are active LOW and are not driven
during bus hold.

DATA BUS

D31-D0O 1/0 | These are the data lines for the Intel486 Microprocessor. Lines DO-D7 define the least
significant byte of the data bus while lines D24 -D31 define the most significant byte of
the data bus. These signals must meet setup and hold times ty and ty3 for proper
operation on reads. These pins are driven during the second and subsequent clocks of
write cycles.

DATA PARITY

DP0O-DP3 | 11O | Thereis one data parity pin for each byte of the data bus. Data parity is generated on all
write data cycles with the same timing as the data driven by the Intel486
Microprocessor. Even parity information must be driven back into the microprocessor
on the data parity pins with the same timing as read information to insure that the
correct parity check status is indicated by the Intel486 microprocessor. The signals
read on these pins do not affect program execution.

Input signals must meet setup and hold times tp and tz3. DPO-DP3 should be
connected to Vg through a pullup resistor in systems which do not use parity.
DPO-DP3 are active HIGH and are driven during the second and subsequent clocks of
write cycles.

PCHK# (@] Parity Status is driven on the PCHK # pin the clock after ready for read operations. The
parity status is for data sampled at the end of the previous clock. A parity efror is
indicated by PCHK # being LOW. Parity status is only checked for enabled bytes as
indicated by the byte enable and bus size signals. PCHK # is valid only in the clock
immediately after read data is returned to the microprocessor. At ali other times
PCHK # is inactive (HIGH). PCHK # is never floated.

I PRELIMINARY 2028

INTEL CORP (UP/PRPHLS) L?E D WN 482bL175 0127384 838 EEITLL

. []
Intel486™ DX MICROPROCESSOR |nte| R

QUICK PIN REFERENCE (Continued)

Symbol l Type | Name and Function
BUS CYCLE DEFINITION
M/IO# O | The memory/input-output, data/control and write/read lines are the primary bus
D/C# 0 definition signals. These signals are driven valid as the ADS # signal is asserted.
W/R# O ['m/io# D/C# W/R# BusCycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Speciat Cycle

0 1 0 1/0 Read

0 1 1 1/0 Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
address bus. Refer to Section 7.2.11 for a description of the special bus cycles.

LOCK # O | The bus lock pin indicates that the current bus cycle is locked. The Intel486
Microprocessor will not allow a bus hold when LOCK # is asserted (but address holds
are allowed). LOCK # goes active in the first clock of the first locked bus cycle and goes
inactive after the last clock of the last locked bus cycle. The last locked cycle ends
when ready is returned. LOCK # is active LOW and is not driven during bus hold. Locked
read cycles will not be transformed into cache fill cycles it KEN # is returned active.

PLOCK # O | The pseudo-lock pin indicates that the current bus transaction requires more than one
bus cycle to complete. Examples of such operations are floating point long reads and
writes (64 bits), segment table descriptor reads (64 bits), in addition to cache line fills
(128 bits). The Inteld486 Microprocessor will drive PLOCK # active until the addresses for
the last bus cycle of the transaction have been driven regardless of whether RDY # or
BRDY # have been returned.

Normally PLOCK # and BLAST # ars inverse of each other. However during the first bus
cycle of a 64-bit floating point write, both PLOCK # and BLAST # will be asserted.
PLOCK # is a function of the BS8#, BS16# and KEN # inputs. PLOCK # should be
sampled only in the clock ready is returned. PLOCK # is active LOW and is not driven

during bus hold.

BUS CONTROL

ADS# 0 The address status output indicates that a valid bus cycle definition and address are
available on the cycle definition lines and address bus. ADS # is driven active in the
same clock as the addresses are driven. ADS # is active LOW and is not driven during
bus hold.

RDY # | The non-burst ready input indicates that the current bus cycle is complete. RDY #

indicates that the external system has presented valid data on the data pins in response
to a read or that the external system has accepted data from the Intel486
Microprocassor in response to a write. RDY # is ignored when the bus is idle and at the
end of the first clock of the bus cycle.

RDY # is active during address hold. Data can be returned to the processor while
AHOLD is active.

RDY # is active LOW, and is not provided with an internal pullup resistor. RDY # must
satisfy setup and hold times t{g and t47 for proper chip operation.

2226 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D HB 462b1l7?5 0127385 7?74 ERITLY

[]
|nte| . Intel486™ DX MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol [Type l Name and Function
BURST CONTROL '
BRDY # | The burst ready input performs the same function during a burst cycle that RDY #

performs during a non-burst cycle. BRDY # indicates that the external system has
presented valid data in response to a read or that the external system has accepted data
in response to a write. BRDY # is ignored when the bus is idle and at the end of the first
clock in a bus cycle.

BRDY # is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the microprocessor when BRDY # is
sampled active. If RDY # is returned simultaneously with BRDY #, BRDY # is ignored
and the burst cycle is prematurely aborted.

BRDY # is active LOW and is provided with a small putlup resistor. BRDY # must satisfy
the setup and hold times t1g and t17.

BLAST # O | The burst jast signal indicates that the next time BRDY # is returned the burst bus cycle
is complete. BLAST # is active for both burst and non-burst bus cycles. BLAST # is
active LOW and is not driven during bus hold.

INTERRUPTS

RESET | The reset input forces the Intel486 Microprocessor to begin execution at a known state.
The microprocessor cannot begin execution of instructions until at least 1 ms after Vgg
and CLK have reached their proper DC and AC specifications. The RESET pin shoutd
remain active during this time to insure proper microprocessor operation. RESET is
active HIGH. RESET is asynchronous but must meet setup and hold times tsg and tp4 for
recognition in any specific clock.

INTR | The maskable interrupt indicates that an external interrupt has been generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing will be initiated. The
Intel486 Microprocessor will generate two locked interrupt acknowledge bus cycles in
response to the INTR pin going active. INTR must remain active until the interrupt
acknowledges have been performed to assure that the interrupt is recognized.

INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is
asynchronous, but must meet setup and hold times tyg and ta4 for recognition in any
specific clock.

NMI | The non-maskable interrupt request signal indicates that an external non-maskable
interrupt has been generated. NMI is rising edge sensitive. NMI must be held LOW for at
least four CLK periods before this rising edge. NM! is not provided with an internal
pulldown resistor. NMl is asynchronous, but must meet setup and hold times tog and to4
for recognition in any specific clock.

BUS ARBITRATION

BREQ (¢] The internal cycle pending signal indicates that the Intel486 Microprocessor has
internally generated a bus request. BREQ is generated whether or not the Intel486
Microprocessor is driving the bus. BREQ is active HIGH and is never floated.

HOLD | The bus hold request allows another bus master complete control of the Intel486
Microprocessor bus. In response to HOLD going active the Intel486 Microprocessor will
float most of its output and input/output pins. HLDA will be asserted after completing the
current bus cycle, burst cycle or sequence of locked cycles. The Intel486
Microprocessor will remain in this state until HOLD is deasserted. HOLD is active high
and is not provided with an internal pulidown resistor. HOLD must satisfy setup and hold
times t1g and t4g for proper operation.

HLDA 0 Hold acknowledge goes active in response to a hold request presented on the HOLD
pin. HLDA indicates that the intel486 microprocessor has given the bus to another local
bus master. HLDA is driven active in the same clock that the Intel486 Microprocessor
floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is active HIGH and
remains driven during bus hold.

I PRELIMINARY 2.227

INTEL CORP (UP/PRPHLS) G7E D EEM 482b175 012738k LOO EMEITLL

a
Intel486™ DX MICROPROCESSOR "Ttel .

QUICK PIN REFERENCE (Continued)

Symbol l Type [Name and Function
BUS ARBITRATION (Continued)
BOFF # 1 The backoffinput forces the Intel486 Microprocessor to float its bus in the next clock.

The microprocessor will float all pins normally floated during bus hold but HLDA will not
be asserted in response to BOFF #. BOFF # has higher priority than RDY # or BRDY #;
if both are returned in the same clock, BOFF # takes effect. The microprocessor
remains in bus hold until BOFF # is negated. If a bus cycle was in progress when
BOFF # was asserted the cycle will be restarted. BOFF # is active LOW and must meet
setup and hold times t{g and t1g for proper operation.

CACHE INVALIDATION

AHOLD I The address hold request allows another bus master access to the Intel486
Microprocessor’s address bus for a cache invalidation cycle. The Intel486
Microprocessor will stop driving its address bus in the clock following AHOLD going
active. Only the address bus will be floated during address hold, the remainder of the
bus will remain active. AHOLD is active HIGH and is provided with a small internal
pulldown resistor. For proper operation AHOLD must meet setup and hold times tyg and
tig.

EADS # 1 This signal indicates that a valid external address has been driven onto the Intel486
Microprocessor address pins. This address will be used to perform an internal cache
invalidation cycle. EADS # is active LOW and is provided with an internal pullup resistor.
EADS # must satisfy setup and hold times t12 and t43 for proper operation.

CACHE CONTROL

KEN# I The cache enable pin is used to determine whether the current cycle is cacheable.
When the Intel486 microprocessor generates a cycle that can be cached and KEN # is
active one clock before RDY # or BRDY # during the first transter of the cycle, the cycle
will become a cache line fill cycle. Returning KEN # active one clock before RDY #
during the last read in the cache line fill will cause the line to be placed in the on-chip
cache. KEN # is active LOW and is provided with a small internal pullup resistor. KEN #
must satisfy setup and hold times t14 and t15 for proper operation.

FLUSH # | The cache flush input forces the Intel486 Microprocessor to flush its entire internal
cache. FLUSH # is active low and need only be asserted for one clock. FLUSH# is
asynchronous but setup and hold times tzg and tz1 must be met for recognition in any
specific clock. FLUSH # being sampled low in the clock before the falling edge of
RESET causes the Intel486 Microprocessor to enter the tri-state test mode.

PAGE CACHEABILITY

PWT O | The page write-through and page cache disable pins reflect the state of the page

PCD 0 attribute bits, PWT and PCD, in the page table entry ar page directory entry. If paging is
disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition
pins (M/10#, D/C# and W/R#). PWT and PCD are active HIGH and are not driven
during bus hold. PCD is masked by the cache disable bit (CD) in Control Register O,

NUMERIC ERROR REPORTING

FERR# O | The floating point error pin is driven active when a floating point error occurs. FERR # is
simitar to the ERROR # pin on the 387 math coprocessor. FERR # is included for
compatibility with systems using DOS type floating point error reporting. FERR # will not
go active if FP errors are masked in FPU register. FERR # is active LOW, and is not
floated during bus hold.

2.228 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?E D WM 482L175 0127387 547 EMITLL

L]
Intel ® Intel486™ DX MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol [Type] Name and Function
NUMERIC ERROR REPORTING (Continued)
IGNNE # | When the ignore numeric error pin is asserted the Intel486 Microprocessor will ignore a

numeric error and continue executing non-control floating point instructions, but FERR #
will still b activated by the intel486. When IGNNE # is deasserted the Intel486
microprocessor will freeze on a non-control floating point instruction, if a previous
floating point instruction caused an error. IGNNE # has no effect when the NE bit in
control register 0 is set. IGNNE # is active LOW and is provided with a small internal
pullup resistor. IGNNE # is asynchronous but setup and hold times tag and ta1 must be
met to insure recognition on any specific clock.

BUS SIZE CONTROL
BS16# ! The bus size 16 and bus size 8 pins (bus sizing pins) cause the Intel486 Microprocessor
BS8# i to run muitiple bus cycles to complete a request from devices that cannot provide or

accept 32 bits of data in a single cycle. The bus sizing pins are sampled every clock. The
state of these pins in the clock before ready is used by the Intel486 microprocessor to
determine the bus size. These signals are active LOW and are provided with internal
pultup resistors. These inputs must satisfy setup and hold times t;4 and ty5 for proper
operation.

ADDRESS MASK

A20M # | Whaen the address bit 20 mask pin is asserted, the Intel486 Microprocessor masks
physical address bit 20 (A20) before performing a lookup to the internal cache or driving
a memory cycle on the bus. A20M # emulates the address wraparound at one Mbyte
which occurs on the 8086. A20M # is active LOW and should be asserted only when the
processor is in real mode. This pin is asynchronous but should meet setup and hold
times tpg and tp4 for recognition in any specific clock. For proper operation, A20M #
should be sampled high at the falling edge of RESET.

TEST ACCESS PORT (50 MHz Version Only)

TCK | Test Clock is an input to the Inteld86 CPU and provides the clocking function required by
the JTAG boundary scan feature. TCK is used to clock state information and data into
and out of the component. State select information and data are clocked into the
component on the rising edge of TCK on TMS and TDI, respectively. Data is clocked out
of the part on the falling edge of TCK on TDO.

TDI | Test Data Input is the serial input used to shift JTAG instructions and data into the
component. TD! is sampled on the rising edge of TCK, during the SHIFT-IR and the
SHIFT-DR TAP controller states. During all other tap controller states, TDi is a “don't
care”.

TDO (o] Test Data Output is the serial output used to shift JTAG instructions and data out of the
component. TDO is driven on the falling edge of TCK during the SHIFT-IR and
SHIFT-DR TAP controller states. At all other times TDQ is driven to the high impedance
state.

™S | Test Mode Select is decoded by the JTAG TAP (Tap Access Port) to selact the
operation of the test logic. TMS is sampled on the rising edge of TCK. To guarantee
deterministic behavior of the TAP controller TMS is provided with an internal puil-up
resistor.

I PRELIMINARY 2229

INTEL CORP (UP/PRPHLS) L?E D EE 4826175 0127348 483 EMITL)

a
intel486™ DX MICROPROCESSOR “Ttel .

Table 1.1. Output Pins Table 1.4. Test Pins (50 MHz Versldn Only)
Active When Input or Sampled/
Name Level Floated Name Qutput Driven On
BREQ HIGH TCK Input N/A
HLDA HIGH o
Input R f TCK
BEO#-BE3# | LOW Bus Hold 1ol nPd ising Edge of TC
PWT, PCD HIGH Bus Hold TDO Output “Falling Edge of TCK
W/R#,D/C#,M/10# | HIGH Bus Hold ™S Input Rising Edge of TCK -
LOCK # LOW Bus Hoid
Pkgg':# tga gz: :g:g _ Table 1.5. Component and Revision ID
BLAST # LOW Bus Hold Intel486™ CPU Component Revision
PCHK # LOW Stepping Name ID iD
FERR# Low B3 04 01
A2-A3 HIGH | Bus, Address Hold B4 04 o1
Table 1.2. Input Pins 85 04 01
N Active | Synchronous/ B6 04 o1
ame
Level Asynchronous co 04 02
Rg;'éT HIGH A h o o4 o3
synchronous
HOLD HIGH Synchronous Do 04 04
AHOLD HIGH Synchronous cA2 04 10
EADS# LOW Synchronous A 04 10
BOFF # LOW Synchronous cA3
FLUSH # LOW Asynchronous cB0 04 "
A20M # LOW Asynchronous ¢B1 04 11
BS16#, BS8 # LOW Synchronous
KEN # LOW Synchronous InteLOverDrivem
RDY # Low Synchronous - roices;or
BRDY # LOW Synchronous epping Name
INTR HIGH Asynchronous A2 04 32
NMI HIGH Asynchronous)
IGNNE # LOW Asynchronous B1 04 33

Table 1.3. Input/Output Pins

Name Active When
m Level Floated
D0-D31 HIGH Bus Hold
DPO-DP3 HIGH | Bus Hold
A4-A31 HIGH Bus, Address Hold
2-230 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intal.

2.0 ARCHITECTURAL OVERVIEW

The Intel486 Microprocessor is a 32-bit architecture
"with on-chip memory management, floating point
and cache memory units.

The Intel486 Microprocessor contains all the fea-
tures of the 386 Microprocessor with enhancements
to increase performance. The instruction set in-
cludes the complete 386 microprocessor instruction
set along with extensions to serve new applications.
‘The on-chip memory management unit (MMU) is
completely compatible with the 386 Microprocessor
MMU. The intel486 Microprocessor brings the 387
math coprocessor on-chip. All software written for
the 386 microprocessor, 387 math coprocessor and
previous members of the 86/87 architecturat family
will run on the Intel486 Microprocessor without any
modifications.

Several enhancements have been added to the In-
tel486 Microprocessor to increase performance. On-
chip cache memory allows frequently used data and
code to be stored on-chip reducing accesses 1o the
external bus. RISC design techniques have been
used to reduce instruction cycle times. A burst bus
feature enables fast cache fills. All of these features,
combined, lead to performance greater than twice
that of a 386 Microprocessor.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical address space by
providing easy data and code relocatibility and effi-
cient sharing of global resources. The paging mech-
anism operates beneath segmentation and is trans-
parent to the segmentation process. Paging is
optional and can be disabled by system software.
Each segment can be divided into one or more
4 Kbyte segments. To implement a virtual memory
system, the Intel486 Microprocessor supports full re-
startability for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes (232
bytes) in size. A segment can have attributes associ-
ated with it which include its location, sizs, type (i.e.,
stack, code or data), and protection characteristics.
Each task on an Intel486 Microprocessor can havs a
maximum of 16,381 segments, each up to four giga-
bytes in size. Thus each task has a maximum of 64
terabytes (trillion bytes) of virtual memory.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

The inteld86 Microprocessor has two modes of op-
eration: Real Address Mode (Real Mode) and Pro-
tected Mode Virtual Address Mode (Protected
Made). In Real Mode the inteld86 Microprocessor
operates as a very fast 8086. Real Mode is required
primarily to set up the processor for Protected Mode
operation. Protected Mode provides access to the
sophisticated memory management paging and priv-
ilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each virtual 8086 task behaves with
8086 semantics, allowing 8086 software (an applica-
tion program or an entire operating system) to exe-
cute.

The on-chip floating point unit operates in parallel
with the arithmetic and logic unit and provides arith- |
metic instructions for a variety of numeric data types.
It executes numerous built-in transcendental func-
tions (e.g., tangent, sine, cosine, and log functions).
The floating point unit fully conforms to the ANSI/
IEEE standard 754-1985 for floating point arithmetic.

The on-chip cache is 8 Kbytes in size. It is 4-way set
associative and follows a write-through policy. The
on-chip cache includes features to provide flexibility
in external memory system design. Individual pages
can be designated as cacheable or non-cacheable
by software or hardware. The cache can also be en-
abled and disabled by software or hardware.

Finally the Intel486 Microprocessor has features to
facilitate high performance hardware designs. The
1X clock eases high frequency board level designs.
The burst bus feature enables fast cache fills. These
features are described beginning in Section 6.

2.1 Register Set

The Intel486 Microprocessor register set includes all
the registers contained in the 386 Microprocessor
and the 387 math coprocessor. The register set can
be split into the following categories:

Base Architecture Registers
General Purpose Registers
Instruction Pointer
Flags Register '
Segment Registers

Systems Level Registers
Control Registers
System Address Registers

2-231

L7E D EE 482b175 0127369 31T MMITLL

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Floating Point Registers
Data Registers
Tag Word
Status Word
Instruction and Data Pointers
Control Word

Debug and Test Registers

The base architecture and floating point registers
are accessible by the applications program. The sys-
tem level registers are only accessible at privilege
level 0 and are used by the systems level program.
The debug and test registers are also only accessi-
ble at privitege level 0.

2.1.1 BASE ARCHITECTURE REGISTERS

Figure 2.1 shows the Intel486 Microprocessor base
architecture registers. The contents of these regis-
ters are task-specific and are automatically loaded
with a new context upon a task switch operation.

General Purpose Registers
31 24123 16|15 8|7 0
' AH AX AL | EAX

1
BH B8x BL |EBX
CH ©x oL |Ecx

DH DX DL |EDX

1

Si ESI
oI EDI
BP EBP
SP ESP
Segment Registers
15]
CS Code Segment
sSs Stack Segment
DS
ES Data Segments
FS
GS
{nstruction Pointer
31 16 15 0
i | P e
Flags Register
[| FLAGS | eFLacs

Figure 2.1. Base Architecture Registers

2-232

L7E D WM 4426175 0127390 03) MEITLL

intal.

The base architecture includes six directly accessi-
ble descriptors, each specifying a segment up to
4 Gbytes in size. The descriptors are indicated by
the selector values placed in the Intsl486 Microproc-
essor segment registers. Various selector values
can be loaded as a program executes.

The selectors are also task-spscific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

2.1.1.1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 2.1. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, DX, S|, DI,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa-
rately.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits
8-15) of the general purpose registers AX, BX, CX
and DX. The lowest bytes are named AL, BL, CL and
DL respectively. The higher bytes are named AH,
BH, CH and DH respectively. The individual byte ac-
cessibility offers additional flexibility for data opera-
tions but is not used for effective address calcula-
tion.

2.1.1.2 Instruction Pointer

The instruction pointer, shown in Figure 2.1, is a
32-bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0—15) of the EIP contain the 16-bit
instruction pointer named IP, which is used for 16-bit
addressing.

2.1.1.3 Flags Register

The flags register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS control certain operations and indicate
status of the Inteld86 Microprocessor. The lower
16 bits (bits 0-15) of EFLAGS contain the 16-bit
register named FLAGS, which is most useful when
executing 8086 and 80286 code. EFLAGS is shown
in Figure 2.2.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intal.

E7E D EE 4826175 0127391 T78 EEITLL

Intel486™ DX MICROPROCESSOR

FLAGS
3322222222221 111111111
10987654321098765432109876543210
alvir] Indoe Jololitisizl 1A} 1°] |c
EFLAGS RESERVED FOR INTEL ciulrlolt] v Jrirlr]rlrlrlolriofrit]F
F W 3 A & 5 5854 H l} »
ALIGNMENT cnccx-——-—1 W L—CARRY FLAG
VIRTUAL MODE PARITY FLAG
RESUME FLAG AUXILIARY CARRY
NESTED TASK FLAG ZERO FLAG
1/0 PRIVILEGE LEVEL SIGN FLAG
OVERFLOW TRAP FLAG
DIRECTION FLAG
INTERRUPT ENABLE
240440-6

NOTE: .
Q indicates Intel Reserved: do not define; see Section 2.1.6.

Figure 2.2. Flags Register

EFLAGS bits 1, 3, 5, 15 and 19-31 are “undefined”.
When these bits are stored during interrupt process-
ing or with a PUSHF instruction (push flags onto
stack), a one is stored in bit 1 and zeros in bits 3, 5,
15 and 19-31.

to an odd address, a dword access to an ad-
dress that is not on a dword boundary, or an
B-byte reference to an address that is noton a
64-bit word boundary. See Section 7.1.6 for
more information on operand alignment.

Alignment faults are only generated by pro-
grams running at privilege level 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS), are implicitly level 0 references even if
the instructions causing the references are
executed at level 3. Alignment faults are re-
ported through interrupt 17, with an error code
of 0. Table 2.1 gives the alignment required
for the Intel486 microprocessor data types.

The EFLAGS register in the Intel486 Microprocessor
contains a new bit not previously defined. The new
bit, AC, is defined in the upper 16 bits of the register
and it enables faults on accesses to misaligned
data.

AC (Alignment Check, bit 18)

The AC bit enables the generation of faults if a
memory reference is to a misaligned address.
Alignment faults are enabled when AC is set
to 1. A mis-aligned address is a word access

Table 2.1. Data Type Alignment Requirements

Memory Access

Word

Dword

Single Precision Real
Double Precision Real
Extended Precision Real
Selector

48-Bit Segmented Pointer
32-Bit Flat Pointer

32-Bit Segmented Pointer
48-Bit “Pseudo-Descriptor”’
FSTENV/FLDENV Save Area
FSAVE/FRSTOR Save Area
Bit String

Alignment (Byte Boundary)
2

BN A& BN AN

" 4/2 (On Operand Size)
4/2 {On Operand Size)
4

2-233

I PRELIMINARY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

IMPLEMENTATION NOTE:

Several instructions on the Intel486 Microprocessor
generate misaligned references, even if their mem-
ory address is aligned. For example, on the In-
tel486 Microprocessor, the SGDT/SIOT (store glob-
al/interrupt descriptor table) instruction reads/
writes two bytes, and then reads/writes four bytes
from a “pseudo-descriptor” at the given address.
The Intel486 Microprocessor will generate misa-
ligned references unless the address is on a 2 mod
4 boundary. The FSAVE and FRSTOR instructions
(floating point save and restore state) will generate
misaligned references for one-haif of the register
save/restore cycles. The Intel4d86 Microprocessor
will not cause any AC faults if the effective address
given in the instruction has the proper alignment.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Intel486 Mi-
croprocessor is in Protected Mode, the In-
tel486 Microprocessor will switch to Virtual
8086 operation, handling segment loads as
the 8086 does, but generating exception 13
faults on privileged opcodes. The VM bit can
be set only in Protected Mode, by the IRET
instruction (if current privilage level = 0) and
by task switches at any privilege level. The
VM bit is unaffected by POPF. PUSHF always
pushes a 0 in this bit, even if executing in Vir-
tual 8086 Mode. The EFLAGS image pushed
during interrupt processing or saved during
task switches will contain a 1 in this bit if the
interrupted code was executing as a Virtual
8086 Task.

(Resums Flag, bit 16)

The RF flag is used in conjunction with the
dsbug register breakpoints. It is checked at
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fauit to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of the
"breakpoint service routine, the IRET instruc-
tion can pop an EFLAG image having the RF
bit set and resume the program’s execution at
the breakpoint address without generating an-
other breakpoint fault on the same location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates

RF

NT

2-234

L?E D EE 482b175 0127392

10PL

OF

DF

TF

n

intel.
that the current nested task's Task State Seg-
ment (TSS) has a valid back link to the previ-
ous task’s TSS. This bit is set or reset by con-
tro! transfers to other tasks. The value of NT
in EFLAGS is tested by the IRET instruction to
determine whether to do an inter-task return
or an intra-task return. A POPF or an IRET
instruction will affect the setting of this bit ac-
cording to the image popped, at any privilege
level.

(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numericailly maximum CPL
(current privilege level) value permitted to ex-
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 170 Per-
mission Bitmap. 1t aiso indicates the maximum
CPL value allowing alteration of the IF (INTR
Enable Flag) bit when new values are popped
into the EFLAG register. POPF and IRET in-
struction can alter the |OPL field when execut-
od at CPL = 0. Task switches can always al-
ter the IOPL field, when the new flag image is
loaded from the incoming task’s TSS.

(Overflow Flag, bit 11)

OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did not
result in a carry/borrow out of the high-order
bit, or vice-versa. For 8-, 16-, 32-bit opera-
tions, OF is set according to overflow at bit 7,
15, 31, respectively.

(Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if DF
is reset. Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9}

The IF flag, when set, aliows recognition of
external interrupts signalled on the INTR pin.
When IF is reset, external interrupts signalled
on the INTR are not recognized. IOPL indi-
cates the maximum CPL value allowing altera-
tion of the IF bit when new values are popped
into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of exception 1 trap
when single-stepping through code. When TF
is set, the Intel486 Microprocessor generates
an exception 1 trap after the next instruction is
executed. When TF is resat, exception 1 traps
occur only as a function of the breakpoint ad-
dresses loaded into debug registers DRO-
DR3.

PRELIMINARY I

904 ENITLY

INTEL CORP (UP/PRPHLS) L7E D WH 4826175 0127393 840 EEITLY

a
|n'l'e| R Intel486™ DX MICROPROCESSOR

SF (Sign Flag, bit 7) NOTE:
- SF is set if the high-order bit of the result s 'n these descriptions, “set” means “set to 1,” and
set, it is reset otherwise. For 8-, 16-, 32-bit reset” means “reset to 0.
operations, SF reflects the state of bit 7, 15,
31 respectively. 2.1.1.4 Segment Registers

ZF (Zero Flag, bit 6)

ZF is set if all bits of the result are 0. Other-
wise it is reset.

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. In protected mode, each segment may

AF (Auxiliary Carry Flag, bit 4) range in size from one byte up to the entire linear
The Auxiliary Flag is used to simplify the addi- ~ and physical address space of the machine, 4
tion and subtraction of packed BCD quanti- Gbytes (232 bytes). In real address mode, the maxi-

ties. AF is set if the operation resulted ina Mum segment size is fixed at 64 Kbytes (276 bytes).
carry out of bit 3 (addition) or a borrow into bit
3 (subtraction). Otherwise AF is reset, AF is The six addressable segments are defined by the
affected by carry out of' or borrow into bit 3 Segment fegistel’s CS, SS, DS, ES, FS and GS. The
only, regardless of overall operand length: 8, selector in CS indicates the current code segment; b
16 or 32 bits. the selector in SS indicates the current stack seg-

PF (Parity Flags, bit 2) ment; the selectors in DS, ES, FS and GS indicate ¥

the current data segments.
PF is set if the low-order eight bits of the oper-
ation contains an even number of “1's” (even
parity). PF is reset if the low-order eight bits ~ 2.1.1.5 Segment Descriptor Cache Registers
have odd parity. PF is a function of only the
low-order eight bits, regardiess of operand
size.

The segment descriptor cache registers are not pro-
grammer visible, yet it is very useful to understand
. their content. A programmer invisible descriptor
CF (Carry Flag, bit 0) cache register is associated with each programmer-
CF is set if the operation resulted in a carry visible segment register, as shown by Figure 2.3.
out of (addition), or a borrow into (subtraction) Each descriptor cache register holds a 32-bit base
the high-order bit. Otherwise CF is reset. For address, a 32-bit segment limit, and the other neces-

8-, 16- or 32-bit operations, CF is set accord- sary segment attributes.
ing to carry/borrow at bit 7, 15 or 31, respec-
tively.
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
r N o0 Other N
Segment
16 0 Physical Base Address Segment Limit Attributes from Descriptor
Selactor CSs- -
Selector SS- — —
Selector DS- —=]—-
Selector ES- ——1—
Selector FS- —l—]—
Selector GS- el el

Figure 2.3. Intel4867™™ Microprocessor Segment Registers and Associated Descriptor Cache Registers

I PRELIMINARY 2-235

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

When a selector value is loaded into a segment reg-
ister, the associated descriptor cache register is au-
tomatically updated with the correct information. In
Real Address Mode, only the base address is updat-
ed directly (by shifting the selector value four bits to
the left), since the segment maximum limit and attri-
butes are fixed in Real Mode. In Protected Mode,
the base address, the limit, and the attributes are all
updated per the contents of the segment descriptor
indexed by the selector.

Whenevar a memory reference occurs, the segment
descriptor cache register associated with the seg-
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad-
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

2.1.2 SYSTEM LEVEL REGISTERS

The system level registers, Figure 2.4, control opera-
tion of the on-chip cache, the on-chip floating point

G7E D BN 482L17?5 0127394 787 MEITLL

intal.

unit (FPU) and the segmentation and paging mecha-
nisms. These registers are only accessible to pro-
grams running at privilege level 0, the highest privi-
lege level.

The system level registers include three coritrol reg-
isters and four segmentation base registers. The
three control registers are CR0O, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg-
mentation base registers are the Global Descriptor
Table Register (GDTR), the interrupt Descriptor Ta-
ble Register (IDTRY), the Local Descriptor Table Reg-
ister (LDTR) and the Task State Segment Register
(TR).

2.1.2.1 Control Registers
Control Register 0 (CRQ)

CRO, shown in Figure 2.5, contains 10 bits for con-
trol and status purposes. Five of the bits defined in
the Intel486 Microprocessor's CRO are newly de-
fined. The new bits are CD, NW, AM, WP and NE.
The function of the bits in CRO can be categorized

as follows:
3 24|23 1615 8|7 0
CRO
PAGE FAULT LINEAR ADDRESS REGISTER CR2
PAGE DIRECTORY BASE REGISTER | CR3
SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GDTR
IDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
- -
s o " 32-BIT LINEAR BASE ADDRESS 20-BIT SEGMENT LIMIT _ ATTRIBUTES"
TR| SELECTOR
LDTR | SELECTOR
Figure 2.4. System Level Registers
31 24|23 16[15 8{7 0
Plc|n dal w Nl TIE|MLP
G{D|w M| e Jel'|s|m|p|e|CRO
N . Y,
MSW
NOTE:)
_indicates Intel reserved: Do not define; See Section 2.1.6

Figure 2.5. Control Register 0

2-236

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

L]

intgl.

Intel486 Microprocessor Operating Modes: PG, PE
(Table 2.2)

On-Chip Cache Control Modes: CD, NW (Table 2.3)

On-Floating Point Unit Control: TS, EM, MP, NE
(Table 2.4)

Alignment Check Control: AM
Supervisor Write Protect: WP

Table 2.2. Processor Operating Modes

PG | PE Mode

0 0 | REAL Mode. Exact 8086 semantics,
with 32-bit extensions available with
prefixes.

Protected Mode. Exact 80286
semantics, plus 32-bit extensions
through both prefixes and “defauit”
prefix setting associated with code
segment descriptors. Also, a sub-
mode is defined to support a virtual
8086 within the context of the
extended 80286 protection model.

UNDEFINED. Loading CRO with this

combination of PG and PE bits will
raise a GP fault with error code 0.

Paged Protected Mode. All the
facilities of Protected mode, with
paging enabled underneath
segmentation.

Table 2.3. On-Chip Cache Control Modes

CD | NW Operating Mode

1 1 | Cache fills disablied, write-through and
invalidates disabled.

1 0 | Cache fills disabled, write-through and
invalidates enabled.

0 1 | INVALID. If CRO is loaded with this
configuration of bits, a GP fault with
error code is raised.

0 0 [Cache fills enabled, write-through and

invalidates enabled.

Table 2.4. On-Chip Floating Point Unit Control

CRO BIT Instruction Type

EM | TS | MP | Floating-Point Wait
0 0 0 Execute Exscute
0 0 1 Execute Execute
0 1 0 Trap 7 Execute
0 1 1 Trap 7 Trap 7
1 0 0 Trap7 Execute
1 0 1 Trap 7 Execute
1 1 0 Trap 7 Execute
1 1 1 Trap 7 Trap 7

l PRELIMINARY

L7E D EE 4826175 0127395 13 MEITL]

intel486™ DX MICROPROCESSOR

The low-order 16 bits of CRO are also known as the
Machine Status Word (MSW), for compatibility with
the 80286 protected mode. LMSW and SMSW (load
and storg MSW) instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. The
LMSW and SMSW instructions in the Intel486 micro-
processor work in an identical fashion to the LMSW
and SMSW instructions in the 80286 (i.e., they only
operate on the low-order 16 bits of CRO and ignores
the new bits). New Intel486 Microprocessor operat-
ing systems should use the MOV CRO, Reg instruc-
tion.

The defined CRO bits are described below.
PG (Paging Enable, bit 31)

The PG bit is used to indicate whether paging is
enabled (PG=1) or disabled (PG=0). See Ta-
ble 2.2

CD (Cache Disable, bit 30)

The CD bit is used to enable the on-chip cache.
When CD=1, the cache will not be filled on
cache misses. When CD =0, cache fills may be
performed on misses. See Table 2.3,

The state of the CD bit, the cache enable input
pin (KEN#), and the relevant page cache dis-
able (PCD) bit determine if a line read in re-
sponse to a cache miss will be installed in the
cache. A line is installed in the cache only if
CD=0 and KEN# and PCD are both zero. The
relevant PCD bit comes from either the page
table entry, page directory entry or controi reg-
ister 3. Refer to Section 5.6 for more details on
page cacheability.

CD is set to one after RESET.
NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write-
throughs and write-invalidate cycles (NW=0),
When NW=0, all writes, including cache hits,
are sent out to the pins. Invalidate cycles are
enabled when NW =0. During an invalidate cy-
cle a line will be removed from the cache if the
invalidate address hits in the cache. See Table
23.

When NW=1, write-throughs and write-invali-
date cycles are disabled. A write will not be sent
to the pins if the write hits in the cache. With
NW =1 the only write cycles that reach the ex-
ternal bus are cache misses. Write hits with
NW=1 will never update main memory. Invali-
date cycles are ignored when NW=1.

AM (Alignment Mask, bit 18)

The AM bit controls whether the alignment
check (AC) bit in the flag register (EFLAGS) can
allow an alignment fault. AM=0 disables the
AC bit. AM= 1 enables the AC bit. AM=0 is the
386 Microprocessor compatible mode.

2-237

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

386 Microprocessor software may load incor-
rect data into the AC bit in the EFLAGS register.
Setting AM=0 will prevent AC fauits from oc-
curring before the Intel486 Microprocessor has
created the AC interrupt service routine.

WP (Write Protect, bit 16)

WP protects read-only pages from supervisor
write access. The 386 Microprocessor allows a
read-only page to be written from privilege lev-
els 0-2. The Intel486 Microprocessor is com-
patible with the 386 Microprocessor when
WP=0. WP=1 forces a fault on a write to a
read-only page from any privilege level. Operat-
ing systems with Copy-on-Write features can be
supported with the WP bit. Refer to Section
4.5.3 for further details on use of the WP bit.

NE (Numerics Exception, bit 5)

The NE bit controls whether unmasked floating
point exceptions (UFPE) are handled through
interrupt vector 16 (NE = 1) or through an exter-
nal interrupt (NE=0). NE=0 (default at reset)
supports the DOS operating system error re-
porting scheme from the 8087, 80287 and 387
math coprocessor. In DOS systems, math co-
processor errors are reported via external inter-
rupt vector 13. DOS uses interrupt vector 16 for
an operating system call. Refer to Sections
6.2.13 and 7.2.14 for more information on float-
ing point error reporting.

* For any UFPE the floating point error output pin
(FERR #) will be driven active.

For NE =0, the Intel486 Microprocessor works
in conjunction with the ignore numeric error in-
put (IGNNE#) and the FERR# output pins.
When a UFPE occurs and the IGNNE# input is
inactive, the Intel486 Microprocessor freezes
immediately before executing the next floating
point instruction. An external interrupt controller
will supply an interrupt vector when FERR # is
driven active. The UFPE is ignored if IGNNE #
is active and floating point execution continues.

NOTE:

The freeze does not take place if the next in-
struction is one of the control instructions
FNCLEX, FNINIT, FNSAVE, FNSTENYV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI,
FNDISI and FNSETPM. The freeze does occur
if the next instruction is WAIT,

For NE=1, any UFPE will result in a software
interrupt 16, immediately before executing the
next non-control floating point or WAIT instruc-
tion. The ignore numeric error input (IGNNE #)
signal will be ignored.

2-238

L?E D EH 482b175 012739k 55T EMITLY

a
intgl.
TS (Task Switched, bit 3)

The TS bit is set whenever a task switch opera-
tion is performed. Execution of a floating point
instruction with TS=1 will cause a device not
available (DNA) fault (trap vector 7). If TS=1
and MP=1 (monitor coprocessor in CRO) a
WAIT instruction will cause a DNA fault. See
Table 2.4.

EM (Emulate Coprocessor, bit 2)

The EM bit determines whether floating point
instructions are trapped (EM = 1) or executed. If
EM =1, all floating point instructions will cause
fauit 7.

NOTE:
WAIT instructions are not affected by the state
of EM. See Table 2.4.

MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS bit
to determine if WAIT instructions should trap. If
MP=1 and TS=1, WAIT instructions cause
fault 7. Refer to Table 2.4. The TS bitis setto 1
on task switches by the Intel486 Microproces-
sor. Floating point instructions are not affected
by the state of the MP bit. It is recommended
that the MP bit be set to one for the normal
operation of the Intel486 Microprocessor.

PE (Protection Enable, bit 0)

The PE bit enables the segment based protec-
tion mechanism. if PE= 1 protection is enabled.
When PE =0 the intel486 Microprocessor oper-
ates in REAL mode, with segment based pro-
tection disabled, and addresses formed as in an
8086. Refer to Table 2.2.

All new CRO bits added to the 386 and Intel486 Mi-
croprocessors, except for ET and NE, are upward
compatible with the 80286 because they are in reg-
ister bits not defined in the 80286. For strict compati-
bility with the 80286, the load machine status word
(LMSW) instruction is defined to not change the ET
or NE bits.

Control Register 1 (CR1)

CR1 is reserved for use in future Intel microproces-
sors.

Control Register 2 (CR2)

CR2, shown in Figure 2.8, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

PRELIMINARY |

INTEL

intgl.

CORP (UP/PRPHLS)

GPE D WE 482bL175 0127397 49- EMEITL]

Intel486™ DX MICROPROCESSOR

31 0
PAGE FAULT LINEAR ADDRESS REGISTER CR2
a1 4 3 0
PiP|
PAGE DIRECTORY BASE REGISTER 0i0j0i0l0jO{0|IC|W|O|{0}C]|CR3
olT
NOTE:
Gindicates Inte! reserved: Do not define; See Section 2.1.6.

Figure 2.6. Control Registers 2 and 3

Control Register 3 (CR3)

CR3, shown in Figure 2.6, contains the physical
base address of the page directory table. The In-
tel486 Microprocessor page directory is always page
aligned (4 Kbyte-aligned). This alignment is enforced
by only storing bits 20-31 in CR3.

In the Intel486 Microprocessor CR3 contains two
new bits, page write-through (PWT) (bit 3) and page
cache disable (PCD) (bit 4). The page table entry
(PTE) and page directory entry (PDE) also contain
PWT and PCD bits. PWT and PCD control page
cacheability. When a page is accessed in external
memory, the state of PWT and PCD are driven out
on the PWT and PCD pins. The source of PWT and
PCD can be CR3, the PTE or the PDE. PWT and
PCD are sourced from CR3 when the POE is being
updated. When paging is disabled (PG = 0 in CR0),
PCD and PWT are assumed to be 0, regardless of
their state in CR3.

A task switch through a task state segment (TSS)
which changes the values in CR3, or an explicit load
into CR3 with any value, will invalidate all cached
page table entries in the translation lookaside buffer
(TLB). '

The page directory base address in CR3 is a physi-
cal address. The page directory can be paged out
while its associated task is suspended, but the oper-
ating system must ensure that the page directory is
resident in physical memory before the task is dis-
patched. The entry in the TSS for CR3 has a physi-
cal address, with no provision for a present bit. This
means that the page directory for a task must be
resident in physical memory. The CR3 image in a
TSS must point to this area, befors the task can be
dispatched through its TSS.

l PRELIMINARY

2.1.2.2 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286, 386
and Intel486 Microprocessor protection model.
These tables or segments are:

GODT (Global Descriptor Table)
IDT (Interrupt Descriptor Table)
LDT {Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers, illustrated in Figure 2.4.
These registers are named GDTR, IDTR, LDTR and
TR respectively. Section 4, Protected Mode Archi-
tecture, describes the use of these registers.

System Address Registers: GDTR and IDTR

The GDTR and IDTR hold the 32-bit linear base ad-
dress and 16-bit limit of the GDT and IDT, respec-
tively.

Since the GDT and IDT segments are global to all
tasks in the system, the GDT and IDT are defined by
32-bit linear addresses (subject to page translation if
paging is enabled) and 16-bit limit values.

System Segment Reglsters: LDTR and TR

The LDTR and TR hold the 16-bit selector for the
LDT descriptor and the TSS descriptor, respectively.

Since the LDT and TSS segments are task specific
segments, the LDT and TSS are defined by selector
values stored in the system segment registers.

NOTE:

A programmer-invisible segment descriptor register
is associated with each system segment register.

2-239

INTEL CORP (UP/PRPHLS)

intel486™ DX MICROPROCESSOR

2.1.3 FLOATING POINT REGISTERS

Figure 2.7 shows the floating point register set. The
on-chip FPU contains eight data registers, a tag
word, a control register, a status register, an instruc-
tion pointer and a data pointer.

Tag
Fleld
79 78 64 63 0 10

RO { Sign | Exponent Significand
R1
R2
R3
R4
Rs
Re
R7

15 0 47 0
Control Register

Instruction Painter

Status Register Data Pointer

Tag Word

Figure 2.7. Floating Point Registers

The operation of the Intel486 Microprocessor's on-
chip floating point unit is exactly the same as the
387 math coprocessor. Software written for the 387
math coprocessor will run on the on-chip floating
point unit (FPU) without any modifications. :

2.1.3.1 Data Registers

Floating point computations use the Intel486 Micro-
processor's FPU data registers. These eight 80-bit
registers provide the equivalent capacity of twenty
32-bit registers. Each of the eight data registers is

E7E D WM 4&26175 0127398 322 EEITLIL

intal.

divided into “fields” corresponding to the FPU’s ex-
tended-precision data type.

The FPU's register set can be accessed either as a
stack, with instructions operating on the top one or
two stack slements, or as a fixed register set, with
instructions operating on explicitly designated regis-
ters. The TOP field in the status word identifies the
current top-of-stack register. A “push’ operation
decrements TOP by one and loads a value into the
new top register. A “pop” operation stores the value
from the current top register and then increments
TOP by one. Like other Intel486 microprocessor
stacks in memory, the FPU register stack grows

“down” toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

2.1.3.2 Tag Word

The tag word marks the content of each numeric
data register, as shown in Figure 2.8. Each two-bit
tag represents one of the eight data registers. The
principal function of the tag word is to optimize the
FPUs performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the
actual data.

2.1.3.3 Status Word
The 18-bit status word reflects the overall state of

the FPU. The status word is shown in Figure 2.9 and
is located in the status register.

15

0

[Tac() | TAG®) | TAG(S) | TAGW | TAG@ | TAG@ | TAG() | TAG() |

NOTE:

field refers to logical top of stack.

TAG VALUES:
00 = Valid
01 = Zero

11 = Empty

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

10 = QNaN, SNaN, infinity, Denormal and Unsupported Formats

Figure 2.8. FPU Tag Word

2-240

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?E D EB 4826175 0127399 269 ERITLL

|nte| . Intel486™ DX MICROPROCESSOR

Busy
TOP QF STACK POINTER
CONDITION CODE

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS :
PRECISION

UNDERFLOW

QVERFLOW

ZERQ DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

240440-7
ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.5 for interpretation of condition code.
TGP values: .
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
.

L d
L]
111 = Register 7 is Top of Stack
For definitions of exceptions, refer to the Section entitled
“Exception Handling"”.

Figure 2.9. FPU Status Word

The B bit (Busy, bit 15) is included for 8087 compati- The four numeric condition code bits, CO~C3, are
bility. The B bit reflects the contents of the ES bit (bit similar to the flags in EFLAGS. Instructions that per-
7 of the status word). : form arithmetic operations update C0-C3 to reflect

the outcome. The effects of these instructions on
Bits 13—11 (TOP) point to the FPU register that is the condition codes are summarized in Tables 2.5
the current top-of-stack. through 2.8.

l PRELIMINARY ' 2-241

INTEL CORP (UP/PRPHLS) LG?E D WM 482L175 0127400 A00 MEITLL

-
intel486™ DX MICROPROCESSOR Int9| ®

Table 2.5. FPU Condition Code Interpretation

Instruction co(s) [c3(2) | c1m c2(C)
FPREM, FPREM1 Three least significant bits Reduction
(see Table 2.3) of quotient ‘:) ue é" ete
Q2 Qo Q1 P

or O/U# = incomplete

FCOM, FCOMP,

FCOMPP, FTST, Result of comparison Zero Operand is not

FUCOM, FUCOMP, (see Table 2.7) or O/U# comparable

FUCOMPP, FICOM, (Table 2.7)

FICOMP

FXAM Operand class Sign Operand class

(see Table 2.8) orQ/U# (Table 2.8)

FCHS, FABS, FXCH,

FINCTOP, FDECTOP,

Constant loads, Zero

FXTRAGT, FLD, UNDEFINED orO/U# UNDEFINED

FILD, FBLD,

FSTP (extreal)

FIST, FBSTP,

FRNDINT, FST,

FSTP, FADD, FMUL,

FDIV, FDIVR, Roundup

FSUB, FSUBR, - UNDEFINED orO/U# UNDEFINED

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction

FCOS, FSINCOS UNDEFINED orO/U#, 0 = complete
undefined 1 = incomplete
ifC2 =1

FLDENV, FRSTOR Each bit loaded from memory

FINIT Clears these bits

FLDCW, FSTENY,

FSTCW, FSTSW, UNDEFINED

FCLEX, FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complste. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

2.242 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

Table 2.6. Condition Code Interpretation after FPREM and FPREM1 (nstructions

L7E D WM 482bl7?5 0127401 7u7? EMITLL

intel486™ DX MICROPROCESSOR

Condition Code Interpretation after FPREM and FPREM1
C2 c3 C1 co -
incomplete Reduction:
1 X X X further interaction required
for complete reduction
(0}] Qo Q2 Q MODs8
0 0 0 0
? :) . g ; Complete Reduction:
0 1 1 0 3 C0, C3, C1 contain three least
0 0 1 4 significant bits of quotlenf
0 1 1 5
1. 0 1 6
1 -1 1 7

Table 2.7. Condition Code Resulting from Comparison

Order ok] c2 Cco
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Table 2.8. Condition Code Defining Operand Class

c3 c2 Cc1 co Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN

0 0 1 0 — Unsupportad
0 0 1 1 — NaN

0 1 0 0 + Normal

0 1 0 1 + Infinity

0 1 1 0 — Normal

0 1 1 1 — Infinity

1 0 0 0 +0

1 0 0 1 + Empty

1 0 1 0 -0

1 0 1 1 — Empty

1 1 0 0 + Denormal

1 1 1 0 — Denormal

I PRELIMINARY

2-243

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Bit 7 is the error summary (ES) status bit. The ES bit
is set if any unmasked exception bit (bits 0-5 in the
status word) is set; ES is clear otherwise. The
FERR # (floating point error) signal is asserted when
ES is set.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow. When SF is set, bit 9 (C1) distinguishes be-
tween stack overflow (Ct=1) and underflow
(C1=0).

Table 2.9 shows the six axception flags in bits 0-5
of the status word. Bits 0-5 are set to indicate that
the FPU has detected an exception while executing
an instruction.

The six exception flags in the status word can be
individually masked by mask bits in the FPU control
word. Table 2.9 lists the exception conditions, and
their causes in order of precedence. Table 2.9 also
shows the action taken by the FPU if the corre-
sponding exception flag is masked.

An exception that is not masked by the control word
will cause three things to happen: the corresponding
exception fiag in the status word will be set, the ES
bit in the status word will be set and the FERR#
output signal will be asserted. When the Intel486 Mi-
croprocessor attempts to execute another floating
point or WAIT instruction, exception 16 occurs or an
external interrupt happens if the NE=1 in control

bG7E D WN 482b6175 0l27?402 b83 EEITLIL

-

intgl.
register 0. The exception condition must be resolved
via an interrupt service routine. The FPU saves the
address of the floating point instruction that caused
the exception and the address of any memory oper-

and required by that instruction in the instruction and
data pointers (see Section 2.1.3.4).

Note that when a new value is loaded into the status
word by the FLDENV (lcad environment) or
FRSTOR (restore state) instruction, the value of ES
(bit 7) and its reflection in the B bit (bit 15) are not
derived from the values loaded from memory. The
values of ES and B are dependent upon the values
of the exception flags in the status word and their
corresponding masks in the control word. If ES is set
in such a case, the FERR# output of the Intei486
Microprocessor is activated immediately.

2.1.3.4 Instruction and Data Pointgrs

Because the FPU operates in parallel with the ALU
(in the Intel486 microprocessor the arithmetic and
logic unit (ALU) consists of the base architecture
registers), any errors detected by the FPU may be
reported after the ALU has executed the floating
point instruction that caused it. To allow identifica-
tion of the failing numeric instruction, the Intel486
Microprocessor contains two pointer registers that
supply the address of the failing numeric instruction
and the address of its numeric memory operand (if
appropriate).

Table 2.9. FPU Exceptions

Exceptk;m Cause Default Action
(if exception is masked)
Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer
Operation indeterminate form (0* o0, 0/0, (+ %) + (—), etc.), or | indefinite, or BCD indefinite
stack overflow/underflow (SF is also set).
Denormalized | Atleast one of the operands is denormalized, i.e., it has Normal processing
Operand the smallest exponent but a nonzero significand. continues
Zero Divisor The divisor is zero while the dividend is a noninfinite, Resultis o
nonzero number.
Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or «©
Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.
Inexact The true result is not exactly representable in the Normal processing
Resuilt specified format (e.g., 1/3); the result is rounded continues
(Precision) according to the rounding mode.
2.244 PRELIMINARY

INTEL CORP (UP/PRPHLS)

intgl.

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
cessed by the FLDENV (load environment),
FSTENV (store environment), FSAVE (save state)
and FRSTOR (restore state) instructions. Whenever
the Intel486 Microprocessor decodes a new floating
point instruction, it saves the instruction (including
any prefixes that may be present), the address of
the operand (if present) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Intel486 Microprocessor (protected mode or
real-address mode) and depending on the

L7E D EB 4826175 0127403 51T MEITLL

Intel486™ DX MICROPROCESSOR

operand-size attribute in effect (32-bit operand or
16-bit operand). When the Intel486 Microprocessor
is in the virtual-86 mode, the real address mode for-
mats are used. The four formats are shown in Fig-
ures 2.10-2.13. The floating point instructions
FLDENV, FSTENV, FSAVE and FRSTOR are used
to transfer these values to and from memory. Note
that the value of the data pointer is undefined if the
prior floating point instruction did not have a memory
opserand.

NOTE:
The operand size attribute is the D bit in a segment
descriptor.

32-BIT PROTECTED MODE FORMAT

31 2 16 7 0
RESE[LHVED CONTHOIL WORD 0
L} T
RESERVED STATUS WORD 4
HESE'LRVED TAG v?vono 8
1 T
IP OFFSET . c
T
00000 OPCODE 10.9 CS SELECTOR 10
T
N . DATA OPERAND OFFSET 1 14
T T
RESERVED OPERAND SELECTOR 18
¥ T

Figure 2.10. Protected Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

32-BIT REAL-ADDRESS MODE FORMAT :
31 23 ' 15 7 0
+ '
RESERVED CONTROL WORD 0
RESERVED STATUS WORD 4
RESERVED TAG WORD 8
RESERVED INSTRUCTION POINTER 15..0 c
0000 [INSTRUCTION POINTER 31..16 [0 [OPCODE 10.0 10
RESERVED OPERAND POINTER 15..0 14
0000 OPERAND POINTER 31..16 0000 00000000 18
.

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

I PRELIMINARY

2-245

INTEL CORP (UP/PRPHLS) L7E D W 482LL?5 02127404 456 EEITLYL

]
intel486™ DX MICROPROCESSOR Intd o

16-BIT PROTECTED MODE FORMAT 16-BIT REAL-ADDRESS MODE AND
15 ’ 7 0 VIRTUAL-8086 MODE FORMAT
t 15 7]
L
CONTROL WORD] '
t CONTROL WORD 0
1
STATUS WORD 2 !
+ STATUS WORD 2
i
TAG WORD 4
A TAG WORD 4
1
P OFFSET 6 INSTRUCTION POINTER 15..0 6
1 Il
CS SELECTOR 8 IP19.16 |0 OPCODE 10..0 8
1 1
T
OPERAND OFFSET A OPERAND POINTER 15..0 A
L
j DP19.16 [0{0 0 0000000 0 0| C
OPERAND SELECTOR c . -
i
1
Figure 2.13. Real Mode FPU
Figure 2.12. Protected Mode FPU Instruction and Data Pointer
Instruction and Data Pointer Image in Memory, 16-Bit Format

Image In Memory, 16-Bit Format

2.1.3.5 FPU Control Word

The FPU provides several processing options that are selected by loading a control word from memory into
the control register. Figure 2.14 shows the format and encoding of fieids in the control word.

RESERVED
RESERVED®
ROUNDING CONTROL
PRECISION CONTROL

15 7 v}
| LI T | J
x x x|x] re | pc Ix xIPPYLOFE)0]!
TmInm
|| | | |
RESERVED
o "™ AFTER RESET OR FINIT;
. CHANGEABLE UPON LOADING THE
EXCEPTION MASKS : CONTROL WORD (CW), PROGRAMS
PRECISION MUST IGNORE THIS BIT.
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND

INVALID OPERATION

240440-8
Precision Control Rounding Control
00—24 bits (single precision) 00—Round to nearest or even
01—(reserved) 01—Round down {toward — o)
10-—53 bits (double precision) 10—Round up (toward +)
11—84 bits (extended precision) 11-—Chop (truncate toward zero)
Figure 2.14, FPU Control Word
2-246 PRELIMINARY l

INTEL CORP (UP/PRPHLS)

L]

intgl.

The low-order byte of the FPU control word config-
ures the FPU error and exception masking. Bits 0-5

of the control word contain individual masks for each
of the six exceptions that the FPU recognizes.

The high-order byte of the control. word configures
the FPU operating mode, including precision and
rounding.

RC (Rounding Control, bits 10-11)

The RC bits provide for directed rounding and
true chop, as well as the unbiased round to
nearest even mode specified in the IEEE stan-
dard. Rounding control affects only those in-
structions that perform rounding at the end of
the operation (and thus can generate a preci-
sion exception); namely, FST, FSTP, FIST, all
arithmetic instructions (except FPREM,
FPREM1, FXTRACT, FABS and FCHS), and all
transcendental instructions.

PC (Precision Control, bits 8-9)

The PC bits can be used to set the FPU internal
operating precision of the significand at less
than the default of 64 bits (extended precision).
This can be useful in providing compatibility with
early generation arithmetic processors of small-
er precision. PC affects only the instructions
ADD, SUB, DIV, MUL, and SQRT. For all other
instructions, either the precision is determined
by the opcode or extended precision is used.

2.1.4 DEBUG AND TEST REGISTERS

2.1.4.1 Debug Registers

The six programmer accessible debug registers, Fig-
ure 2.15, provide on-chip support for debugging. De-
bug registers DR0-3 specify the four linear break-
points. The Debug control register DR7, is used to
set the breakpoints and the Debug Status Register,
DR6, displays the current state of the breakpoints.
The use of the Debug registers is described in Sec-
tion 9.

I PRELIMINARY

L7E D EE 482L17?5 0127405 392

Intel486™ DX MICROPROCESSOR

Debug Registers
LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3
intel Reserved Do Not Define DR4
Intel Reserved Do Not Define DRS
BREAKPOINT STATUS | DRe
BREAKPOINT CONTROL DR7

Test Registers

CACHE TEST DATA TR3
CACHE TEST STATUS TR4
CACHE TEST CONTROL TRS
TLB TEST CONTROL TR6
TLB TEST STATUS TR7

TLB = Translation Lookaside Buffer

Figure 2.15

2.1.4.2 Test Registers

The Intel486 Microprocessor contains five test regis-
ters. The test registers are shown in Figure 2.15.
TRE and TR7 are used to control the testing of the
translation lookaside buffer. TR3, TR4 and TRS are
used for testing the on-chip cache. The use of the
test registers is discussed in Section 8.

2.1.5 REGISTER ACCESSIBILITY
There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-

ble 2.10 summarizes these differences. See Section
4, Protected Mode Architecture, for further details.

2-247

EMITLY

INTEL CORP (UP/PRPHLS) b7E D) HE 482LL75 012740k 229 EEITLY

Intel486™ DX MICROPROCESSOR

intgl.

Table 2.10. Register Usage

Useln Use in Use in

Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Register Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes 10PL 10PL*
Control Registers Yes . Yes PL=0 PL=20 No Yes
GDTR Yes Yeos PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=20 Yes No No
FPU Data Registers Yes Yes Yes Yes Yes Yes
FPU Control Registers Yes Yes Yes Yes Yes Yes
FPU Status Registers Yes Yes Yes Yes Yes Yes
FPU Instruction Pointer Yes Yes Yes Yes Yes Yes
FPU Data Pointer Yes Yes Yes Yes Yes Yes
Debug Registers Yes Yes PL=20 PL=20 No No
Test Registers Yes Yes PL=20 PL=0 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilege level is zero.
*IOPL: The PUSHF and POPF instructions are made /O Privilege Level sensitive in Virtual 86 Mode.

2.1.6 COMPATIBILITY

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain Inteid86 Microprocessor register bits are
Intel reserved. When reserved bits are called
out, treat them as fully undefined. This is essen-
tial for your software compatibility with future
processors! Follow the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

2-248

3) Do not depend on the ability to retain Iinfor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified intel486 Microprocessor han-
dling of these bits. Depending on undefined val-
ues risks making your software incompatible
with future processors that define usages for
the Intel486 Microprocessor-undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED Intel486 MICRO-
PROCESSOR REGISTER BITS.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

a2 .
intgl.
2.2 Instruction Set

The Intel486 Microprocessor instruction set can be
divided into 11 categories of operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control

Floating Point

Floating Point Control

The Intel486 Microprocessor instructions are listed
in Section 10. Note that all floating point unit instruc-
tion mnemonics begin with an F.

All Intel486 Microprocessor instructions operate on
either 0, 1, 2 or 3 operands; where an operand re-
sides in a register, in the instruction itself or in mem-
ory. Most zero operand instructions (e.g., CLI, STI)
take only one byte. One operand instructions gener-
ally are two bytes long. The average instruction is
3.2 bytes long. Since the Intel486 Microprocessor
has a 32-byte instruction queue, an average of 10
instructions will be prefetched. The use of two oper-
ands permits the following types of common instruc-
tions:

Register to Register
Memory to Register
Memory to Memory
Immediate to Register
Register to Memory
immediate to Memory

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Intel486 or 386 Microprocessors (32-bit code}, oper-
ands are 8 or 32 bits; when executing existing 80286
or 8086 code (16-bit code), operands are 8 or 16
bits. Prefixes can be added to all instructions which
override the default length of the operands (i.e., use
32-bit operands for 16-bit code, or 16-bit operands
for 32-bit code).

2.3 Memory Organization

Introduction

Memory on the Inteld486 Microprocessor is divided
up into 8-bit quantities (bytes), 16-bit quantities
(words), and 32-bit quantities (dwords). Words are
stored in two consecutive bytes in memory with the
low-order byte at the lowest address, the high order

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

_ byte at the high address. Dwords are stored in four

consecutive bytes in memory with the low-order byte
at the lowest address, the high-order byte at the
highest address. The address of a word or dword is
the byte address of the low-order byte.

In addition to these basic data types, the Intel486
Microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up
into one or more variable length segments, which
can be swapped to disk or shared between pro-
grams. Memory can also be organized into one or
more 4 Kbyte pages. Finally, both segmentation and
paging can be combined, gaining the advantages of
both systems. The Intel486 Microprocessor sup-

' ports both pages and segments in order to provide

maximum flexibility to the system designer. Segmen-
tation and paging are complementary. Segmentation

is useful for organizing memory in logical modules,

and as such is a tool for the application programmer,
while pages are useful for the system programmer
for managing the physical memory of a systam.

2.3.1 ADDRESS SPACES

The Intel486 Microprocessor has three distinct ad-
dress spaces: logical, linear, and physical. A logl-
cal address (also known as a virtual address) con-
sists of a selector and an offset. A selsctor is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT) discussed in Sec-
tion 2.5.3 Memory Addressing Modes into an ef-
fective address. Since each task on the Intel486 Mi-
croprocessor has a maximum of 16K (214 —1) se-
lectors, and offsets can be 4 gigabytes, (232 bits)
this gives a total of 246 bits or 64 terabytes of logi-
cal address space per task. The programmer sees
this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e., the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

2-249

L7E D W 4826175 0127407 165 EMITLL

INTEL CORP (UP/PRPHLS)

Intel486™™ DX MICROPROCESSOR

EFFECTIVE ADDRESS CALCULATION
INDEX
BASE ¢ DISPLACEMENT
SCALE
1,2,4,8

32 EFFECTIVE

" ADDRESS
LOGICAL OR SEGMENTATION

VIRTUAL ADDRESS | UNIT
SELECTOR [P -

13 320

v

o1 7 oescrirror
INDEX

SEGMENT
REGISTER

3 [
PHYSICAL
MEMORY
BE3# - BEOS|
AS1-AZ
32, 1 PAGING UNIT , 32 R
LINEAR © | (OPTIONAL USE) |7 physicaL
ADDRESS ADDRESS
240440-4

Figure 2.16. Address Translation

Figure 2.16 shows the relationship between the vari-
ous address spacss.

2.3.2 SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the sagment. On the Intel486 Microprocessor, seg-
ments are variable sized blocks of linear addresses
which have certain attributes associated with them.
There are two main types of segments: code and
data, the segments are of variable size and can be

as small as 1 byte or as large as 4 gigabytes (232 -

bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2.11
{Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provide the offset. Special
sagment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2.11. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.

There are no restrictions regarding the overlapping

of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero

2-250

and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear addrass
space. Further details of segmentation are dis-
cussed in Section 4.1.

2.4 1/0 Space

The Intel486 Microprocessor has two distinct physi-
cal address spaces: Memory and I/0. Generally, pe-
ripherals are placed in I/0O space although the In-
tol486 Microprocessor also supports memory-
mapped peripherals. The 1/Q space consists of
64 Kbytes, it can be divided into 64K 8-bit ports, 32K

- 16-bit ports, or 16K 32-bit ports, or any combination

of ports which add up to less than 64 Kbytes. The
64K 1/0 address space refers to physical memory
rather than linear address since 1/0 instructions do
not go through the segmentation or paging hard-
ware. The M/IO# pin acts as an additional address
line thus allowing the system designer to easily de-
termine which address space the processor is ac-
cessing. .

The |/0 ports are accessed via the IN and OUT 170
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The /0 in-
structions cause the M/10# pin to be driven low.

I/0 port addresses 00F8H through OOFFH are re-
served for use by Intel.

PRELIMINARY I

L7E D WHE 4826175 0L27408 OTL EEITLYL

INTEL CORP (UP/PRPHLS)

intgl.

intel486™ DX MICROPROCESSOR

Table 2.11. Segment Reglster Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch Cs None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA Instructions
Source of POP, POPA, POPF, SS None
IRET, RET instructions
Destination of STOS, MOVS, REP ES None
STOS, REP MQVS Instructions
(Dl is Base Register)
Other Data References, with
Effective Address Using Base
Register of:

[EAX] DS

[EBX] DS

[ECX] DS

[EDX] DS

[ESI] DS Al

[EDI] DS

[EBP] SS

[ESP] Sss

2.5 Addressing Modes

2.5.1 ADDRESSING MODES OVERVIEW

The Intel486 Microprocessor provides a total of 11
addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow
the efficiant execution of high level languages such
as C and FORTRAN, and they cover the vast majori-
ty of data references needed by high-level lan-
guages.

2.5.2 REGISTER AND IMMEDIATE MODES

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located in
one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is includ-
ad in the instruction as part of the opcode.

l PRELIMINARY

2.5.3 32-BIT MEMORY ADDRESSING MODES

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register’s value can be muitiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index

2-251

G?E P EN 482b175 0127409 T34 EMITLY

INTEL CORP (UP/PRPHLS) B?E D M 4326175 0127410 75T EEITLL

Intel486™ DX MICROPROCESSOR

mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2.17, the effective address (EA)
of an operand is calculated according to the follow-
ing formula.

EA=Base Reg+ (Index Reg * Scaling) + Displacement

Direct Mode: The operand's offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500] -

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

a
intgl.
Based Mode: A BASE register's contents is added

to a DISPLACEMENT to form the operand’s offset.
EXAMPLE: MOV ECX, [EAX + 24}

Index Mode: An INDEX register’'s contents is added
to a DISPLACEMENT to form the operand’s offset.
EXAMPLE: ADD EAX, TABLEIESI]

Scaled Index Mode: An INDEX register's contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operand's offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4},7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operand’s offset.

EXAMPLE: MOV ECX, [EDX*8] [EAX]

SEGMENT REGISTER

ss

FS
€s

—e (S

SELECTOR

SCALE
1,2,4,0R 8
b 4
,) ¢ DISPLACEMENT
'({IN INSTRUCTION)
EFFECTIVE
ADDRESS SEGMENT
LiMIT
LINEAR
DESCRIFTOR REGISTERS Ly~ ADDRESS
(®)————>] TarceT ApDRESS
SS
GS SELECTED
FS SEGMENT
ES
ACCESS RIGHIS. DS
ACCESS RIGHTS €S
LIMIT
BASE ADDRESS jpf—rdccccaan >
SEGMENT BASE ADDRESS
240440-5

]l BASE REGISTER I
INDEX REGISTER

Figure 2.17. Addressing Mode Calculations

2.252

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

a

intgl.

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register’s con-
tents and a DISPLACEMENT are all summed to-

gether to form the operand offset.
EXAMPLE: ADD EDX, (ES!] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand's offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP + 80]

2.5.4 DIFFERENCES BETWEEN 16- AND 32-BIT
ADDRESSES

In order to provide software compatibility with the
80286 and the 8086, the Intel486 Microprocessor
can execute 16-bit instructions in Real and Protect-
ed Modes. The processor determines the size of the
instructions it is executing by examining the D bit in
the CS segment Descriptor. if the D bit is O then all
operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the defauit size for operands and ad-
dresses is 16-bits.

Regardless of the default precision of the operands
or addresses, the Intel486 Microprocessor is able to
execute either 16- or 32-bit instructions. This is
specified via the use of override prefixes. Two prefix-
es, the Operand Size Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are auto-
matically added by Intel assemblers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembier code for this might be MOV
EAX, 32-bit MEMORYOP, ASM486 Macro Assem-
bler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an

intel486™ DX MICROPROCESSOR

Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel486 Microprocessor addressing modes.

When executing 32-bit code, the Intel486 Microproc-

essor uses either 8-, or 32-bit displacements, and &

any ragister can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8, or 16 hits, and the base and index register
conform to the 80286 model. Table 2.12 illustrates
the differences.

2.6 Data Formats

2.86.1 DATA TYPES

The Intel486 Microprocessor can support a wide va-
riety of data types. In the following descriptions, the
on-chip floating point unit (FPU) consists of the float-
ing point registers. The central processing unit
(CPU) consists of the base architacture registers.

2.6.1.1 Unsigned Data Types

The FPU does not support unsigned data types. Re-
for to Table 2.13.

Byte: Unsigned 8-bit quantity

Word: Unsigned 16-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and
the most significant bit is 7.

Table 2.12. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing
BASE REGISTER BX,BP Any 32-bit GP Register
INDEX REGISTER SIL,DI Any 32-bit GP Register
Except ESP
SCALE FACTOR none 1,2,4,8
DISPLACEMENT 0, 8, 16 bits 0, 8, 32 bits

I PRELIMINARY

2-253

E?E D EB 482b175 012741) b9 ERITLY

INTEL CORP (UP/PRPHLS)

intel486™ DX MICROPROCESSOR

2.6.1.2 Signed Data Types

All signed data types assume 2's complement nota-
tion. The signed data types contain two fields, a sign
bit and a magnitude. The sign bit is the most signifi-
cant bit (MSB). The number is negative if the sign bit
Is 1. If the sign bit is 0, the number is positive. The
magnitude field consists of the remaining bits in the
number. Refer to Table 2.13.

8-bit Integer: Signed 8-bit quantity

16-bit Integer: Signed 16-bit quantity
32-bit Integer: Signed 32-bit quantity
64-bit Integer: Signed 64-bit quantity

The FPU only supports 16-, 32- and 64-bit integers.
The CPU only supports 8-, 16- and 32-bit integers.

2.6.1.3 Filoating Point Data Types

Floating point data type in the Intel486 Microproces-
sor contain three fields, sign, significand and expo-
nent. The sign field is one bit and is the MSB of the
floating point number. The number is negative if the
sign bit is 1. If the sign bit is 0, the number is posi-
tive. The significand gives the significant bits of the
number. The exponent field contains the power of 2
needed to scale the significand. Refer to Table 2.13.

Only the FPU supports floéting point data types.
Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total.
52-bit significand and 11-
bit exponent. 64 bits total.
Extended Precision Real: 64-bit significand and 15-
bit exponent. 80 bits total.

Doubile Precision Reat:

2-254

G?E D W 482175 0l27?4l2 522 ERITL]

intgl.

The Intel486 Microprocessor supports packed and
unpacked binary coded decimal (BCD) data types. A
packed BCD data type contains two digits per byte,
the lower digit is in bits 0-3 and the upper digit in
bits 4-7. An unpacked BCD data type contains 1
digit per byte stored in bits 0-3.

2.6.1.4 BCD Data Types

The CPU supports 8-bit packed and unpacked BCD
data types. The FPU only supports 80-bit packed
BCD data types. Refer to Table 2.13.

2.6.1.5 String Data Types

A string data type is a contiguous sequence of bits,
bytes, words or dwords. A string may contain be-
tween 1 byte and 4 Gbytes. Refer to Table 2.14.

String data types are only supported by the CPU.
Byte Stﬁng: Contiguous sequence of bytes.

Word String: Contiguous sequence of words.
Dword String: Contiguous sequence of dwords.

Bit String: A set of contiguous bits. In the Intel486

Microprocessor bit strings can be up to 4 gigabits
long.

2.6.1.6 ASCIl Data Types

The Intel486 Microprocessor supports ASCH (Ameri-
can Standard Code for Information Interchange)
strings and can perform arithmetic operations (such
as addition and division) on ASCI| data. Refer to Ta-
ble 2.14.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) G7E D ER 4826175 0127413 469 EMITLL

a
|n‘te| o Intel486™ DX MICROPROCESSOR

Table 2.13. intel486™ Microprocessor Data Types
Supported by Supported by

Baee Registers FPU Leest Significant Byte
11 1
Data Format Range |Precision}7 olr o|1 o]r o|7 o[v o[1 0[7 olr “L' A
» o
Byte X| | o0-255 |abits |
15 of
Word X| | 0-84K |16 bits [
R a1 o1
Dword X 0-4G |32bits L
8-Bit Integer X 10° (8 bits
15 o]
16-Bit Integer x|x{ 10* |iebits ' Compiarant
Sqngt T
an 0
32-Bit Integer x|x| 10° |32bits Conploment
sande T
] 0|
64-Bit Integer X| 10" leabits | Ceomemet | |
Sgnse T
7 4]
8-Bit Unpacked BCD {X 0-9 |1 Digit One BCD Dight per Byte
7 0
8-Bit Packed BCD X 0-9 |2 Digits : TwBCODio‘MevBytel
7 72 ' 0|
80-Bit Packed BCD X! £10%'8 |18 Digits | | ‘oo [
T Sgnon
A 2 o
Single Pracision Real x| $10%38 |24 Bits | Ia;:u[Sigréfcand
Sgnei T
83 52 0]
Double Precision Real | |X| +10%3%® |53 Bits ﬁ“‘;f‘[Sigrcand
Sgngit T
79 63 0
i $4932 ; Ginsad g
Extended Precision Real| |X| 110 64 Bits [B, 1 Significand
. T SignBr

l PRELIMINARY 2.255

INTEL CORP (UP/PRPHLS) B?E D W 482L175 012741y 3TS EITLL

u
Iintel486™ DX MICROPROCESSOR lntel
®
Table 2.14. String and ASCIil Data Types
String Data Types
Address A+N A+1 A
. . N 1 0
Byte String !7 4 R 2’7 °I .
A+2N+1 A+2N A+3 A+2 A+1 A
1) T

Word String {3 N (,I s L’ 1 °|‘5 0 ;l

A+AN+3 A+4N+2 A+4N+1 A+4N A+T A+8 A+S A+4 A+3 A+2 A+ A
T
Dword

T T T T T T T T
A N OI coe L 1 | 0 (;|
String 3 31 0[31

A+ 288,435,455 ’ A-268,435,456
n A+3 A+2 A+1 A A-1 A-2 A-3 l
B & - N
String |7 of7 0 7 o|7 o7 7 ...1 ol7 7 7 7 of7 o
i t 1)
+2,147.483,847 +7 +10 ~2,147,483,643

ASCII Data Types

ASCII Character

2.6.1.7 Pointer Data Types Table 2.15. Pointer Data Types

X . X . Least Sig Byte
A pointer data type contains a value that gives the 1
address of a piece of data. The Intel486 Microproc-
essor supports two types of pointers. Refer to Table Data Format [[l I [L I l l
2.15, a7 2t [}
48-bit Pointer: 16-bit selector and 32-bit offset 48-Bit Pointer [soecor | ome
32-bit Pointer: 32-bit offset a o

32-Bit Pointer ‘ Offset

2-256 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

2.6.2 LITTLE ENDIAN vs BIG ENDIAN
DATA FORMATS

The Intel486 Microprocessor, as well as all other
members of the 86 architecture use the “little-endi-
an” method for storing data types that are larger
than one byte. Words are stored in two consecutive
bytes in memory with the low-order byte at the low-
est address and the high order byte at the high ad-
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad-
dress and the high order byte at the highest address.
The address of a word or dword data item is the byte
address of the low-order byte.

Figure 2.18 illustrates the differences between the
big-endian and little-endian formats for dwords. The
32 bits of data are shown with the low order bit num-
bered bit 0 and the high order bit numbered 32. Big-
endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored
with the high-order bits in the highest addressed
byte.

The Intel486 Microprocessor has two instructions
which can convert 16- or 32-bit data between the
two byte orderings. BSWAP (byte swap) handles
four byte values and XCHG (exchange) handles two
byte values.

m+3 m+2 m+1 m
31 24 23 16 15 a 7 0

([[]

Dword In Little-Endian Memory Format

m m+1 m+2 m+3
AN 24 23 16 15 8 7 0

I [I | |

Dword In Big-Endian Memory Format

Figure 2.18, Big vs Little Endian Memory Format

2.7 Interrupts

2.7.1 INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
orrors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handls instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions. ’

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 2.7.3 and
2.7 4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a g
page or a segment which was not present. The oper- §
ating system would fetch the page or segment from
disk, and then the Intel486 Microprocessor would re-
start the instruction. Traps are exceptions that are
reported immediately after the execution of the in-
struction which caused the problem. User defined
interrupts are examples of traps. Aborts are excep-
tions which do not permit the precise location of the
instruction causing the exception to be determined.
Aborts are used to report severe errors, such as a
hardware error, or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2.16 summarizes the possi-
ble interrupts for the Intel486 Microprocessor and
shows where the return address points.

The Intel486 Microprocessor has the ability to han-
die up to 256 different interrupts/exceptions. In or-
der to service the interrupts, a table with up to 256
interrupt vectors must be defined. The interrupt vec-
tors are simply pointers to the appropriate interrupt
service routine. In Real Mode (see Section 3.1), the
vectors are 4 byte quantities, a Code Segment plus
a 16-bit offset; in Protected Mode, the interrupt vec-
tors are 8 byte quantities, which are put in an Inter-
rupt Descriptor Table (see Section 4.3.3.4). Of the
256 possible interrupts, 32 are reserved for use by
Intel, the remaining 224 are free to be used by the
system designer.

2.7.2 INTERRUPT PROCESSING
When an interrupt occurs the following actions hap-
pen. First, the current program address and the

Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-

2257

G7E D WE 442L175 0127415 231 EEITLIL

INTEL CORP (UP/PRPHLS)

Iintel486™ DX MICROPROCESSOR

plied to the Intel486 Microprocessor which identifies
the appropriate entry in the interrupt table. The table
contains the starting address of the interrupt service
routine. Then, the user supplied interrupt service
routine is executed. Finally, when an IRET instruc-
tion is executed the old processor state is restored
and program exscution resumes at the appropriate
instruction.)

The 8-bit interrupt vector is supplied to the Intel486
Microprocessor in several different ways: exceptions
supply the interrupt vector internally; software INT
instructions contain or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maska-
ble hardware interrupts are assigned to interrupt
vector 2.

G7E D WR 4826L7?5 0l274lb 178 EEITLY

intel.

Maskable interrupts are the most common way used
by the Inteld86 Microprocessor to respond to asyn-
chronous external hardware events. A hardware in-
terrupt occurs when the INTR is pulled high and
the Interrupt Flag bit (IF) is enabled. The processor
only responds to interrupts between instructions,
(REPeat String instructions, have an “interrupt win-
dow”, between memory moves, which altlows inter-
rupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector suppiied
by the hardware which identifies the source of the
interrupt, (one of 224 user defined interrupts). The
exact nature of the interrupt sequence is discussed
in Section 7.2.10.

2,7.3 MASKABLE INTERRUPT

Table 2.16. Interrupt Vector Assignments

Interrupt Instruction Which He';‘,;'i'n‘::fgess
Function Number Can Cause Faulting Type
Exception Ingtruction
Divide Error 0 Div, IDIV YES FAULT
Debug Exception 1 Any Instruction YES TRAP*
NMI Interrupt 2. INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal Instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Intel Reserved]
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fauit 13 Any Memory Reference YES FAULT
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Intel Reserved 15
Floating Point Error 16 Floating Point, WAIT ‘ YES FAULT
Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT
intel Reserved 18-31
Two Byte Interrupt 0-255 INTn) NO TRAP

*Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

2.258 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

L]

intgl.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-

rupts. When an IRET instruction is executed the
original state of the IF is restored.

2.7.4 NON-MASKABLE INTERRUPT

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NM|
input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Uniike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NML.

While executing the NM! servicing procedure, the In-
teld486 Microprocessor will not service further NMI

requests until an interrupt return (IRET) instruction is

oxecuted or the processor is reset. If NMI occurs
while currently servicing an NM, its presence will be
saved for servicing after executing the first IRET in-
struction. The IF bit is cleared at the beginning of an
NMI interrupt to inhibit further INTR interrupts.

2.7.5 SOFTWARE INTERRUPTS

A third type of interrupt/exception for the Intel486
Microprocessor is the software interrupt. An INT n
instruction causes the processor to execute the in-
terrupt service routine pointed to by the nth vector in
the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Section 9.2.

I PRELIMINARY

B7E D WM 4326175 0127417 OO4 EEITLL

Intel486™ DX MICROPROCESSOR

2.7.6 INTERRUPT AND EXCEPTION
PRIORITIES

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI! and maskable
INTR are both recognized at the same instruction
boundary, the Intel486 Microprocessor invokes the
NMI service routine first. If, after the NM! service
routine has been invoked, maskable interrupts are
still enabled, then the Intel488 Microprocessor will
invoke the appropriate interrupt service routine.

Table 2.17a. Intel486™ Microprocessor Priority
for Invoking Service Routines in Case
of Simultaneous External Interrupts
1. NMi
2.INTR

Exceptions are internally-generated events. Excep-
tions are detected by the Intel486 Microprocessor if,
in the course of executing an instruction, the In-
tel486 Microprocessor detects a problematic condi-
tion. The Intel486 Microprocessor then immediately
invokes the appropriate exception service routine.
The state of the Inteld86 Microprocessor is such
that the instruction causing the exception can be re-
started. If the exception service routine has taken
care of the problematic condition, the instruction will
execute without causing the same exception.

Itis possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two “‘not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully. :

As the Inteld86 Microprocessor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 2.17b. This cycle is
repeated as each instruction is executed, and oc-
curs in parallel with instruction decoding and execu-
tion. :

2-259

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Table 2.17b. Sequence of Exception Checking

Consider the case of the Inteld86 Microproces-
sor having just completed an instruction. it then
performs the following checks before reaching
the point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruc-
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint
set in the Debug Registers for the next in-
struction).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevent-
ed fetching the entire next instruction (excep-
tions 11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

8. Check for Faults decoding the next instruction
(exception 8 if illegal opcode; exception 8 if in
Real Mode or in Virtual 8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see Section 4.6.4); or excep-
tion 13 if instruction is longer than 15 bytes, or
privilege violation in Protected Mode (i.e., not
at IOPL or at CPL=0).

7. If WAIT opcode, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If opcode for Floating Point Unit, check if
EM=1 or TS=1 (exception 7 if either are 1).

9. If opcode for Floating Point Unit (FPU), check
FPU error status (exception 16 if error status
is asserted).

10. Check in the following order for each memo-
ry reference required by the instruction:

a. Check for Segmentation Faults that pre-
vent transferring the entire memory quan-
tity (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
ferring the entire memory quantity (ex-
ception 14). .

NOTE:
The order stated supports the concept of the
paging mechanism being “underneath” the seg-
mentation mechanism. Therefore, for any given
code or data reference in memory, segmenta-
tion exceptions are generated before paging ex-
ceptions are generated.

2-260

L?E D BN 4826175 0127418 T4D EWITLL

intal.

The Intel486 Microprocessor fully supports restart-
ing all instructions after faults. If an exception is de-
tected in the instruction to be executed (exception
categories 4 through 10 in Table 2.17b), the Intel486
Microprocessor invokes the appropriate exception
service routine. The Intel486 Microprocessor is in a
state that permits restart of the instruction, for all
cases but those in Table 2.17c. Note that all such
cases are easily avoided by proper design of the
operating system.

2.7.7 INSTRUCTION RESTART

Table 2.17¢c. Conditions Preventing
Instruction Restart

An instruction causes a task switch to a task
whose Task State Segment is partially “not
present”. (An entirely “‘not present” TSS is re-
startable.) Partially present TSS's can be avoid-
ed either by keeping the TSS’s of such tasks
present in memory, or by aligning TSS segments
to reside entirely within a single 4K page (for TSS
segments of 4 Kbytes or less).

NOTE:
These conditions are avoided by using the oper-
ating system designs mentioned in this table.

2.7.8 DOUBLE FAULT

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
exception other than a second Page Fault. In any
functional system, the entire Page Fault service rou-
tine must remain “present” in memory.

When a Double Fault occurs, the Intel486 Micro-
processor invokes the exception service routine for
exception 8.

2.7.9 FLOATING POINT INTERRUPT VECTORS

Several interrupt vectors of the Intel486 Microproc-
essor are used to report exceptional conditions
while executing numeric programs in either real or
protected mode. Table 2.18 shows these interrupts
and their causes.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) B7E D EE 4326175 0L27u419 937 EEITL]

]
|nte| R Intel486™™ DX MICROPROCESSOR

Table 2.18. Interrupt Vectors Used by FPU

interrupt

Number Cause of Interrupt

7 A Floating Point instruction was encountered when EM or TS of the Intel486™ Processor
control register zero (CRQ) was set. EM = 1 indicates that software emulation of the
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes
interrupt 7. This indicates that the current FPU context may not belong to the current task.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
Floating Point instruction that caused the exception, including any prefixes. The FPU has
not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt.
The Intel486T™ Processor return address pushed onto the stack of the exception handler
points to a WAIT or Floating Point instruction (including prefixes). This instruction can be
rastarted after clearing the exception condition in the FPU. The FNINIT, FNCLEX,
FNSTSW, FNSTENV, and FNSAVE instructions cannot cause this interrupt.

I PRELIMINARY 2-261

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

3.0 REAL MODE ARCHITECTURE

3.1 Real Mode Introduction

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the Inteld86 Microprocessor.
The addressing mechanism, memory size, interrupt
handling, are all identical to the Real Mode on the
80286.

All of the Intel486 Microprocessor instructions are
available in Real Mode (except those instructions
listed in Section 4.6.4). The default operand size in
Real Mode is 16 hits, just like the 8088. In order to
use the 32-bit registers and addressing modes, over-
ride prefixes must be used. In addition, the segment
size on the Inteid86 Microprocessor in Real Mode is
64 Kbytes so 32-bit effective addresses must have a
value less the 0000FFFFH. The primary purpose of
Real Mode is to set up the processor for Protected
Mode Operation. .

The LOCK prefix on the Intel486 Microprocessor,
sven in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Intel486 Microprocessor in Protected Mode and Vir-
tual 8086 Mode. Paging makes it impossible to guar-
antee that repeated string instructions can be
LOCKed. The Intel486 Microprocessor can't require
that all pages holding the string be physically pres-
ent in memory. Hence, a Page Fault (exception 14)
might have to be taken during the repeated string
instruction. Therefore the LOCK prefix can't be sup-
ported during repeated string instructions.

G7E D EM 4826175 0127420 LT EEITLL

]

intgl.
These are the only instruction forms where the
LOCK prefix is legal on the Intel486 Microprocessor:

Operands
Opcode {Dest, Source)

BIT Test and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB, Mem, Reg/immed
AND, SUB, XOR

NOT, NEG, INC, DEC : Mem

CMPXCHG, XADD Mem, Reg

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, sven the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the Inteld86 Microprocessor, repeated
string instructions are not LOCKable, it is not possi-
ble to LOCK the bus for a long pericd of time. There-
fore, the LOCK prefix is not IOPL-sensitive on the
Intel486 Microprocessor. The LOCK prefix can be
used at any privilege level, but only on the instruc-
tion forms listed above.

3.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, after RESET address lines A20-
A31 are high during CS-relative memory cycles until
an intersegment jump or call is executed (see Sec-
tion 6.5)).

15 0
OFFSET
19 0
MAX LIMIT
SEGMENT | [o000 FIXED AT 64K IN
SELECTOR REAL MODE
> (-)——»{ MEMORY OPERAND
SELECTED
64x SEGMENT

SEGMENT BASE

240440-9

Figure 3.1. Real Address Mode Addressing

2-262

PRELIMINARY I '

INTEL CORP (UP/PRPHLS)

intel.

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition results in a physical address
from 00000000H to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits, Real Mode segments always
start on 16 byte boundaries.

All segments in Real Mode are exactly 64 Kbytes
long, and may be read, written, or executed. The
Intel486 Microprocessor will generate an exception
13 if a data operand or instruction fetch occurs past
the end of a segment (i.e., if an operand has an
offset greater than FFFFH, for example a word with
a low byte at FFFFH and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This aliows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through O03FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

B?7E D WH 482b175 01L2742l 535 EEITLL

Intel486™ DX MICROPROCESSOR

3.4 Interrupts

Many of the exceptions shown in Table 2.16 and
discussed in Section 2.7 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
17, will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3.1 identifies these exceptions.

3.5 Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF=1), or RESET will force the Inteld486 Microproc-
essor out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

As in the case in protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mods, shutdown can oc-
cur under two conditions:

An interrupt or an exception accur {(exceptions 8 or
13) and the interrupt vector is larger than the Inter-
rupt Descriptor Table (i.e., there is not an interrupt
handler for the interrupt). :

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even (i.e.,
pushing a value on the stack when SP = 0001 re-
sulting in a stack segment greater than FFFFH).

An NMI input can bring the processor out of shut-

‘down if the Interrupt Descriptor Table limit is large

enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
Intel486 CPU is unable to execute the NMI and exe-
cutes another shutdown cycle. In this case, the proc-
essor remains in the shutdown and can only exit via
the RESET input. .

Table 3.1. Exceptions with Different Meanings in Real Mode (see Table 2.16)

I PRELIMINARY

Function Interrupt Related Return
u Number Instructions Address Location

Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction

CS, DS, ES, FS, GS 13 Word memory reference Before

Segment overrun exception beyond offset = FFFFH, Instruction
An attempt to execute
past the end of CS segment.

§S Segment overrun exception .12 Stack Reference Before
beyond offset = FFFFH Instruction

2-263

" INTEL CORP (UP/PRPHLS)

E

Intel486™ DX MICROPROCESSOR

4.0 PROTECTED MODE
ARCHITECTURE

4.1 Introduction

The complete capabilities of the Intel486 Microproc-
essor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to four gigabytes (232 bytes) and allows the
running of virtual memory programs of almost unlim-
ited size (64 terabytes or 246 bytes). in addition Pro-
tected Mode allows the Intel486 Microprocessor to
run all of the existing 8086, 80286 and 386 micro-
processor software, while providing a sophisticated
memory management and a hardware-assisted pro-
tection mechanism. Protected Modse allows the use
of additional instructions especially optimized for
supporting muititasking operating systems. The base
architecture of the Intel486 Microprocessor remains
the same, the registers, instructions, and addressing
modes described in the previous sections are re-
tained. The main difference between Protected
Mode, and Real Mode from a programmer’s view is
the increased address space, and a different ad-
dressing mechanism.

G7E D EB 4426175 027422 47?1 EMITLL

intgl.

4.2 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel486 Microprocessor. As such,
paging operates beneath segmentation. The paging
mechanism translates the protected linear address
which comes from the segmentation unit into a
physical address. Figure 4.2 shows the complete In-
tel486 Microprocessor addressing mechanism with
paging enabled.

48/32 BIT POINTER

SELECTOR OFFSET

SEGMENT LIMIT

47/31 31/18 0

s (D)—

MEMORY QPERAND

ACCESS RIGHTS
LiMIT
BASE ADDRESS

UP TO SELECTED
4G BYTES SEGMENT

SEGMENT BASE
ADDRESS

SEGMENT

DESCRIPTOR

24044010

Figure 4.1. Protected Mode Addressing

2-264

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

L7E D EE 4826175 0L27423 308 EEITLL

Intel486™ DX MICROPROCESSOR

48 BIT POINTER
' PHYSICAL ADDRESS
SEGMENT I OFFSET 4K BYTES
15 31
4K BYTES
Intel486™ CPU

PAGING 4K BYTES

ACCESS RIGHTS MECHANISM PHYSICAL

LIMIT ADDRESS

»{ MEMORY OPERAND PHYSICAL PAGE:
BASE ADDRESS : 4K BYTES
‘ 32 UIREAR PAGE FRAME

SEGMENT ADDRESS ADDRESS
DESCRIPTOR 4KBYTES
4K BYTES
4K BYTES

240440-11

Figure 4.2. Paging and Segmentation

4.3 Segmentation

4.3.1 SEGMENTATION INTRODUCTION

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. Ali information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

4.3.2 TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level—The privilege level

of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

I PRELIMINARY

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

4.3.3 DESCRIPTOR TABLES

4.3.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments
which are used in an Intel486 Microprocessor sys-
tem. Thers are three types of tables on the Intel486

2-265

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Microprocessor which hold descriptors: the Global
Descriptor Table, Local Descriptor Table, and the In-
terrupt Descriptor Table. All of the tables ars vari-
able length memory arrays. They can range in size
between 8 bytes and 64 Kbytes. Each table can hoid
up to 8192 8-byte descriptors. The upper 13 bits of a
selector are used as an index into the descriptor ta-
ble. The tables have registers associated with them
which hold the 32-bit linear base address, and the
16-bit limit of each table.

Each of the tables has a register associated with it,
the GDTR, LDTR, and the IDTR (see Figure 4.3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

-

13 0

LOT DESCR
LDTR lSELECTOR l l LOT LMY

N
L] L]

L] L]

L] L

1] 1]

] 1)

13 1]

s | LDT BASE s

3y | uNear aooress |}

15 o} '
[] []

1] L]

[]

L]

L]

H

32

10T LIMIT PROGRAM INVISIBLE
: AUTOMATICALLY LOADED
DT BASE y» FROM LDT DESCRIFTOR
TR | NEAR ADDRESS | t==============
31 [
15 0

GOT LIMIT

GOT BASE

GOTR | |INEAR ADORESS

3 0

240440-12

Figure 4.3. Descriptor Table Registers

4.3.3.2 Global Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e., interrupt and trap
descriptors). Every inteld86 Microprocessor system
contains a GDT. Generally the GDT contains code
and data segments used by the operating systems
and task state segments, and descriptors for the
LDTs in a system.

The first siot of the Global Descriptor Table corre-

sponds to the null selector and is not used. The null
selector defines a null pointer value.

2-266

GYE D EE 482b175 0l27424 24y EEITLY

intgl.

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor doss not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

4.3.3.3 Local Descriptor Table

Unlike the 6 byte GDT or DT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 Interrupt Descriptor Table

The third table needed for Intel486 Microprocessor
systems is the Interrupt Descriptor Table. (See Fig-
ure 4.4) The IDT contains the descriptors which
point to the location of up to 256 interrupt service
routines. The IDT may contain only task gates, inter-
rupt gates, and trap gates. The IDT should be at
least 256 bytes in size in order to hold the descrip-
tors for the 32 Intel Reserved Interrupts. Every inter-
rupt used by a system must have an entry in the IDT.
The IDT entries are referenced via INT instructions,
external interrupt vectors, and exceptions. (See Sec-
tion 2.7 Interrupts).

~

A wEmORY :::
GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #1v1
. INTERRUPT
4 . DESCRIPTOR
cru . TABLE
(on
i v GATE FOR
PT #1
ot L || INTERRUPT #
1 GATE FOR
WTERRUPT #0
10T BASE
n] L
X ~x
240440-13

Figure 4.4. Interrupt Descriptor
Table Register Use

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intel.

4.3.4 DESCRIPTORS

4.3.4.1 Descriptor Attribute Bits

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e., a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4.5 shows the gen-
eral format of a descriptor. All segments on the In-
tel486 Microprocessor have three attribute fields in
common: the P bit, the DPL bit, and the S bit. The
Present P bit is 1 if the segment is loaded in physical
memory, if P=0 then any attempt to access this

L?7E D WM 482L17?5 0127425 180 ENITLL

Intel486™ DX MICROPROCESSOR

segment causes a not present exception (exception
11). The Descriptor Privilege Level DPL is a two-bit
field which specifies the protection leve! 0-3 associ-
ated with a segment.

The Inteld86 Microprocessor has two main catego-
ries of segments: system segments and non-system
segments (for code and data). The segment S bit in
the segment descriptor determines if a given seg-
ment is a system segment or a code or data seg-
ment. If the S bit is 1 then the segment is sither a
code or data segment, if it is O then the segment is a
system segment.

4.3.4.2 Intel486™ CPU Code, Data Descriptors
(5=1)

Figure 4.6 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Rights Byte are interpreted.

31 0 BYTE
ADDRESS
SEGMENT BASE 15...0 SEGMENTLIMIT15...0 0
BASE31...24 [G | D|o]aw | ™™ |p| oL |s| Twe |al BASE +4
19...16 23...18
| [|
BASE Base Address of the segment
LIMIT The length of the segment
P Present 8it 1=Present 0=~Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor 0= System Descriptor 1= Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1=Segment length is page granular 0= Segment length is byte granular
D Detault Operation Size ({recognized in code segment descriptors only)
1=232-bit segment 0=16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS
NOTE:

In a maximum-size segment (i.e., a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
saegment base should be zero (i.e., segment base 11...000=000H).

Figure 4.5. Segment Descriptors

A

3 0
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0
LIMIT ACCESS BASE
BASE31...24 [G [D | 0| AVL 19.. .16 RIGHTS 23...18 +4
e BYTE e

D/B 1=Default Instruction Attributes are 32-Bits
0= Default Instruction Attributes are 16-Bits
AVL Available field for user or OS

G Granularity Bit

1 =Segment length is page granular
0=Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors

Figure 4.6. Segment Descriptors

I PRELIMINARY

2-267

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

L7E D W 482b175 0l2?742ebL 017 MEITLY

intal.

Table 4.1. Access Rights Byte Definition for Code and Data Descriptions

PosBllt‘lon Name Function
7 Present (P) P =1 Segmentis mapped into physical memory.
P =0 No mapping to physical memory exits, base and limit are
. not used.
6-5 |Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- |S = 1 Code or Data (includes stacks) segment descriptor.
tor (S) S =0 System Segment Descriptor or Gate Descriptor.
3 Executable (E) E = 0 Descriptor type is data segment: 1K
2 Expansion Direc- |ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment
1 Wiriteable (W) W = 0 Data segment may not be written into. (S=1,
Type . W = 1 Data segment may be written into. JE=0)
F|e|.d. . 3 Executable (E) E = 1 Descriptor type is code segment: i
Definition| 5 Conforming (C) |C =1 Code segment may only be executed Code
when CPL > DPL and CPL , Segment
remains unchanged. s=1,
1 Readable (R) R = 0 Code segment may not be read. E=1)
R =1 Code segment may be read. y
0 Accessed (A) A = 0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register
or used by selector test instructions.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Inteld86 Microprocessor segments
can be one megabyte long with byte granularity
(G=0) or four gigabytes with page granularity
(G=1), (i.e., 220 pages each page is 4 Kbytes in
length). The granularity is totally unrelated to paging.
A Intel486 Microprocessor system can consist of
segments with byte granularity, and page granularity,
whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the cods
segment.

2-268

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 18-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Intel486 Micro-
processor assuming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See Section 4.4 Protection.)

Segments identified as data segments (E=0, S=1)
are used for two types of Intel486 Microprocessor
segments: stack and data segments. The expansion
direction (ED) bit specifies if a segment expands
downward (stack) or upward (data). If a segment is a
stack segment all offsets must be greater than the
segment limit. On a data segment all offsets must be
less than or equal to the limit. In other words, stack
segments start at the base linear address plus the
maximum segment limit and grow down to the base
linear address plus the limit. On the other hand, data
segments start at the base linear address and ex-
pand to the base linear address plus limit.

PRELIMINARY l

INTEL CORP (UP/PRPHLS)

intgl.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W= 1.

The B bit controls the size of the stack pointer regis-
ter. if B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

4.3.4.3 System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4.7
shows the general format of system segment de-
scriptors, and the various types of system segments.
Intel486 Microprocessor system descriptors contain
a 32-bit base linear address and a 20-bit segment
limit. 80286 system descriptors have a 24-bit base
address and a 16-bit segment limit. 80286 system
descriptors are identified by the upper 16 bits being
alt zero.

4.3.4.4 LDT Descriptors (S=0, TYPE=2)

LOT descriptors (S=0, TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

B7E D WM 4d2bl?5 0127427 T53 MEITLY

Intel486™ DX MICROPROCESSOR

4.3.4.5 TSS Descriptors (S=0,
TYPE=1, 3,9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). ATSS intumn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or an Intel486 Microprocessor TSS. The Task
Register (TR) contains the selactor which points to
the current Task State Segment.

4.3.4.6 Gate Descriptors (S=0,
TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of
gate descriptors are call gates, task gates, inter-
rupt gates, and trap gates. Gates provide a level of
indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. It
also allows system designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see Section 4.4 Protec-
tion), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify in-
terrupt service routines.

31 16 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
BASE31...24 | G| 0| O] O LIMIT P| DPL | O TYPE BASE +4
19...18) Loy, et
Type Defines Type Defines
0 invalid -] invalid
1 Available 80286 TSS 9 Available Intel486™ CPU TSS
2 LDT A Undefined (Intel Reserved)
3 Busy 80288 TSS B Busy Inteld86™ CPU TSS
4 802686 Call Gate [o] intel486™ CPU Call Gate
5 Task Gate {for 80286 or Intel486™ CPU Task) D Undefined (intel Reserved)
8 80288 interrupt Gate E Inteld86™ CPU Interrupt Gate
7 80286 Trap Gate F Intel488™ CPU Trap Gate
Figure 4.7. System Segment Descriptors
2-269

I PRELIMINARY

INTEL CORP (UP/PRPHLS)

Inteld86™ DX MICROPROCESSOR

Figure 4.8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see Section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

LYE D W 482bL17?5 0l27428 99T EEITLL

]

intel.
The access byte format is the same for al! gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see Section 4.4 Pro-
tection). The S field, bit 4 of the access rights byte,
must be 0 to indicate a system control descriptor.
The type field specifies the descriptor type as indi-
cated in Figure 4.8.

4.3.4.7 Differences Between Intel486™
Microprocessor and 80286 Descriptors

In order to provide operating system compatibility
between the 80286 and Intel486 Microprocessor,
the Intel486 Microprocessor supports all of the
80286 segment descriptors. Figure 4.9 shows the
general format of an 80286 system segment de-
scriptor. The only differences between 80286 and
Intel486 Microprocessor descriptor formats are that
the values of the type fields, and the limit and base
address fields have been expanded for the Intel486
Microprocessor. The 80286 system segment de-
scriptors contained a 24-bit base address and 16-bit
limit, while the Intel486 Microprocessor system seg-
ment descriptors have a 32-bit base address, a 20-
bit limit field, and a granularity bit.

‘31 24 16 8 5 0
SELECTOR OFFSET15...0 0
WORD
OFFSET 31...16 Pl DPL|O TYPE 0| 0| O|COUNT|+4
L Ly 4...0
Gate Descriptor Fleids
Name Value Description
Type 4 80286 call gate
5 Task gate (for 80286 or Intel486™ CPU task)
[] 802886 interrupt gate -
7 80286 trap gate
c Intel486™ CPU cail gate
E Intel486™ CPU interrupt gate
F Intel486™ CPU trap gate
P 1] Descriptor contents are not valid
1 Descriptor contents are valid

DPL—Isast privilaged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to copy from caller’s stack
1o the called procedure’s stack. The parameters are 32-bit quantities for Intel486™ CPU gates, and 16-bit quantities for 80286 gates.

DESTINATION 16-bit Selector 1o the target code sagment
SELECTOR selactor or
Seloctor o the target task state segment for task gate
DESTINATION oﬂsef Entry point within the target code segmaent
OFFSET 16-bit 80286
32-bit Intel486™ CPU
Figure 4.8. Gate Descriptor Formats
2-270

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intal.

By supporting 80286 system segments the Intel486
Microprocessor is able to execute 80286 application
programs on an Intel486 Microprocessor operating
system. This is possible because the processor au-
tomatically understands which descriptors are
80286-style descriptors and which descriptors are
Inteld486 Microprocessor-style descriptors. In partic-
ular, if the upper word of a descriptor is zero, then
that descriptor is a 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Intel486 Microprocessor descriptors is
the interpretation of the word count field of calil gates
and the B bit. The word count field specifies the
number of 16-bit quantities to copy for 80286 call
gates and 32-bit quantities for Intei486 Microproces-
sor call gates. The B bit controis the size of PUSHes
when using a call gate; if B=0 PUSHes are 16 bits,
it B=1 PUSHes are 32 bits.

4.3.4.8 Selector Flelds

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (TI), Descriptor

L7E D W 4826175 012?429 82k MEITLL

Intel486™™ DX MICROPROCESSOR

Entry Index (Index), and Requestor (the selactor's)
Privilege Level (RPL) as shown in Figure 4.10. The
Tl bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

4.3.4.9 Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register's con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

31 0
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0
Intel Reserved BASE

Setto 0 e o G E T A

BASE Base Address of the segment DPL Descriptor Privilege Level 0-~3
LIMIT The length of the segment S System Descriptor 0=System 1=User

P Present Bit 1=Present 0=Not Present TYPE Type of Segment

Figure 4.9. 80286 Code and Data Segment Descriptors
2-271

l PRELIMINARY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

E7E D MM 4826175 0127430 548 EEMITLY

intel.

SELECTOR
15 43210
SEGMENT Ti{ RPL
REGISTER Jojo ----ofof1{1]1] |
b * | TABLE
INDEX INDICATOR
Ti=1 TI=01
N N
n DESCRIPTOR A
A NUMBER A
> 6 6
5 5
4 4
3§ DESCRIPTOR - 3
2 2
1 1
0 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE 2 14

Figure 4.10. Example Descriptor Selection

4.3.4.10 Segment Descriptor Register Settings

The contents of the segment descriptor cache vary
depending on the mode the intel486 Microprocessor
is operating in. When operating in Real Address
Mode, the segment base, limit, and other attributes
within the segment cache registers are defined as
shown in Figure 4.11. For compatibility with the 8086

2-272

architecture, the base is set to sixteen times the cur-
rent selector value, the limit is fixed at 0000FFFFH,
and the attributes are fixed so as to indicate the seg-
ment is present and fully usable. In Real Address
Mode, the internal “privilege level” is always fixed to
the highest level, level 0, so /O and other privileged
opcodes may be executed.

PRELIMINARY l

INTEL CORP (UP/PRPHLS) G?E D EHM 4826175 D127u431l sy EEITLL

Intel486™ DX MICROPROCESSOR

intal.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 = BIT BASE 32 = BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL 1
PRESENT
_________ BASE LIMIT 4 i3
Ccs 16X CURRENT CS SELECTOR® OQOOFFFFH |YIOlY|BIUIY|Y|Yi~|N
SS 16X CURRENT SS SELECTOR Q00Q0FFFFH |Y|OjY[BJUIY|Y|NIW
DS 16X CURRENT DS SELECTOR QOQOFFFFH |Y|O|Y|[B|U|Y|Y[N|j=]|=
ES 16X CURRENT ES SELECTOR QO00FFFFH |Y|O]Y|BJU|Y|Y|N[=]=
FS 18X CURRENT FS SELECTOR Q000FFFFH [Y|Q{Y|BIU|Y|YIN|=]| =
GS 16X CURRENT GS SELECTOR O00OFFFFH {Y|O]Y|{B|U|Y|Y|N|=| =
"""" b L T T T
*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer {i.e., intersegment CALL, or
intersegment JMP, or INT). (See Figure 4,13 Example.) '
Key: Y = yes D = expand down
N = no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
2 = privilege level 3 ~ = does not apply to that segment cache register
U = expand up

Figure 4.11. Segment Descriptor Caches for Real Address Mode
{Segment Limit and Attributes are Fixed)

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4.12,

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-
ment register.

In Protected Mode, each of these fields are defined

l PRELIMINARY 2-273

Intel486™ DX MICROPROCESSOR

INTEL CORP (UP/PRPHLS)

In

G7E D EM 482L1L7?5 0l27432 310 MEITLY

tal.

SEGMENT
32 = BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

DESCRIPTOR CACHE REGISTER CONTENTS

32 = BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

STACK SIZE

EXECUTABLE
WRITEABLE

READABLE

EXPANSION DIRECTION

GRANULARITY

ACCESSED

PRIVILEGE LEVEL

PRESENT

cs BASE PER SEG DESCR

LIMIT PER SEG DESCR

$S BASE PER SEG DESCR

LIMIT PER SEG DESCR

0s BASE PER SEG DESCR

LIMIT PER SEG DESCR

ES BASE PER SEG DESCR

FS BASE PER SEG DESCR

LIMIT PER SEG DESCR

GS BASE PER SEG DESCR

’

]

1]

'

[

'

LN

'z

(=1

[}

]

[

]

'

]

'
oajoiolalala pdeeet

)

—
alalolalolq t—

]
alalo/alalo pe———

)

)

1

&

<

ajajoja||Q

p
p
p
LIMIT PER SEG DESCR P
p
[

LIMIT PER SEG DESCR

Key: Y = fixed yes
N = fixed no
d = per segment descriptor
{exception 12 in case of SS)
{special case for SS)

(special case for S8)
- = does not apply to that segment cache register

p = per segment descriptor; descriptor must indicate “present” to avoid exception 11
r = per segment descriptor, but descriptor must indicate “readable” to avoid exception 13

w = per segment descriptor, but descriptor must indicate “writable” to avoid exception 13

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4.13. For compatibility with
the 8086 architecture, the base is set to sixtesn
times the current selector value, the limit is fixed at

2-274

0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intal.

6G7E D WM 482L175 0127433

Intel486™ DX MICROPROCESSOR

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32-8IT BASE 32 = BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE 1
WRITEABLE 1
READABLE '
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT
BASE LMT 4 v
cs 18X CURRENT CS SELECTOR OOQOFFFFH |Y|3|YB]UjY|Y|Y|=|N
sSS 16X CURRENT SS SELECTOR O0OOFFFFH Y|3[Y|{BJUjYIYiN|W
0s 16X CURRENT DS SELECTOR QO0OFFFFH [Y|3|Y[B{U|Y{Y|N|=] =
ES 16X CURRENT £S SELECTOR O000FFFFH [Y|3|Y[B{|U]JY|Y[N|j=}=
FS 16X CURRENT FS SELECTOR OOQOFFFFH |Y|3|Y|B{UIY|Y|N|=|=
GS 16X CURRENT GS SELECTOR QQOOFFFFH |Y|3|YIBU|YIYIN|I=|~=
240440-17
Key: Y = yes D = expand down
N =no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilego level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up

Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
{Segment Limit and Attributes are Fixed)

4.4 Protection

4.4.1 PROTECTION CONCEPTS

240440-18

Figure 4.14. Four-Level Hierarchical Protection

I PRELIMINARY

The Intel486 Microprocessor has four levels of pro-
tection which are optimized to support the needs of
a multi-tasking operating system to isolate and pro-
tect user programs from each other and the operat-
ing system. The privilege levels control the use of
privilteged instructions, 1/0 instructions, and access
to segments and segment descriptors. Unlike tradi-
tional microprocessor-based systems where this
protection is achieved only through the use of com-
plex external hardware and software the Intel486 Mi-
croprocessor provides the protection as part of its
integrated Memory Management Unit. The Intel486
Microprocessor offars an additional type of protec-
tion on a page basis, when paging is enabled (See
Section 4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14, it is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the intel486 Microprocessor pag-

2-275

257 IMITLY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

ing mechanism. The privilege levels (PL) are num-
bered O through 3. Level 0 is the most privileged or
trusted level.

4.4.2 RULES OF PRIVILEGE

The Intel486 Microprocessor controls access to
both data and procedures between levels of a task,
according to the following rules.

s Data stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

* A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilegs level than p.

4.4.3 PRIVILEGE LEVELS

4.4.3.1 Task Privilege

At any point in time, a task on the Intel486 Micro-
processor always executes at one of the four privi-
lege levels. The Current Privilege Level (CPL) speci-
fies the task’s privilege level. A task's CPL may only
be changed by control transfers through gate de-
scriptors to a code segment with a different privilege
level. (See Section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task’s CPL to be set to
1 until the operating system routine was finished.

4.4.3.2 Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector's APL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task's CPL and a selec-
tor's RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level

2-276

67E D N 482L1?5 0127434 193 EMITLL

intgl.

3 regardiess of the task's CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator's CPL.

4.4.3.3 1/0 Privilege and 1/0 Permission Bitmap

The 1/0 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which I/O instructions can be unconditionally per-
formed. 1/0 instructions can be unconditionally per-
formed when CPL < IOPL. (The I/0O instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS)
When CPL > I0PL, and the current task is associat-
ed with a 286 TSS, attempted I/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with an Intel486 Micro-
processor TSS, the 1/0 Permission Bitmap (part of
an Intel486 Microprocessor TSS) is consuited on
whether 1/0 to the port is allowed, or an exception
13 fault is to be generated instead. For diagrams of
the 1/0O Permission Bitmap, refer to Figures 4.15a
and 4.15b. For further information on how the /0
Permission Bitmap is used in Protected Mode or in
Virtual 8086 Mode, refer to Section 4.6.4 Protection
and 1/0 Permission Bitmap.

The 1/0 privilege level {(IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “IOPL-sensitive” instructions and they are
CL! and STI. {Note that the LOCK prefix is not IOPL-
sensitive on the Intel486 Microprocessor.)

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL < IOPL, then the
IF bit can be changed by loading a new value into

+ the EFLAGS register. When CPL > IOPL, the IF bit

cannot be changed by a new value POP'ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

PRELIMINARY I

INTEL CORP (UP/PREHLI)D

intel.

Table 4.2. Pointer Test Instructions

Instruction| Operands Function

ARPL

Selector,
Register

Adjust Requested Privi-
lege Level: adjusts the
RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERify for Read: sets the
zero flag if the segment
referred to by the selector
can be read.

VERR |Selector

VERW |[Selector |VERify for Write: sets the
zero flag if the segment
referred to by the selector

can be written.

LSL Register,
Selsctor

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register,
Selector

Load Access Rights: reads
the descriptor access
rights byte into the register
if privilege rules allow. Set

zero flag if successful.

4.4.3.4 Privilege Validation

The Inteld486 Microprocessor provides several in-
structions to speed pointer testing and help maintain
system integrity by verifying that the selector value
refers to an appropriate segment. Table 4.2 summa-
rizes the selector validation procedures available for
the Intei486 Microprocessor.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a “bad” pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-

I PRELIMINARY

LYE D MR 4A2LL?5 012?435 02T EMITLY

Intel486™ DX MICROPROCESSOR

tion to ensure thét the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

. 4.4.3.5 Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Inteld86 Microprocessor
makes protection validation checks. Selectors load-

ed in the DS, ES, FS, GS registers must refer only to § v
data segments or readable code segments. The Re

data access rules are specified in Section 4.4.2
Rules of Privilege. The only exception to those
rules is readable conforming code segments which
can be accessed at any privilege levsl.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the resuit of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

22717

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

E?E D M 442b175 0127436 Thb EEITLL

Table 4.3. Descriptor Types Used for Control Transfer

intal.

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or oT

Exception, External Interrupt

Interrupt Gate
intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate 10T

Interrupt Instruction,

Exception, External

interrupt

*NT (Nested Task bit of flag register) = 0
**NT (Nested Task bit of flag register) = 1

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via
gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to
a more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments ars accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL
must be of equal or greater privilege than the
gate’s DPL.

— The code segment selected in the gate must be
the same or more priviteged than the task's CPL.

2-278

— Return instructions that do not switch tasks can
only return control to a cods segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see Section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the origina! privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-sagment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) G7E D W 4826175 0127437 9T2 EMITLL

|n R . Intel486™ DX MICROPROCESSOR
31 16 13 0 J
o 1SS BASE
0000000000000000 1 BACK LINK
) 4
0000000000000000 | 550 5
ESP1 : € | stacks
10 [For
0000000000000000 | ss1 cPL O, 1.2
ESP2 14
0000000000000000 | ss2 18
<
CR3 1
31 20
EFLAGS 24
EAX 28
ECX 2
£0X 30
£BX 34
£sP 3
£ap 3¢
- | current
£si 40} rask
€01 44 STATE
0000000000000000 £S 48
0000000000000000 cs 4
0000000000000000 ss 50
Q000000000000000 DS 54
0000000000000000 FS s
0000000000000000 [5¢
0000000000000000 Lot 60 |
BIT. MAP_OFFSET(15:0) 0000000000000000 T R84
NOTE: L DN
BIT_MAP__OFFSET AVAILABLE ~——] oEBUG
must be < DFFFH o SYSTEM STATUS, ETC. L] TRAP BIT
v IN Intet488™ cpu TSS L
31 24§23 18] 13 a7z JY
83 56155 ss]er 40] 39 32| eir_map_orrser
93 asfsa7 aof79 7271 [
e e . 96| oFFser + ¢
1]
+ [access | otss |y OFFSET + 10
¢ | rcuts | oumr | £
: : - . L)
! BASE 2 m b 1/0 PERMISSION BITMAR T
t]
85407 FSET + 1FEC
e ol | PR e il
V____NvisiBLE 5439 TRUNCATED USING TSS LIMIT.) OFFSET + 1FFO
TASK REGISTER 65471 OFFSET + 1FF4
85503 65472 | orrser + 1Fra
] SELECTOR —
85535 65504 | oFrser + 1£7c
15 0 "FFHY OFFSET + 2000
_ rss Lt =orrser » 20000
31 Inte1486™ CPU TSS DESCRIFTOR (IN GDT) [
SEGMENT BASE 15...0 SEGMENT LIMIT 15..0
v LIMIT BASE
BASE 31..24 lclthlol o e FID:L lol e I 2318

240440-19
Type = 9: Available inteldB86™ CPU TSS,
Type = B: Busy intel486™ CPU TSS

Figure 4.15a. Intel486™ Microprocessor TSS and TSS Registers

PRELIMINARY 2-279

INTEL CORP (UP/PRPHLS) L?E D EM 482b175 0127438 439 ENITLL

L]
Intel486™ DX MICROPROCESSOR IntQI °

313029282726252423222120191817161514131211109 8 7 6 S 4 3 2 1 0
iy 1101 1o0foooor1t11Jo1o001100fo00000 11
s3jloot1o0001 1t 100t010[t 11t t1100f1 1111001
LR R IR UE N N RO FR A B AR R NN LR A I TR I LI I B I R R A
127]00000000jloooooooojlooooooo0ofloooooo0o0o0
’) 11111111
T otc. g
1/0 Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127 240440-20
Figure 4.15b. Sample 1/0 Permission Bit Map
4.4.5 CALL GATES _ address space, and a link to the previous task),

’ loads a new execution state, performs protection
Gates provide protected, indirect CALLs. One of the checks, and commences execution in the new task,
major uses of gates is to provide a secure method of in about 10 microseconds. Like transfer of control
privilege transfers within a task. Since the operating via gates, the task switch operation is invoked by
system defines all of the gates in a system, it can executing an inter-segment JMP or CALL instruction
ensure that all gates only allow entry into a few trust- which refers to a Task State Segment (TSS), or a
. ed procedures (such as those which allocate memo- task gate descriptor in the GDT or LDT. An INT n
" ry, or perform 1/0). instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a

Gate descriptors follow the data access rules of priv- a5k gate descriptor in the assaciated IDT descriptor
ilege; that is, gates can be accessed by a task if the slot.

EPL, is equal to or more privileged than the gate

descriptor'§ pPL. Gates follow the control transfer The TSS descriptor points to a segment (see Figure
rules of privilege and therefore may only transfer 4 15) containing the entire Intel486 Microprocessor
control to a more privileged level. execution state while a task gate descriptor contains
a TSS selector. The Intsid86 Microprocessor sup-
ports both 80286 and Intel486 Microprocessor style
TSSs. Figure 4.16 shows a 80286 TSS. The limit of
an Intel486 Microprocessor TSS must be greater
than 0064H (002BH for a 80286 TSS), and can be

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Intel486 Microprocessor
call gate is activated, the following actions occur.

1. Load CS:EIP from gate check for validity as large as 4 Gigabytes. In the additional TSS
2. SS is pushed zero-extended to 32 bits space, the operating system is free to store addition-
3. ESP is pushed al information such as the reason the task is inac-

. tive, time the task has spent running, and open files
4. Copy Word Count 32-bit parameters from the belong to the task.

old stack to the new stack

5. Push Return address on stack Each task must have a TSS associated with it. The

i current TSS is identified by a special register in the

The procedure is identical for 80286 Call gates, ex- Intel486 Microprocessor called the Task State Seg-
cept that 16-bit parameters are copied and 16-bit ment Register (TR). This register contains a selector
registers are pushed. referring to the task state segment descriptor that

. e defines the current TSS. A hidden base and limit
Interrupt Gates and Trap gates work in a similar (oqigter associated with TR are loaded whenever TR
fashion as the call gates, except there is no copying g Joaded with a new selector. Returning from a task
of parameters. The only difference between Trap g accomplished by the IRET instruction. When IRET
and Interrupt gates is that control transfers through g executed, control is returned to the task which
an [nterrupt gate disable further interrupts (1.9. the IF was interrupted. The current executing task’s state
bit is set o 0), and Trap gates leave the interrupt 5 saved in the TSS and the old task state is restored

status unchanged. from its TSS.

4.4.6 TASK SWITCHING Several bits in the flag register and machine status
. . . . word (CRO) give information about the state of a

A very important attribute of any muiti-tasking/multi- task which are useful to the operating system. The

user opserating systems is its ability to rapidly switch Nested Task (NT) (bit 14 in EFLAGS) controls the
between tasks or processes. The Inteld86 Micro- function of the IRET instruction. If NT = 0, the IRET

processor directly supports this operation by provid- instruction performs the regular return; when NT =
ing a task switch instruction in hardware. The In- 1, IRET performs a task switch operation back to the
tel486 Microprocessor task switch operation saves previous task. The NT bit is set or reset in the follow-
the entire state of the machine (all of the registers, ing fashion:

2-280 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

15 0
BACK LINK SELECTOR TO TSS 0
SP FOR CPL 0 2]
SS FOR CPL 0 4
SP FOR CPL 1 & | INMAL
SS FOR CPL 1 8 ?},:f'c‘; 0.1.2
SP FOR CPL 2 A
SS FOR CPL 2 c)
IP (ENTRY POINT) E)
FLAGS 10
AX 12
X 14
DX 16
8 18 1 curment
SP 1A} TASK
P 1c | STATE
si 1E
ol 20
ES SELECTOR 22
CS SELECTOR 24
SS SELECTOR 26
DS SELECTOR 28 |
TASK'S LDT SELECTOR 2A
Jy AVAILABLE Jh
v “w
240440-21

Figure 4.16. 80286 TSS

When a CALL or INT instruction initiates a task

switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Intel486 Microprocessor task state segment is
marked busy by changing the descriptor type field
from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer-
ences a busy task state segment causes an excep-
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see Section 4.6 Virtual Mode).

The FPU's state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CRO) helps deal with the FPU’s state in a multi-
- tasking environment. Whenever the Intel486 Micro-

l PRELIMINARY

Intel486™ DX MICROPROCESSOR

processor switches tasks, it sets the TS bit. The In-
tel486 Microprocessor detects the first use of a
processor extension instruction after a task switch
and causes the processor extension not available
exception 7. The exception handler for exception 7
may then decide whether to save the state of the
FPU. A processor extension not present exception
(7) will occur when attempting to execute a Floating
Point or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.
TS = tand MP = 1),

The T bit in the Intel486 Microprocessor TSS indi-
cates that the processor should generate a debug
exception when switching to a task. if T = 1 then
upon entry to a new task a debug exception 1 will be
generated.

4.4.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the Intel486 Microprocessor begins executing
in Real Mode immediately after RESET it is neces-
sary to initialize the system tables and registers with
the appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 4.17 shows the ta-
bles and Figure 4.18 the descriptors needed for a
simple Protected Mode Inteld86 Microprocessor
system. It has a single code and single data/stack
segment each four gigabytes long and a single privi-
lege level PL = 0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the Intel486 Microprocessor in
Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

2-281

L?E D HE 482LL75 0l27439 7?75 EEITLY

INTEL CORP (UP/PRPHLS) L7E D ER 482b175 0l27u40 497 EEITLY

Intel486™ DX MICROPROCESSOR

3 0
15 o AT i
ss) INITIALIZATION
ROUTINES
rs (10
es [Gero]
os [ooro] |
cs
GDTR ono17|uurr . A soooot18
00000100 DATA DESCRIPTOR
BASE ADDRESS CODE DESCRIPTOR 00000110
NULL SELECTOR 00000108
IDTR 00000100
00000000 INTERRUPT T
BASE ADDRESS DESCRIPTORS (32)
00000000 240440-22
Flgure 4.17. Simple Protected System
LIMIT
BASE31...24|G|D BASE23...16
2 olo 19.16 110 0/1{0 0 1{0
00 (H 11 00 (H
H) F(H) l » H)
DATA SEGMENT BASE15...0 SEGMENT LIMIT 15...0
DESCRIPTOR| 0118 (H) FFFF (H)
LIMIT
BASE31...24|G|D BASE 23...16
1 0|0 19.16 110 0f1|1 0 1]0
00 (H 101 00 (H
CODE SEGMENT BASE 15...0 SEGMENT LIMIT 156...0
DESCRIPTOR | 0118 (H) FFFF (H)
NULL } DESCRIPTOR
0
31 . 24 16 15 8 0

Figure 4.18. GDT Descriptors for Simple System

4.4.8 TOOLS FOR BUILDING PROTECTED
SYSTEMS

4.5 Paging

in order to simplify the design of a protected muit- 4.5.1 PAGING CONCEPTS

tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
intel486 Microprocessor system. This tool is the
builder BLD-386. BL.D-386 lets the operating system
writer specify all of the segment descriptors dis-
cussed in the previous sections (LDTs, IDTs, GDTs,
Gates, and TSSs) in a high-level language.

2-282

Paging is another type of memory management
useful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments, pag-
ing divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

»

intgl.

structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-

sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 PAGING ORGANIZATION

4.5.2.1 Page Mechanism

The Intel486 Microprocessor uses two levels of ta-
bles to translate the linear address (from the seg-
mentation unit) into a physical address. There are
three components to the paging mechanism of the
Intel486 Microprocessor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the Intel486 Micro-
processor paging mechanism are the same size,
namely, 4 Kbytes. A uniform size for all of the ele-
ments simplifiss memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4.19 shows how the paging
mechanism works.

L7E D EN 4826175 0127441 323 EEITLY

Intel486™ DX MICROPROCESSOR

4.5.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. it
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. it contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.5 Translation
Lookaside Buffer).

4.5.2.3 Page Directory

The Page Directory is 4 Kbytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4.20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

~

TWO LEVEL PAGING SCHEME
31 22 12 0 v
———>»! Directory | TasLe | ofrser | USER
LINEAR MEMORY
ADDRESS o L 12 l
- Yy (O avoress
486™ cpu + T
31 0 T Y (O L,
wo[T 4 f
~ 1 .
CRt > >
Q/ PAGE TABLE
CcR2 T
CR3 ROOT >
DIRECTORY
CONTROL REGISTERS
240440-23
Figure 4.19. Paging Mechanism
31 12 1 10 9 8 7 6 5 4 3 2 1]
0S PIP]JUIR
PAGE TABLE ADDRESS 31..12 RESERVED 0 0 DIAjCIW|[—1—]P
Dl T[S |W
Figure 4.20. Page Directory Entry {(Points to Page Table)
2-283

I PRELIMINARY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

L?E D EE 482bL1l?5 0l27442 26T EEITLL

El) 12 11 10 9 8 7 6 5 4 3 2 1 o0
os P{P|U]|R

PAGE FRAME ADDRESS 31..12 RESERVED 0OJ] 0| DA CIW|—[—1}P
D| T[S |W

Figure 4.21. Page Table Entry (Points to Page)

4.5.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4.21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation
it P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the Intel486 Micro-
processor for both types of entries before a read or
write access occurs to an address covered by the
entry. The D (Dirty) bit 6 is set to 1 before a write to
an address covered by that page table entry occurs.
The D bit is undefined for Page Directory Entries.
When the P, A and D bits are updated by the In-
tel486 Microprocessor, the processor generates a
Read-Modify-Write cycle which locks the bus and
prevents conflicts with other processors or perpheri-
als. Software which modifies these bits should use
the LOCK prefix to ensure the integrity of the page
tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4.20 and
Figure 4.21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

2-284

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

4.5.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The Intel486 Microprocessor provides a set of pro-
tection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: User which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
0,1, 2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The 386
Microprocessor does not contain the WP bit. The
WP bit has been added to the Intel486 Microproces-
sor to protect read-only pages from supervisor write
accesses. The 386 Microprocessor allows a read-
only page to be written from protection levels 0, 1 or
2. WP=0 is the 386 Microprocessor compatible
mode. When WP =0 the supervisor can write to a
read-only page as defined by the U/S and R/W bits.
When WP =1 supervisor access to a read-only page
(R/W=0) will cause a page fault (exception 14).

Table 4.4 shows the affect of the WP, U/S and R/W
bits on accessing memory. When WP =0, the super-
visor can write to pages regardless of the state of
the R/W bit. When WP =1 and R/W =20 the supervi-
sor cannot write to a read-only page. A user attempt
to access a supervisor only page (U/S=0), or write
to a read only page will cause a page fault (excep-
tion 14).

The R/W and U/S bits provide protection from user
access on a page by page basis since the bits are
contained in the Page Table Entry and the Page Di-
rectory Table. The U/S and R/W bits in the first level
Page Directory Table apply to all entries in the page
tabie pointed to by that directory entry. The U/S and
R/W bits in the second level Page Table Entry apply
only to the page described by that entry. The most
restrictive of the U/S and R/W bits from the Pagse
Directory Table and the Page Table Entry are used
to address a page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 (user read/execute) and the

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

U/S and R/W bits for the Page Table Entry were 01
(no user access at all), the access rights for the
page would be 01, the numerically smaller of the
two.

Note that a given segment can be sasily made read-
only for level 0, 1 or 2 via use of segmented protec-
tion mechanisms. (Section 4.4 Protection).

4.5.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

PWT (page write through) and PCD (page cache dis-
able) are two new bits defined in entries in both lev-
els of the page table structure, the Page Directory
Table and the Page Table Entry. PCD and PWT con-
trol page cacheability and write policy.

PWT controls write policy. PWT =1 defines a write-
through policy for the current page. PWT =0 allows
the possibility of write-back. PWT is ignored internal-
ly because the Intel486 microprocessor has a write-
through cache. PWT can be used to control the write
policy of a second level cache.

PCD controls cacheability. PCD =0 enables caching
in the on-chip cache. PCD alone does not enable
caching, it must be conditioned by the KEN # (cache
enable) input signal and the state of the CD (cache
disable bit) and NW (no write-through) bits in control
register 0 (CR0). When PCD =1, caching is disabled
regardless of the state of KEN#, CD and NW. (See
Section 5.0, On-Chip Cache).

The state of the PCD and PWT bits are driven out on
the PCD and PWT pins during a memory access.

The PWT and PCD bits for a bus cycle are obtained
either from control register 3 (CR3), the Page Direc-
tory Entry or the Page Tabie Entry, depending on the
type of cycle run. However, when paging is disabled
(PG = 0 in CRO) or for cycles which bypass paging
(i.e., I/O (input/output) references, INTR (interrupt
request) and HALT cycles), the PCD and PWT bits
of CR3 are ignored. The Intel486 CPU assumes PCD
= 0 and PWT = 0 and drives these values on the
PCD and PWT pins.

Intel486™ DX MICROPROCESSOR

When paging is enabled (PG=1 in CRO0), the bits
from the page table entry are cached in the transla-
tion lookaside butfer (TLB), and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles run with paging enabled,
the PWT and PCD bits are taken from the Page Ta-
ble Entry. During TLB refresh cycles when the Page -
Directory and Page Table entries are read, the PWT
and PCD bits must be obtained elsewhere. The bits
are taken from CR3 when a Page Directory Entry is
being read. The bits are taken from the Page Direc-
tory Entry when the Page Table Entry is being updat-
ed.

The PCD or PWT bits in CR3 are initialized to zero at
reset, but can be set to any value by level 0 soft-
ware. :

4.5.5 TRANSLATION LOOKASIDE BUFFER

The Intel486 Microprocessor paging hardware is de-
signed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the Intel486 Microprocessor
keeps a cache of the most recently accessed pages,
this cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-en-
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the proces-
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad-
dresses. For many common multi-tasking systems,
the TLB will have a hit rate of about 98%. This
means that the processor will only have to access
the two-level page structure on 2% of all memory
references. Figure 4.22 illustrates how the TLB com-
plements the Intel486 Microprocessor’'s paging
mechanism.

Reading a new entry into the TLB (TLB refresh} is a
two step process handled by the Intel4B86 microproc-
essor hardware. The sequence of data cycles to per-
form a TLB refresh are:

Table 4.4. Page Level Protection Attributes

G?E D WM 482b175 0127443 1ThL EEITLI

I PRELIMINARY

u/s R/W wp User Access Supervisor Access
0 0 0 None Read/Write/Execute
0 1 0 None Read/Write/Execute
1 0 0 Read/Execute Read/Write/Execute
1 1 0 Read/Write/Execute Read/Write/Execute
0 0 1 None Read/Execute
0 1 1 None Read/Write/Execute
1 0 1 Read/Exscute Read/Execute
1 1 1 Read/Write/Execute Read/Write/Execute
2-285

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

1. Read the correct Page Directory Entry, as point-
ed to by the page base register and the upper
10 bits of the linear address. The page base
register is in control register 3.

1a. Optionally perform a locked read/write to set
the accessed bit in the directory entry. The di-
rectory entry will actually get read twice if the
Intel486 Microprocessor needs to set any of the
bits in the entry. If the page directory entry
changes between the first and second reads,
the data returned for the second read will be
used.

2. Read the comrect entry in the Page Table and
place the entry in the TLB.

2a. Optionally perform a locked read/write to set
the accessed and/or dirty bit in the page table
entry. Again, note that the page table entry will
actually get read twice if the Intei486 Microproc-
essor needs to set any of the bits in the entry.
Like the directory entry, if the data changes be-
tween the first and second read the data re-
turned for the second read will be used.

Note that the directory entry must always be read
into the processor, since directory entries are never
placed in the paging TLB. Page faults can be sig-
naled from either the page directory read or the
page table read. Page directory and page table en-
tries may be placed in the Intel486 on-chip cache
just like normal data.

4.5.6 PAGING OPERATION

32 ENTRIES
PHYSICAL
MEMORY
war TRANSLATION R
ADORESS FFER wr
wiss
3 °
y
f
PAGE PAGE
DIECTORY TABLE
® 98X HIT RATE
240440-24

Figure 4.22. Translation Lookaside Butfer

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e., a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

2-288

L?E D WM 4826175 0l27444 032 EEITLL

a

intal.
However, if the page table entry is not in the TLB,
the Intel486 Microprocessor will read the appropri-
ate Page Directory Entry. If P = 1 on the Page Di-
rectory Entry indicating that the page table is in

memory, then the Intel486 Microprocessor will read
the appropriate Page Table Entry and set the Ac-

* cess bit. If P = 1 on the Page Table Entry indicating

that the page is in memory, the Intel486 Microproc-
essor will update the Access and Dirty bits as need-
ed and fetch the operand. The upper 20 bits of the
linear address, read from the page table, will be
stored in the TLB for future accesses, However, if
P = 0 for either the Page Directory Entry or the
Page Table Entry, then the processor will generate a
page fault, an Exception 14.

The processor will also generate an exception 14
page fault, if the memory reference violated the
page protection attributes (i.e., U/S or R/W) (e.g.,
trying to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec-
ond page fault occurs, while the processor is at-
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep-
tion 14) handler a second time, rather than the dou-
ble fault (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc-
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault. Fig-
ure 4.23a shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4.23b indicates
what type of access caused the page fault.

15 3210
U

UIUIUTUJUUUJUIUUUjUlUjU] (WP
S|R

Figure 4.23a. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0).

W/R: The W/R bit indicates whether the access

causing the fault was a Read (W/R = 0) or a Write
(W/R = 1).

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protaction violation (P = 1).

U: UNDEFINED
u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program
is executing at level 3.
Figure 4.23b. Type of Access
Causing Page Fault

4.5.7 OPERATING SYSTEM RESPONSIBILITIES

The Intel486 Microprocessor takes care of the page
address translation process, relieving the burden
from an operating system in a demand-paged sys-
tem. The operating system is responsible for setting
up the initial page tables, and handling any page
faults. The operating system also is required to inval-
idate (i.e., flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system ssets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 Virtual 8086 Environment

4.6.1 EXECUTING 8086 PROGRAMS

The Intel486 Microprocessor allows the execution of
8086 application programs in both Real Mode and in
the Virtual 8086 Mode (Virtual Mode). Of the two
methods, Virtual 8086 Mode offers the system de-
signer the most flexibility. The Virtual 8086 Mode al-
lows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the Intel486 Microprocessor protection mecha-

I PRELIMINARY

GYE P EH 462b17?5 0i27445 T7?9 EEITLY

Intel486™ DX MICROPROCESSOR

nism. In particular, the Intel486 Microprocessor al-
lows the simultaneous execution of 8086 operating
systems and its applications, and an Intei486 Micro-
processor operating system and both 80286 and In-
tel486 Microprocessor applications. Thus, in a multi-
user Intel486 Microprocessor computer, one person
could be running an MS-DOS spreadsheet, another
person using MS-DOS, and a third person could be
running multiple Unix utilities and applications. Each
person in this scenario would believe that he had the
computer completely to himself. Figure 4.24 illus-
trates this concept.

4.6.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between Intel486 Mi-

croprocessor Real and Protected modes is how the 3 q

segment selectors are interpreted. When the proc-
essor is executing in Virtual 8086 Mode the segment
registers are used in an identical fashion to Real
Mode. The contents of the segment register is shift-
ed left 4 bits and added to the offset to form the
segment base linear address.

The Intel486 Microprocessor allows the operating
system to specify which programs use the 8086
style address mechanism, and which programs use
Protected Mode addressing, on a per task basis.
Through the use of paging, the one megabyte ad-
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the intel486 Microprocessor. Like Real Mode, Vir-
tual Mode effective addresses (i.e., segment offsets)
that exceed 64 Kbyte will cause an exception 13.
However, these restrictions should not prove to be
important, because most tasks running in Virtual
8086 Mode will simply be existing 8086 application
programs.

4.6.3 PAGING IN VlﬁTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 gig-
abyte physical address space of the Intel486 Micro-
processor. In addition, since CR3 (the Page Directo-
ry Base Register) is loaded by a task switch, each
Virtual Mode task can use a different mapping
scheme to map pages to different physical locations.

2-287

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Finally, the paging hardware allows the sharing of
the 8086 operating system code between multiple
8086 applications. Figure 4.24 shows how the In-
tel486 Microprocessor paging hardware enables
muitiple 8086 programs to run under a virtual memo-
ry demand paged system.

4.6.4 PROTECTION AND 1/0 PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec-
tion checks defined in Protected Mode. (This is dif-
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may

.
integl.
MOV reg,DRn;

MOV reg,TRn;
MOV reg,CRn.

LIDT;
LGDT ;
LMSW ;
CLTS;
HLT;

MOV DRn,reg;
MOV TRn,reg;
MOV CRn,reg;

Several instructions, particularly those applying to
the muititasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR ;
LSL; VERW ;
ARPL.

The instructions which are IOPL-sensitive in Protect-
ed Mode are:

be exacuted only at Privilege Level 0. Therefore, at- IN; STI;
tempting to execute these instructions in Virtual OUT; CLI
8086 Mode (or anytime CPL > 0) causes an excep- INS;
tion 13 fault: OUTS ;
REP INS;
REP QUTS;
PHYSICAL
MEMORY
02000000(H)
[
PAGE N
| moeeos \//////////////
EMpTY .
TASK 2 PAGE ‘///// /
TABLE /// ////
VIRTUAL MODE PAGE DIRECTORY 4
QO!S TASK TASK 2
[PAGE N
PAGE 1
8086 0OS
k EMPTY 00000000(H)
PAGE DIRECTORY TASK 1 PAGE TASK 1 5086 05
ROOT »] TABLE MEMORY MEMORY
P77] TASK 2 386™ cpy oS
\ooes sk Tk VA voione N dtsiony
- 240440-25

Figure 4.24, Virtual 8086 Environment Memory Management

2-288

PRELIMINARY I

L7E D EE 4826175 0l274u4b 505 EEITLL

INTEL CORP (UP/PRPHLS)

intgl.

In Virtual 8086 Mode, a slightly different set of in-
structions are made 10PL-sensitive. The following in-
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
{opcode OCCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren't
IOPL sensitive in Protected Mode either).

Note that the 1/0 instructions (IN, OUT, INS, QUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the 1/0 instructions be-
come automatically sensitive to the 170 Permission
Bitmap contained in the Intel486 Microprocessor
Task State Segment. The I/O Permission Bitmap,
automatically used by the Intel486 Microprocessor
in Virtual 8086 Mode, is illustrated by Figures 4.15a
and 4.15b.

The 1/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
Bit_Map__Offset in the current TSS. Bit_Map__
Oftset must be < DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
oftsets < FFFFH from the TSS base. The 16-bit
pointer Bit_Map__Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4.15a.

Each bit in the 1/0 Permission Bitmap corresponds
to a single byte-wide 1/0 port, as illustrated in Figure
4.15a. If a bit is 0, 1/0 to the corresponding byte-
wide port can occur without generating an excep-
tion. Otherwise the 1/Q instruction causes an excep-
tion 13 fault. Since every byte-wide 1/0 port must be
protectabile, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide 1/0 to be permitted. If all the referenced
bits are 0, the I/0 will be allowed. if any referenced
bits are 1, the attempted 1/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the I/0
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the Bit__Map__Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K {/Q space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not
required, while allowing the fully general cass if de-
sired.

I PRELIMINARY

G7E D WM 4826175 0l27447 A4l MEITLL

Intel486™ DX MICROPROCESSOR

EXAMPLE OF BITMAP FOR I/0 PORTS 0-255:
Setting the TSS limit to [bit_Map__Offset + 31
+1**} [** see note below] will allow a 32-byte bit-
map for the |/O ports #0-255, plus a terminator
byte of all 1’s [** see note below]. This aliows the
170 bitmap to control 1/0 Permission to 1/0 port 0-
255 while causing an exception 13 fault on attempt-
ed 1/0 to any 170 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 1/0 mapping information in the 1/0
Permission Bitmap must be a byte containing all 1's.
The byte of all 1's must be within the limit of the
Intel486 Microprocessor TSS segment (see Figure
4.15a).

4.6.5 INTERRUPT HANDLING

in order to fully support the emulation of an 8086 W=

machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Intel486 Microproces-
sor operating system. The Intel486 Microprocessor
operating system determines if the interrupt comes
from a Protected Mode application or from a Virtual
Mode program by examining the VM bit in the
EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The Inteld86 Microprocessor operating system in
turn handles the exception or interrupt and then re-
turns control to the 8086 program. The Intel486 Mi-
croprocessor operating system may choose to let
the 8086 operating system handle the interrupt or it
may emulate the function of the interrupt handler.
For example, many 8086 operating system calls are
accessed by PUSHing parameters on the stack, and
then executing an INT n instruction. If the IOPL is set
to 0 then all INT n instructions will be intercepted by
the Intel486 Microprocessor operating system. The
Intel486 Microprocessor operating system could em-
ulate the 8086 operating system’s call. Figure 4.25
shows how the InteldB6 Microprocessor operating
system could intercept an 8086 operating system’s
call to “Open a File".

An Intel486 Microprocessor operating system can
provide a Virtual 8086 Environment which is totally
transparent to the application software via intercept-
ing and then emulating 8086 operating system’s
calls, and intercepting IN and OUT instructions.

2-289

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

4.6.6 ENTERING AND LEAVING VIRTUAL
8086 MODE

Virtual 8086 mode is entered by executing an IRET
instruction (at CPL=0), or Task Switch (at any CPL)
to an intel486 Microprocessor task whose Intel486
Microprocessor TSS has a FLAGS image containing
a 1in the VM bit position while the processor is exe-
cuting in Protected Mode. That is, one way to enter
Virtual 8086 mode is to switch to a task with an In-
tel486 Microprocessor TSS that has a 1 in the VM
bit in the EFLAGS image. The other way is to exe-
cute a 32-bit IRET instruction at privilege level 0,
where the stack has a 1 in the VM bit in the EFLAGS
image. POPF does not affect the VM bit, even if the
processor is in Protected Mode or level 0, and so
cannot be used to enter Virtual 8086 Mode. PUSHF
always pushes a 0 in the VM bit, even if the proces-
sor is in Virtual B086 Mode, so that a program can-
not tell if it is executing in REAL mode, or in Virtual
8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM =1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe-
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to Intel486
Microprocessor protected mode occurs only on re-
ceipt of an interrupt or exception (such as due to a
sensitive instruction). In Virtual 8086 mode, all inter-
rupts and exceptions vector through the protected
mode 10T, and enter an interrupt handler in protect-
ed Intel486 Microprocessor mode. That is, as part of
interrupt processing, the VM bit is cleared.

Because the matching IRET must occur from level 0,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual 8086 made, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg-
ments, or through segments with DPL> 0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 Task Switches To/From Virtual
8086 Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new Intel486 Micro-
processor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with an Intel486 Microprocessor TSS. All of the
programmer visible state, including the FLAGS reg-
ister with the VM bit set to 1, is stored in the TSS.

2-290

b?E D WM 482b175 D0l27448 788 EMITLI

-

intgl.
The segment registers in the TSS will contain 8086
segment base values rather than selectors. ’

A task switch into a task described by an Intel486
Microprocessor TSS will have an additional check to
determine if the incoming task should be resumed in
virtual 8086 mode. Tasks described by 80286 format
TSSs cannot be resumed in virtual 8086 mode, so
no check is required there (the FLAGS image in
80286 format TSS has only the low order 16 FLAGS
bits). Before loading the segment register images
from an Inteld86 Microprocessor TSS, the FLAGS
image is loaded, so that the segment registers are
loaded from the TSS image as 8086 segment base
values. The task is now ready to resume in virtual
8086 execution mode.

4.6.6.2 Transitions Through Trap and Interrupt
Gates, and IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use an Intel486 Microproc-
essor Trap Gate (Type 14), or Intel486 Microproces-
sor Interrupt Gate (Type 15), which must point to a
non-conforming level 0 segment (DPL=0) in order
to permit the trap handler to IRET back to the Virtual
8086 program. The Gate must point to a non-con-
forming level 0 segment to perform a level switch to
level 0 so that the matching [RET can change the
VM bit. Intel486 Microprocessor gates must be used,
since 80286 gates save onily the low 16 bits of the
FLAGS register, so that the VM bit will not be saved
on transitions through the 80286 gates. Also, the
16-bit IRET (presumably) used to terminate the
80286 interrupt handler will pop only the lower 16
bits from FLAGS, and will not affect the VM bit. The
action taken for an Intel486 Microprocessor Trap or
Interrupt gate if an interrupt occurs while the task is
executing in virtual 8086 mode is given by the follow-
ing sequence.

(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt
is serviced by an Interrupt Gate, turn off IF also.

interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so IRET can return). This pro-
cess involves a stack switch to the stack given
in the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mode segment load,
since the VM bit was turned off above.

2

~

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

8086 APPLICATION
ROGRAM

Intel486™ cpy
APPLICATION
PROGRAM

GP FAULT

VIRTUAL 8086
MODE MONITOR

8088

OPERATING 3

I-

SYSTEM

Intel488™ cpy oS
FILE OPEN
ROUTINES

PRIVILEGE
LEVEL 3
(LowEsT)

8086 Application makes “Open File Call’ —» causes
General Protection Fault {Arrow #1)

Intel486™ CPU OS opens file returns controi to 8086 OS (Arrow #3)
8086 OS returns control to application. {Arrow #4)
Transparent to Application

PRIVILEGE
LEVEL O
{HIGHEST)

Virtual 8086 Monitor intsrcepts call. Calls Inteld86™ CPU OS (Arrow #2)

8086 APPLICATION
PROGRAM

240440-26

Figure 4.25. Virtual 8086 Environment Interrupt and Call Handling

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, DS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

(4) Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg-
ister saved above.

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old 8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

(7) Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected Intel486 Microprocessor mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-

l PRELIMINARY

ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don't care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e., push all registers in
prolog, pop all in epilog) regardless of whether or not
a “native” mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis-
ters before executing the IRET will not cause a trap
in the interrupt handier. Interrupt routines which ex-
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the B086 register images pushed onto
the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.

2-291

LG?E D W 4826175 0127449 bl4 EEITLL

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

The IRET instruction will perform the inverse of the
above sequence. Only the extended intel486 Micro-
processors IRET instruction (operand size =32) can
be used, and must be executed at level 0 to change
the VM bit to 1.

4

@

(&)

If the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following se-
quence.

Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value
active in the interrupted routine.

Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM=0, this CS load is done as a protected
mode segment load. If VM =1, this will be done
as an 8086 segment load.

2-292

L7E D NN 482L1?5 0127450 33L EEITLL

intgl.

(4) Increment the ESP register by 4 to bypass the

FLAGS image which was "popped” in step 1.

(5) It VM =1, load segment registers ES, DS, FS,

and GS from memory locations SS:[ESP+ 8],
SS:[ESP+12], SS:[ESP + 16}, . and
SS:[ESP +20], respectively, where the new val-
ue of ESP stored in step 4 is used. Since VM =1,
these are done as 8086 segment register loads.

Else if VM =0, check that the selectors in ES,
DS, FS, and GS are valid in the interrupted rou-
tine. Null out invalid selectors to trap if an at-
tempt is made to access through them.

(6) if (RPL(CS) > CPL), pop the stack pointer

SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. Iif VM=0, SS is loaded as a
protected mode segment register load. If VM=1,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The

VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode of Virtual 8086
mode.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

5.0 ON-CHIP CACHE

To meet its performance goals the Intel486 Micro-
processor contains an eight Kbyte cache. The cache
is software transparent to maintain binary compati-
bility with previous generations of the Intel386T™/In-
tel486™ Architecture.

The on-chip cache has bsen designed for maximum
flexibility and performance. The cache has several
operating modes offering flexibility during program
execution and debugging. Memory areas can be de-
fined as non-cacheable by software and external
hardware. Protocols for cache line invalidations and
replacement are implemented in hardware, easing
system design.

E7E D HE 442LL7?5 0127451 272 EMITLI

Intel486™ DX MICROPROCESSOR

5.1 Cache Organization

The on-chip cache is a unified code and data cache.
The cache is used for both instruction and data ac-
cesses and acts on physical addresses.

The cache organization is 4-way set associative and
each line is 16 bytes wide. The eight Kbytes of
cache memory are logically organized as 128 sets,
each containing four lines.

The cache memory is physically split into four
2-Kbyte blocks each containing 128 lines (see Fig-
ure 5.1). Associated with each 2-Kbyte block are
128 21-bit tags. There is a valid bit for each line in
the cache. Each line in the cache is either valid or
not valid. There are no provisions for partially valid
lines.

21 Bit
2t k- 16=Byte Line Size —s]
T 128
128 I'og, 2k Bytes Sets
2k Bytes
2k Bytes
2k Bytes
3 LRY 4 Valid
I‘ Bts " Bits l
128
Sets
240440-27

Figure 5.1. On-Chip Cache Physical Organization

I PRELIMINARY

2-293

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

The write strategy of on-chip cache is write-through.
All writes will drive an external write bus cycle in
addition to writing the information to the internal
cache if the write was a cache hit. A write to an
address not contained in the internal cache will only
be written to external memory. Cache allocations
are not made on write misses.

5.2 Cache Control

Control of the cache is provided by the CD and NW
bits in CRO. CD enables and disables the cache. NW
controls memory write-through and invalidates.

The CD and NW bits define four operating modes of
the on-chip cache as given in Table 5.1. These
modes provide flexibility in how the on-chip cache is
used.

Table 5.1. Cache Operating Modes

CD | NW Operating Mode

1 1 | Cache fills disabled, write-through and
invalidates disabled

1 0 | Cache fills disabled, write-through and
invalidates enabled

0 1 | INVALID. IF CRO is loaded with this
configuration of bits, a GP fault with
error code of O is raised.

0 0 | Cache fills enabled, write-through and
invalidates enabled

CD=1, NW=1

The cache is completely disabled by setting
CD=1 and NW=1 and then flushing the
cache. This mode may be useful for debug-
ging programs where it is important to see
all memory cycles at the pins. Writes which
hit in the cache will not appear on the exter-
nal bus.

It is possible to use the on-chip cache as
fast static RAM by “pre-loading” certain
memory areas into the cache and then set-
ting CD=1 and NW=1. Pre-loading can be
done by careful choice of memory refer-
ences with the cache turned on or by use of
the testability functions (see Section 8.2).
When the cache is turned off the memory
mapped by the cache is *frozen” into the
cache since fills and invalidates are dis-
abled.

2-294

G?E D W 4826175 0l27452 109 ERITLL

L
intgl.
CD=1, N\W=0 '

Cache fills are disabled but write-throughs
and invalidates are enabled. This mode is
the same as if the KEN# pin was strapped
HIGH disabling cache fills. Write-throughs
and invalidates may still occur to keep the
cache valid. This mode is useful if the soft-
ware must disable the cache for a short pe-
riod of time, and then re-enable it without
flushing the original contents.

CD=0, NW=1

INVALID. If CRO is loaded with this bit con-
figuration, a General Protection fault with
error code of O is raised. Note that this
mode would imply a non-transparent write-
back cache. A futurs processor may define
this combination of bits to implement a
write-back cache. .

CD=0, N\W=0
This is the normal operating mode.

Completely disabling the cache is a two step pro-
cess. First CD and NW must be set to 1 and then the
cache must be flushed. If the cache is not flushed,
cache hits on reads will still occur and data will be
read from the cache.

5.3 Cache Line Fills

Any area of memory can be cached in the Intel486
Microprocessor. Non-cacheable portions of memory
can be defined by the external system or by soft-
ware. The external system can inform the Intel486
Microprocessor that a memory address is non-
cacheable by returning the KEN# pin inactive during
a memory access (refer to Section 7.2.3). Software
can prevent certain pages from being cached by set-
ting the PCD bit in the page table entry.

A read request can be generated from program op-
eration or by an instruction pre-fetch. The data will
be supplied from the on-chip cache if a cache hit
occurs on the read address. If the address is not in
the cache, a read request for the data is generated
on the external bus.

If the read request is to a cacheable portion of mem-
ory, the Intel486 Microprocessor initiates a cache
line fill. During a line fill a 16-byte line is read into the
Intel486 Microprocessor.

Cache fills will only be generated for read misses.
Write misses will never cause a line in the internal
cache to be allocated. If a cache hit occurs on a.
write, the line will be updated.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

»

intgl.

Cache line fills can be performed over 8- and 16-bit
busses using the dynamic bus sizing feature. Refer

to Section 7.1.3 for a description of dynamic bus
sizing.

Refer to Section 7.2.3 for further information on
cacheable cycles.

5.4 Cache Line Invalidations

The Intel486 Microprocessor contains both a hard-
ware and software mechanism for invalidating lines
in its internal cache. Cache line invalidations are
needed to keep the Intel486 Microprocessor's
cache contents consistent with external memory.

Refer to Section 7.2.8 for further information on
cache line invalidations.

5.5 Cache Replacement

When a line needs to be placed in its internal cache
the Intel486 Microprocessor first checks to see if
there is a non-valid line in the set that can be re-
placed. If all four lines in the set are valid, a pseudo
least-recently-used mechanism is used to determine
which line should be replaced.

A valid bit is associated with each line in the cache.
When a line needs to be placed in a set, the four

L7E D W 432b6175 0127453 Ou5 EMITLI

Intel486™ DX MICROPROCESSOR

valid bits are checked to see if there is a non-valid
line that can be replaced. If a non-valid line is found,
that line is marked for replacement.

The four lines in the set are labeled 10, 11, 12, and i3.
The order in which the valid bits are checked during
an invalidation is 10, 11, 12 and 13. All valid bits are
cleared when the processor is reset or when the
cache is flushed.

Replacement in the cache is handled by a pseudo
least recently used (LRU) mechanism when all four
lines in a set are valid. Three bits, BO, B1 and B2,
are defined for each of the 128 sets in the cache.
These bits are called the LRU bits. The LRU bits are
updated for avery hit or replace in the cache.

If the most recent access to the set was to 10 or |1,
BO is set to 1. BO is set to 0 if the most recent ac-
cess was to 12 or 13. If the most recent access to
10:i1 was to 10, B1 is set to 1, else B1 is set to 0. If
the most recent access to 12:13 was to 12, B2 is set to
1, else B2 is set to 0.

The pseudo LRU mechanism works in the following
manner. When a line must be replaced, the cache
will first select which of 10:11 and 12:13 was least re-
cently used. Then the cache will determine which of
the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure
5.2. When the processor is reset or when the cache
is flushed all 128 sets of three LRU bits are set to 0.

Yos 1

BO=0?
Yes: 10 or 11 least recently used

Ali four lines in the set valid? Neo Replace non-valid line

No: IZ or 13 least recantly used

B1=07? B2=0?
Yeos No Yes No
Replace Replace Replace Replace
10 (] 12 13
240440-28
Figure 5.2. On-Chip Cache Replacement Strategy
2-295

I PRELIMINARY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

5.6 Page Cacheability

Two bits for cache control, PWT and PCD, are de-
fined in the page table and page directory entries.
The state of these bits are driven out on the PWT
and PCD pins during memory access cycles.

The PWT bit controls write policy for second level
caches used with the Intel486 Microprocessor. Set-
ting PWT =1 defines a write-through policy for the
current page while PWT =0 allows the possibility of
write-back. The state of PWT is ignored internaily by
the Intel486 Microprocessor since the on-chip cache
is write through.

s

intgl.
The PCD bit controls cacheability on a page by page
basis. The PCD bit is internally ANDed with the
KEN# signal to control cacheability on a cycle by
cycle basis (see Figure 5.3). PCO=0 enables cach-
ing while PCD =1 forbids it. Note that cache fills are

enabled when PCD =0 AND KEN# =0. This logical
AND is implemented physically with a NOR gate.

The state of the PCD bit in the page table entry is
driven on the PCD pin when a page in external mem-
ory is accessed. The state of the PCD pin informs
the external system of the cacheability of the re-
quested information. The external system then re-
turns KEN# telling the Intel486 Microprocessor it
the area is cacheable. The Intel486 Microprocessor
initiates a cache line fill if PCD and KEN# indicate
that the requested information is cacheable.

£z

CRO 0

L A

CACHE CONTROL LOGIC

) ' FLUSHY

jg KENg

CACHE MEMORY

0

PCD pcD

v

PCD, PWT

' CONTROL REGISTERS

] 31 22 12
]

' mﬁ[mkscrom’[TaBLe | orrser |
]

» ADDRESS 1oL 1oL

[}

)

1

P { 0

' 31 0

| CRO |

t

' CR1) 4

) D] PCo, PWT

1CR2

1]

!CR3 | PCD, PWT >

' DIRECTORY

Rt

co
PAGE TABLE : (From CRO)

240440-29

Figure 5.3. Page Cacheabllity

2-296

PRELIMINARY I

L7E D WM 482LL7?5 0L27454 TAL EEITLL

INTEL CORP (UP/PRPHLS)

intgl.

The PCD bit is masked with the CD (cache disable)
bit in control register 0 to determine the state of the
PCD pin. If CD=1 the Intel486 Microprocessor
forces the PCD pin HIGH. If CD=0 the PCD pin is
driven with the value for the page table entry/direc-
tory. Ses Figure 5.3.

The PWT and PCD bits for a bus cycle are obtained
from either CR3, the page directory or page table
entry. These bits are assumed to be zero during real
mode, whenever paging is disabled, or for cycles
that bypass paging, {I/O references, interrupt ac-
knowledge and Hait cycles), the PWT and PCD bits
are taken from CR3. These bits are initialized to 0 on
reset, but can be set to any value by level 0 soft-
ware.

When paging is enabled, the bits from the page table
entry are cached in the TLB, and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles, PWT and PCD are taken
from the page table entry. During TLB refresh cycles
where the page table and directory entries are read,
the PWT and PCD bits must be obtained elsewhere.
During page table updates the bits are obtained from
the page directory. When the page directory is up-
dated the bits are obtained from CR3.

5.7 Cache Flushing

The on-chip cache can be flushed by external hard-
ware or by software instructions. Flushing the cache
clears all valid bits for all lines in the cache. The
cache is flushed when external hardware asserts the
FLUSH# pin.

The flush pin needs to be asserted for one clock if
driven synchronously or for two clocks if driven
asynchronously. The flush input is asynchronous but
setup and hold times must be met. The flush pin
should be deasserted after the cache flush is com-
plete. Failure to deassert the pin will cause execu-
tion to stop as the processor will be repeatedly flush-
ing the cache. If external hardware activates flush in
response to an 1/0 write, flush must be asserted for
at least two clocks prior to ready being returned for
the 1/0 write. This ensures that the flush completes
before the CPU begins execution of the instruction
following the QUT instruction.

Flush is recognized during HOLD just like EADS #.

The instructions INVD and WBINVD cause the on-
cache to be flushed. External caches connected to
the intel486 microprocessor are signalled to flush
their contents when these instructions are executed.

WBINVD will cause an external write-back cache to
write back dirty lines before flushing its contents.
The external cache is signalled using the bus cycle
definition pins and the byte enables (refer to Section

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

6.2.5 for the bus cycle definition pins and Section
7.2.11 for special bus cycles). Refer to the Intel486
Microprocessor programmers reference manual for
detailed instruction definitions.

The results of the INVD and WBINVD instructions
are identical for the operation of the Intel486 Micro-
processor’s on-chip cache since the cache is write-
through. Note that the INVD and WBINVD instruc-
tions are machine dependent. Future members of
the Intel486 Microprocessor family may change the
definition of this instruction.

5.8 Caching Translation Lookaside
Buffer Entries

The Intel486 Microprocessor contains an integrated
paging unit with a translation lookaside buffer (TLB).
The TLB contains 32 entries. The TLB has been en-
hanced over the 386 Microprocessor’s TLB by up-
grading the replacement strategy to a pseudo-LRU
{least recently used) algorithm. The pseudo-LRU re-
placement algorithm is the same as that used in the
on-chip cache.

The paging TLB operation is automatic whenever
paging is enabled. The TLB contains the most re-
cently used page table entries. A page table entry
translates the linear address pointing to a particular
page to the physical address where the page is
stored in memory (refer to Section 4.5, Paging).

The paging unit will look up the linear address in the
TLB in response to an internal bus request. The cor-
responding physical address is passed on to the on-
chip cache or the external bus (in the event of a
cache miss) when the linear address is present in
the TLB.

The paging unit will access the page tables in exter-
nal memory if the linear address is not in the TLB.
The required page table entry will be read into the
TLB and then the cache or bus cycle for the actual
data will take place. The process of reading a new
page table entry into the TLB is called a TLB refresh.

A TLB refresh is a two step process. The paging unit
must first read the page directory entry which points
to the appropriate page table. The page table entry
to be stored in the TLB is then read from the page
table. Control register 3 (CR3) points to the base of
the page directory table.

The Intel486 Microprocessor will allow page directo-
ry and page table entries (returned during TLB re-
freshes) to be stored in the on-chip cache. Setting
the PCD bits in CR3 and the page directory entry to
1 will prevent the page directory and page table en-
tries from being stored in the on-chip cache (see
Section 5.6, Page Cacheability).

2-297

L7E D EN 482b175 0127455 9138 EEITLL

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

6.0 HARDWARE INTERFACE

6.1 Introduction

The Intel486 Microprocessor bus has been designed
to be similar to the 386 Microprocessor bus whenev-
er possible. Several new features have been added
to the Intei486 Microprocessor bus resulting in in-
creased performance and functionality. New fea-
tures include a 1X clock, a burst bus mechanism for
high-speed internal cache fills, a cache line invalida-
tion mechanism, enhanced bus arbitration capabili-
ties, a BS8+# bus sizing mechanism and parity sup-
port.

The Intel486 Microprocessor is driven by a 1X clock
as opposed to a 2X clock in the 386 Microprocessor.
A 25 MHz Intel486 Microprocessor uses a 25 MHz
clock in contrast to a 25 MHz 386 Microprocessor
which requires a 50 MHz clock. A 1X clock allows
simpler system design by cutting in half the clock
speed required in the external system.

L?E D WM 482b175 0127456 454 EMITLL

L]

intel.
Like the 386 Microprocessor, the Intel486 Micro-
processor has separate paralle! busses for data and
addresses. The bidirectonal data bus is 32 bits in
width. The address bus consists of two components:
30 address lines (A2-A31) and 4 byte enable lines
(BEO# -BE3#). The address bus addresses exter-
nal memary in the same manner as the 386 Micro-
processor: The address lines form the upper 30 bits
of the address and the byte enables select individual
bytes within a 4 byte location. The address lines are
bidirectional for use in cache line invalidations.

The Inteld86 Microprocessor’s burst bus mechanism
enables high-speed cache fills from external memo-
ry. Burst cycles can strobe data into the processor at
a rate of one item every clock. Non-burst cycles
have a maximum rate of one item every two clocks.
Burst cycles are not limited to cache fills: all bus
cycles requiring more than a single data cycle can
be bursted.

CLK

|

DATA BUS
32-Bit -
@ {DO D31

_ADS®
Bus ~
Control _10_!‘__’
INTR
URLLLLLE—
nterrupt | _RESET___J
Signals NMI
e
rl
AHOLD
——}
Cocho‘ { EADS#
KEN®
Cache
Control {fLushs
Page Q——m
Caching PCD
Controt —

Numeric ﬁ.—.
Error IGNNE#

Reporting ——
Address Bit AZOM#*
20 Mask >

Intolsng™ | 8E3%
Microprocessor 5[2"

AZ-AS 1

32-8it
Address
Bus

Byte

BE‘ » Enables

BEO‘

W/i0#

D/C#

W/R® Bus Cycle
LOCK® Definition
PLOCK#

i

HOLD
HLDA
BOFF#
BREQ

i

Bus
Arbitration

I

BRDY#
BLAST#

|

Burst
Control

[

Bus Size

BS16# Controi

I

|

DP3
0pP2
e~
DP1
Parity

240440-30

Figure 6.1. Functional Signa! Groupings

2-208

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

[]
intgl.
The Intel486 Microprocessor has a bus hold feature
similar to that of the 386 Microprocessor. During bus
hold, the Inteld486 Microprocessor relinquishes con-

trol of the local bus by floating its address, data and
control busses.

The Intel486 Microprocessor has an address hold
feature in addition to bus hold. During address hoid
only the address bus is floated, the data and control
busses can remain active. Address hold is used for
cache line invalidations.

Ahead is a brief description of the Intel4B6 Micro-
processor input and output signals arranged by func-
tional groups. Before beginning the signal descrip-
tions a few terms need to be defined. The # symbol
at the end of a signal name indicates the active, or
asserted, state occurs when the signal is at a low
voltage. When a # is not present after the signal
name, the signal is active at the high voltags level.
The term “ready” is used to indicate that the cycle is
terminated with RDY # or BRDY #.

Section 6 and 7 will discuss bus cycles and data
cycles. A bus cycle is at least two clocks long and
begins with ADS # active in the first clock and ready
active in the last clock. Data is transferred to or from
the Intel486 Microprocessor during a data cycle. A
bus cycle contains one or more data cycles.

6.2 Signal Descriptions

6.2.1 CLOCK (CLK)

CLK provides the fundamental timing and the inter-
nal operating frequency for the Intel486 Microproc-
essor. All external timing parameters are specified
with respect to the rising edge of CLK.

LG7E D W 4826175 0127457

intel486™ DX MICROPROCESSOR

The Intel486 Microprocessor can operate over a
wide frequency range but CLK’s frequency cannot
change rapidly while RESET is inactive. CLK's fre-
quency must be stable for proper chip operation
since a single edge of CLK is used internally to gen-
erate two phases. CLK only needs TTL levels for
proper operation. Figure 6.2 illustrates the CLK
waveform.

6.2.2 ADDRESS BUS (A31-A2, BEO# -BE3 #)

A31-A2 and BEO#-BE3# form the address bus
and provide physical memory and 1/0 port address-
es. The Intel486 Microprocessor is capable of ad-
dressing 4 gigabytes of physical memory space
(00000000H through FFFFFFFFH), and 64 Kbytes
of 1/0 address space (000000COH through
O000FFFFH). A31-A2 identify addresses to a 4-byte
location. BEQO# -BE3# identify which bytes within
the 4-byte location are involved in the current trans-
fer.

Addresses are driven back into the Intel486 Micro-
processor over A31-A4 during cache line invalida-
tions. The address lines are active HIGH. When
used as inputs into the processor, A31-A4 must
meet the setup and hold times, tap and ta3. A31-A2
are not driven during bus or address hold.

The byte enable outputs, BEO# -BE3#, determine
which bytes must be driven valid for read and write
cycles to external memory.

BE3+# applies to D24-D31
BE2+# applies to D16-D23
BE1# applies to D8-D15
BEO# applies to DO-D7

X = input setup times
ty = input hold times, output float, valid and hold times

tx—sta-ty

o 1.5V

240440-31

Figure 6.2. CLK waveform

I PRELIMINARY

2-299

790 EITLY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

BEO# -BE3# can be decoded to generate A0, A1
and BHE# signals used in 8- and 16-bit systems
(see Table 7.5). BEO# -BE3# are active LOW and
are not driven during bus hold.

6.2.3 DATA LINES (D31-D0)

The bidirectional lines, D31-D0, form the data bus
for the Intel486 Microprocessor. DO-D7 define the
least significant byte and D24-D31 the most signifi-
cant byte. Data transfers to 8- or 16-bit devices is
possible using the data bus sizing feature controlled
by the BS8+# or BS16# input pins.

D31-D0 are active HIGH. For reads, D31~D0 must
meet the setup and hold times, tgs and ta3. D31-DO
are not driven during read cycles and bus hold.

6.2.4 PARITY
Data Parity Input/Outputs (DPO-DP3)

DPO-DP3 are the data parity pins for the processor.
There is one pin for each byte of the data bus. Even
parity is generated or checked by the parity genera-
tors/checkers. Even parity means that there are an
even number of HIGH inputs on the eight corre-
sponding data bus pins and parity pin.

Data parity is generated on all write data cycles with
the same timing as the data driven by the Intel486
Microprocessor. Even parity information must be
driven back to the Inteld86 Microprocessor on these
pins with the same timing as read information to in-
sure that the correct parity check status is indicated
by the intel486 Micropracessor.

The values read on these pins do not affect program
execution. it is the responsibility of the system to
take appropriate actions if a parity error occurs.

Input signals on DPO-DP3 must mest setup and
hold times tp» and to3 for proper operation.

Parity Status Output (PCHK #)

Parity status is driven on the PCHK# pin, and a pari-
ty error is indicated by this pin being LOW. PCHK #
is driven the clock after ready for read operations to
indicate the parity status for the data sampled at the
end of the previous clock. Parity is checked during
code reads, memory reads and /O reads. Parity is
not checked during interrupt acknowledge cycles.
PCHK# only checks the parity status for enabled
bytes as indicated by the byte enable and bus size
signals. It is valid only in the clock immediately after
read data is returned to the Intel486 microprocessor.
At all other times it is inactive (HIGH). PCHK# is
never floated.

2-300

LG?E D W 4826175 0127458 be? MEITL)D

intal.

Driving PCHK # is the only effect that bad input pari-
ty has on the Intel486 Microprocessor. The Intel486
Microprocessor will not vector to a bus error inter-
rupt when bad data parity is returned. In systems
that will not employ parity, PCHK# can be ignored.
In systems not using parity, DPO-DP3 should be
connected to Vg through a pullup resistor.

6.2.5 BUS CYCLE DEFINITION
M/10#, D/C#, W/R# Outputs

M/10#, D/C# and W/R # are the primary bus cycle
definition signals. They are driven valid as the ADS #
signal is asserted. M/IO# distinguishes between
memory and 1/0 cycles, D/C# distinguishes be-
tween data and control cycles and W/R# distin-
guishes between write and read cycles.

Bus cycle definitions as a function of M/IO#, D/C#
and W/R# are given in Table 6.1. Note there is a
differsnce between the Intel486 Microprocessor and
386 Microprocessor bus cycle definitions. The halt
bus cycle type has been moved to location 001 in
the Intei486 Microprocessor from location 101 in the
386 Microprocessor. Location 101 is now reserved
and will never be generated by the Intel486 Micro-
processor.

Table 6.1. ADS # Initiated Bus Cycle Definitions

M/10# D/C# W/R# Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 1/0 Read
0 1 1 170 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

Special bus cycles are discussed in Section 7.2.11.
Bus Lock Output (LOCK #)

LOCK# indicates that the Intel486 Microprocessor
is running a read-modify-write cycle where the exter-
nal bus must not be relinquished between the read
and write cycles. Read-modify-write cycles are used
to implement memory-based semaphores. Multiple
reads or writes can be locked.

When LOCK # is asserted, the current bus cycle is
locked and the Intel486 Microprocessor should be
allowed exclusive access to the system bus.
LOCK# goes active in the first clock of the first
locked bus cycle and goes inactive after ready is
returned indicating the last locked bus cycle.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

-

intgl.

The Intel486 Microprocessor will not acknowledge
bus hold when LOCK# is asserted (though it will
allow an address hold). LOCK# is active LOW and
is floated during bus hoid. Locked read cycles will
not be transformed into cache fill cycles if KEN# is

returned active. Refer to Section 7.2.6 for a detailed
discussion of Locked bus cycles.

Pseudo-Lock Output (PLOCK #)

The pseudo-lock feature allows atomic reads and
writes of memory operands greater than 32 bits.
These operands require more than one cycle to
transfer. The InteldB6 Microprocessor asserts
PLOCK# during floating point long reads and writes
(64 bits), segment table descriptor reads (64 bits)
and cache line fills (128 bits).

When PLOCK # is asserted no other master will be
given control of the bus between cycles. A bus hold
request (HOLD) is not acknowledged during pssudo-
locked reads and writes, with one exception. During
non-cacheable non-bursted code prefetches, HOLD
is recognized on memory cycle boundaries even
though PLOCK# is asserted. The Intel486 Micro-
processor will drive PLOCK# active until the ad-
dresses for the last bus cycle of the transaction
have been driven regardiess of whether BRDY # or
RDY # are returned.

A pseudo-locked transfer is meaningful only if the
memory operand is aligned and if its completsly con-
tained within a single cache line. A 64-bit floating
point number must be aligned to an 8-byte boundary
to guarantee an atomic access.

Normally PLOCK# and BLAST# are inverse of
each other. Howsever during the first cycle of a 64-bit
floating point write, both PLOCK # and BLAST # will
be asserted. -

Since PLOCK# is a function of the bus size and
KEN# inputs, PLOCK# should be sampled only in
the clock ready is returned. This pin is active LOW
and is not driven during bus hold. Refer to Section
7.2.7 for a detailed discussion of pseudo-locked bus
cycles.

6.2.6 BUS CONTROL

The bus control signals allow the processor to indi-
cate when a bus cycle has begun, and allow other
system hardware to control burst cycles, data bus
width and bus cycle termination.

Address Status Output (ADS #)

The ADS# output indicates that the address and
bus cycle definition signals are valid. This signat will

I PRELIMINARY

L7E D W u82Ll75

Intel486™ DX MICROPROCESSOR

go active in the first clock of a bus cycle and go
inactive in the second and subsequent clocks of the
cycle. ADS# is also inactive when the bus is idle.

ADS # is used by external bus circuitry as the indica-
tion that the processor has started a bus cycle. The
external circuit must sample the bus cycle definition
pins on the next rising edge of the clock after ADS #
is driven active.

ADS+# is active LOW and is not driven during bus
hold.

Non-burst Ready Input (RDY #)

RDY# indicates that the current bus cycle is com-
plete. In response to a read, RDY # indicates that
the external system has presented valid data on the
data pins. In response to a write request, RDY # indi-
cates that the external system has accepted the In-
tel486 microprocessor data. RDY # is ignored when
the bus is idle and at the end of the first clock of the
bus cycle. Since RDY # is sampled during address
hold, data can be returned to the processor when
AHOLD is active.

RDY # is active LOW, and is not provided with an
internal pullup resistor. This input must satisfy setup
and hoid times t1g and ty7 for proper chip operation.

6.2.7 BURST CONTROL
Burst Ready Input (BRDY #)

BROY # performs the same function during a burst
cycle that RDY # performs during a non-burst cycle.
BRDY # indicates that the external system has pre-
sented valid data on the data pins in response to a
read or that the external system has accepted the
Intel486 Micropracessor data in response to a write.
BRDY # is ignored when the bus is idle and at the
end of the first clock in a bus cycle.

During a burst cycle, BRDY # will be sampled each
clock, and if active, the data presented on the data
bus pins will be strobed into the Intel486 Microproc-
essor. ADS # is negated during the second through
last data cycles in the burst, but address lines A2~
A3 and byte enables will change to reflect the next
data item expected by the Intei486 Microprocessor.

If RDY# is returned simultaneously with BRDY #,
BRDY # is ignored and the burst cycle is premature-
ly aborted. An additional complste bus cycle will be
initiated after an aborted burst cycle if the cache line
fill was not complete. BRDY # is treated as a normal
ready for the last data cycle in a burst transfer or for
non-burstable cycles. Refer to Section 7.2.2 for
burst cycle timing.

2-301

0127459 563 MRITLY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

BRDY # is active LOW and is provided with a small
internal putlup resistor. BRDY # must satisfy the set-
up and hold times tyg and ty7.

Burst Last Qutput (BLAST #)

BLAST # indicates that the next time BRDY # is re-
turned it will be treated as a normal RDY #, terminat-
ing the line fill or other multiple-data-cycle transfer.
BLAST # is active for all bus cycles regardless of
whether they are cacheable or not. This pin is active
LOW and is not driven during bus hold.

6.2.8 INTERRUPT SIGNALS (RESET, INTR,
NMI)

The interrupt signals can interrupt or suspend exe-
cution of the processor's current instruction stream.

Reset Input (RESET)

RESET forces the Intel486 Microprocessor to begin
execution at a known state. For a power-up (cold
start) reset, Voc and CLK must reach their proper
DC and AC specifications for at least 1 ms before
the Intel486 Microprocessor begins instruction exe-
cution. The RESET pin should remain active during
this time to ensure proper Intel486 Microprocessor
operation. However, for a warm boot-up case,
RESET is required to remain active for a minimum of
15 clocks. The testability operating modes are pro-
grammed by the falling (inactive going) edge of
RESET. (Refer to Section 8.0 for a description of the
test modes during reset.)

Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been
generated. Interrupt processing is initiated if the IF
flag is active in the EFLAGS register.

The . Intel486 Microprocessor will generate two
locked interrupt acknowledge bus cycles in re-
sponse to asserting the INTR pin. An 8-bit interrupt
number will be latched from an external interrupt
controller at the end of the second interrupt ac-
knowledge cycle. INTR must remain active until the
interrupt acknowledges have been performed to as-
sure program interruption. Refer to Section 7.2.10
for a detailed discussion of interrupt acknowledge
cycles.

The INTR pin is active HIGH and is not provided with
an internal pulldown resistor. INTR is asynchronous,

but the INTR setup and hold times, tzg and t24, must
be met to assure recognition an any specific clock.

Non-maskable Interrupt Request Input (NMI)

NMI is the non-maskable interrupt request signal.
Asserting NMI causes an interrupt with an internally

2-302

L7E D HEH 482bL17?5 0l2?4bL0 245 EMITLI

-

intgl.
supplied vector value of 2. External interrupt ac-
knowledge cycles are not generated since the NMI|
interrupt vector is internally generated. When NMI

processing begins, the NM! signal will be masked
internally untit the IRET instruction is executed.

NMI is rising edge sensitive after internal synchroni-
zation. NMI must be held LOW for at least four CLK
periods before this rising edge for proper operation.
NMI is not provided with an internal pulldown resis-
tor. NM! is asynchronous but setup and hold times,
120 and to4 must be met to assure recognition on any
specific clock.

6.2.9 BUS ARBITRATION SIGNALS

This section describes the mechanism by which the
processor relinquishes control of its local bus when
requested by another bus master.

Bus Request Qutput (BREQ)

The Intel486 Microprocessor asserts BREQ when-
ever a bus cycle is pending internally. Thus, BREQ is
always asserted in the first clock of a bus cycle,
along with ADS#. Furthermore, if the Intel486 Mi-
croprocessor is currently not driving the bus (due to
HOLD, AHOLD, or BOFF #), BREQ is asserted in
the same clock that ADS # would have been assert-
od if the processor were driving the bus. After the
first clock of the bus cycle, BREQ may change state.
It will be asserted if additional cycles are necessary
to complete a transfer (via BS8#, BS16#, KEN#),
or if more cycles are pending internally. However, if
no additional cycles are necessary to complete the
current transfer, BREQ can be negated before ready
comes back for the current cycle. External logic can
use the BREQ signal to arbitrate among muitiple
processors. This pin is driven regardless of the state
of bus hold or address hold. BREQ is active HIGH
and is never floated. During a hold state, internal
events may cause BREQ to be deasserted prior to
any bus cycles.

Bus Hold Request Input (HOLD)

HOLD allows another bus master complete control
of the Intel486 Microprocessor bus. The Intel486 Mi-
croprocessor will respond to an active HOLD signal
by asserting HLDA and placing most of its output
and input/output pins in a high impedance state
(floated) after completing its current bus cycle, burst
cycle, or sequence of locked cycles. In addition, if
the Intel486 CPU receives a HOLD request while
performing a code fetch, and that cycle is backed off
(BOFF #), the Intel486 CPU will recognize HOLD be-
tore restarting the cycle. The BREQ, HLDA, PCHK #
and FERR# pins are not floated during bus hold.
The Intel486 Microprocessor will maintain its bus in
this state until the HOLD is deasserted. Refer to

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

»

intgl.

Section 7.2.9 for timing diagrams for bus hold cycles
and HOLD request acknowledge during BOFF #.

Unlike the 386 Microprocessor, the Intel486 Micro-
processor will recognize HOLD during reset. Pullup
resistors are not provided for the outputs that are
floated in response to HOLD. HOLD is active HIGH
and is not provided with an internal pulldown resis-
tor. HOLD must satisfy setup and hold times tyg and
t19 for proper chip operation.

Bus Hold Acknowledge Output (HLDA)

HLDA indicates that the Intel486 Microprocessor
has given the bus to another local bus master. HLDA
goes active in response to a hold request presented
on the HOLD pin. HLDA is driven active in the same
clock that the Intel486 Microprocessor floats its bus.

HLDA will be driven inactive when leaving bus hold
and the Intel486 Microprocessor will resume driving
the bus. The Inteld486 Microprocessor will not cease
internal activity during bus hold since the internal
cache wilt satisfy the majority of bus requests. HLDA
is active HIGH and remains driven during bus hold.

Backoff Input (BOFF #)

Asserting the BOFF # input forces the Intel486 Mi-
croprocessor to release control of its bus in the next
clock. The pins floated are exactly the same as in
response to HOLD. The response to BOFF # differs
trom the response to HOLD in two ways: First, the
bus is floated immediately in response to BOFF #
while the InteldB& Microprocessor completes the
current bus cycle before floating its bus in response
to HOLD. Second the Intel4B6 does not assert
HLDA in response to BOFF #.

The processor remains in bus hold until BOFF # is
negated. Upon negation, the Intel486 Microproces-
sor restarts the bus cycle aborted when BOFF # was
asserted. To the internal execution engine the effect
of BOFF # is the same as inserting a few wait states
to the original cycle. Refer to Section 7.2.12 for a
description of bus cycle restart.

Any data returned to the processor while BOFF # is
asserted is ignored. BOFF # has higher priority than
RDY+# or BRDY #. if both BOFF# and ready are
returned in the same clock, BOFF # takes effect. If
BOFF # is asserted while the bus is idle, the Intel486
Microprocessor will float its bus in the next clock.
BOFF# is active LOW and must meet setup and
hold times t1g and tig for proper chip operation.

6.2.10 CACHE INVALIDATION

The AHOLD and EADS# inputs are used during
cache invalidation cyctes. AHOLD conditions the In-

I PRELIMINARY

intel486™ DX MICROPROCESSOR

teld86 Microprocessors address lines, A4-A31, to
accept an address input. EADS # indicates that an
external address is actually valid on the address in-
puts. Activating EADS # will cause the Intel486 Mi-
croprocessor to read the external address bus and
perform an internal cache invalidation cycle to the
address indicated. Refer to Section 7.2.8 for cache
invalidation cycle timing.

Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows anoth-
er bus master access to the Intel486 Microproces-
sor address bus for performing an internal cache in-
validation cycle. Asserting AHOLD will force the
Intel486 Microprocessor to stop driving its address
bus in the next clock. While AHOLD is active only
the address bus will be floated, the remainder of the
bus can remain active. For example, data can be
returned for a previously specified bus cycle when
AHOLD is active. The intel486 Microprocessor will
not initiate another bus cycle during address hold.
Since the Intel486 Microprocessor floats its bus im-
mediately in response to AHOLD, an address hold
acknowledge is not required. If AHOLD is asserted
while a bus cycle is in progress, and no readies are
returned during the time AHOLD is asserted, the In-
tel486 will redrive the same address (that it originally
sent out) once AHOLD is negated.

AHOLD is recognized during reset. Since the entire
cache is invalidated by reset, any invalidation cycles
run during reset will be unnecessary. AHOLD is ac-
tive HIGH and is provided with a small internal pull-
down resistor. It must satisfy the setup and hold
times t1g and tyg for proper chip operation. This pin
determines whether or not the built in seif test fea-
tures of the IntaldB86 Microprocessor will be exer-
cised on assertion of RESET.

External Address Valid Input (EADS #)

EADS# indicates that a valid external address has
been driven onto the Intel486 address pins. This ad-
dress will be used to perform an internal cache inval-
idation cycle. The external address will be checked
with the current cache contents. If the address spec-
ified matches any areas in the cache, that area wilt
immediately be invalidated.

An invalidation cycle may be run by asserting
EADS# regardless of the state of AHOLD, HOLD
and BOFF #, EADS # is active LOW and is provided
with an internal pullup resistor. EADS # must satisfy
the setup and hold times t42 and tq3 for proper chip
operation.

2-303

G?E D M 4826175 01274bl 111 EEITLD

INTEL CORP (UP/PRPHLS)

intei486™ DX MICROPROCESSOR

6.2.11 CACHE CONTROL
Cache Enable Input (KEN#)

KEN# is the cache enable pin. KEN# is used to
determine whether the data being returned by the
current cycle is cacheable. When KEN# is active
and the Intel486 Microprocessor generates a cycle
that can be cached (most any memory read cycle),
the cycle will be transformed into a cache line fill
cycle.

A cache line is 16 bytes long. During the first cycle of
a cache line fill the byte-enable pins should be ig-
nored and data should be returned as if all four byte
enables were asserted. The Intel486 Microproces-
sor will run between 4 and 16 contiguous bus cycles
" to fill the line depending on the bus data width se-
lected by BS8# and BS16+#. Refer to Section 7.2.3
for a description of cache line fill cycles.

The KEN# input is active LOW and is provided with
a small internal pullup resistor. It must satisfy the
setup and hold times ty4 and ty5 for proper chip op-
oration.

Cache Flush Input (FLUSH #)

The FLUSH# input forces the Intel486 Microproces-
sor 1o flush its entire internal cache. FLUSH # is ac-
tive LOW and need only be asserted for one clock.
FLUSH # is asynchronous but setup and hold times
t2g and tay must be met for recognition on any spe-
cific clock. .

FLUSH# also determines whether or not the tristaie
test mode of the [nteld86 Microprocessor will be in-
voked on assertion of RESET.

6.2.12 PAGE CACHEABILITY (PWT, PCD)

The PWT and PCD output signals correspond to two
user attribute bits in the page table entry. When pag-
ing is enabled, PWT and PCD correspond to bits 3
and 4 of the page table entry respectively. For cy-
cles that are not paged when paging is enabled {for
example |/O cycles) PWT and PCD correspond to
bits 3 and 4 in control register 3. When paging is
disabled, the Inteld86 CPU ignores the PCD and
PWT bits and assumes they are zero for the purpose
of caching and driving PCD and PWT.

PCD is masked by the CD (cache disable) bit in con-
trol register 0 (CR0O). When CD=1 (cache line fills
disabled) the Intel486 Microprocessor forces PCD
HIGH. When CD =0, PCD is driven with the value of
the page table entry/directory.

The purpose of PCD is to provide a cacheable/non-
cacheable indication on a page by page basis. The

2-304

L7E D EW 482b175 0L274be 058 EMMITLI

L]

intgl.
Inteld86 will not perform a cache fill to any page in
which bit 4 of the page table entry is set. PWT corre-
sponds to the write-back bit and can be used by an
external cache to provide this functionality. PCD and
PWT bits are assigned to be zero during real mode
or whenever paging is disabled. Refer to Sections

454 and 5.6 for a discussion of non-cacheable
pages.

PCD and PWT have the same timing as the cycle
definition pins (M/IO#, D/C#, W/R#). PCD and
PWT are active HIGH and are not driven during bus
hold.

6.2.13 NUMERIC ERROR REPORTING
(FERR#, IGNNE #)

To allow PC-type floating point error reporting, the
Intel486 Microprocessor provides two pins, FERR #
and IGNNE #.

Floating Point Error Output (FERR #)

The Inteld486 Microprocessor asserts FERR # when-
ever an unmasked floating point error is encoun-
tered. FERR # is similar to the ERROR # pin on the
387 Math Coprocessor. FERR # can be used by ex-
ternal logic for PC-type floating point error reporting
in intel486 Microprocessor systems. FERR# is ac-
tive LOW, and is not floated during bus hold.

In some cases, FERR # is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR # at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSCALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

PRELIMINARY l

INTEL CORP (UP/PRPHLS)

intal.

ignore Numeric Error Input (IGNNE #)

The Intel486 Microprocessor will ignore a numeric
error and continue executing non-control floating
point instructions when IGNNE# is asserted, but
FERR # will still be activated. When deasserted, the
Intel486 Microprocessor will freeze on a non-control
floating point instruction if a previous instruction
caused an error. IGNNE# has no effact when the
NE bit in control register 0 is set.

The IGNNE# input is active LOW and is provided
with a small internal pullup resistor. This input is
asynchronous, but must meet setup and hold times
tog and tpy to insurs recognition on any specific
clock.

6.2.14 BUS SIZE CONTROL (BS16#, BS8+#)

The BS16# and BS8 # inputs allow external 16- and
8-bit busses to be supported with a small number of
external components. The Intel486 CPU samples
these pins every clock. The value sampled in the
clock before ready determines the bus size. When
asserting BS16+# or BS8# only 16 or 8 bits of the
data bus need be valid. if both BS16# and BS8#
are asserted, an 8-bit bus width is selected.

When BS16# or BS8# are asserted the Intel486
Microprocessor will convert a larger data request to
the appropriate number of smaller transfers. The
byte enables will aiso be modified appropriately for
the bus size selected.

BS16# and BS8 # are active LOW and are provided
with smail internal pullup resistors. BS16# and
BS8+# must satisfy the setup and hold times ty4 and
ty5 for proper chip operation.

6.2.15 ADDRESS BIT 20 MASK (A20M #)

Asserting the A20M # input causes the Intel486 Mi-
croprocessor to mask physical address bit 20 before
performing a lookup in the internal cache and before
driving a memory cycle to the outside world. When
A20M# is asserted, the Inteld86 Microprocessor
smulates the 1 Mbyte address wraparound that oc-
curs on the 8086. A20M # is active LOW and must
be asserted only when the processor is in real
mode. The A20M# is not defined in Protected
Mode. A20M# is asynchronous but should meet
setup and hold times tpg and tzq for recognition in
any specific clock. For correct operation of the chip,
A20M # should be sampled high 2 clocks before and
2 clocks after RESET goes low. When A20M# is
asserted synchronously, A20M# should be high
(non-active) at the clock prior to the falling edge of
RESET. A20M # exhibits a minimum 4 clock latency,
from time of assertion to masking of the A20 bit.
A20M# is ignored during cache invalidation cycles.
1/Q writes require A20M # to be asserted a minimum

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

of 2 clocks prior to RDY being returned for the 110
write. This insures recognition of the address mask
before the i486 SX Microprocessor/Intel OverDrive
Processor begins execution of the instruction follow-
ing OUT. If A20M # is asserted after the ADS# of a
data cycle, the A20 address signal is not masked
during this cycle but is masked in the next cycle.
During a prefetch (cacheable or not), it A20M# is
asserted after the first ADS #, A20 is not masked for
the duration of the prefetch; even if BS16# or BS8#
is asserted, ’

6.2.16 BOUNDARY SCAN TEST SIGNALS

The following boundary scan test signals are only
available on the 50 MHz version of the intel486
CPU.

Test Clock (TCK)

TCK is an input to the Intel4d86 CPU and provides
the clocking function required by the JTAG boundary
scan feature. TCK is used to clock state information
and data into and out of the component. State select
information and data are clocked into the compo-
nent on the rising edge of TCK on TMS and TDI,
raspectively. Data is clocked out of the part on the
falling edge of TCK on TDO.

In addition to using TCK as a free running clock, it
may be stopped in a low, O, state, indefinitely as
described in IEEE 1149.1. While TCK is stopped in
the low state, the boundary scan latches retain their
state.

When boundary scan is not used, TCK should be
tied high or left as a NC (This is important during
power up to avoid the possibility of glitches on the
TCK which could prematurely initiate boundary scan
operations). TCK is supplied with an internal pullup
resistor,

TCK is a clock signal and is used as a reference for
sampling other JTAG signals. On the rising edge of
TCK, TMS and TDI are sampled. On the falling edge
of TCK, TDO is driven.

Test Mode Select (TMS)

TMS is decoded by the JTAG TAP (Tap Access
Port) to select the operation of the test logic, as de-
scribed in Section 8.5.4.

To guarantee deterministic behavior of the TAP con-
troller, TMS is provided with an internal pull-up resis-
tor. if boundary scan is not used, TMS may be tied
high or left unconnected. TMS is sampled on the
rising edge of TCK. TMS is used to select the inter-
nal TAP states required to load boundary scan in-

2-305

b?E D W 4826175 0127463 TYY EEITL]

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

structions to data on TDL. For proper initialization of
the JTAG logic, TMS should be driven high, “1”, for
at least four TCK cycles following the rising edge of
RESET.

Test Data Input iTDI)

TDl is the serial input used to shift JTAG instructions
and data into the component, The shifting of instruc-
tions and data occurs during the SHIFT-IR and
SHIFT-DR controller states, respectively. These
states are selected using the TMS signal as de-
scribed in Section 8.5.4.

An internal pull-up resistor is provided on TDI to en-
sure a known logic state if an open circuit occurs on
the TDI path. Note that when “1" is continuously
shifted into the instruction register, the BYPASS
instruction is setected. TDI is sampled on the
rising edge of TCK, during the SHIFT-IR and the
SHIFT-DR states. During alt other TAP controller
states, TDI is a "‘don’t care”.

Test Data Output (TDO)

TDO is the serial output used to shift JTAG instruc-
tions and data out of the component. The shifting of
instructions and data occurs during the SHIFT-IR
and SHIFT-DR TAP controller states, respectively.
These states are selected using the TMS signal as
described in Section 8.5.4. When not in SHIFT-IR or
SHIFT-DR state, TDO is driven to a high impedance
state to allow connecting TDO of different devices in
parallel.

TDO is driven on the falling edge of TCK during the
SHIFT-IR and SHIFT-DR TAP controlier states. At
all other times TDO is driven to the high impedance
state.

6.3 Write Buffers

The intel486 Microprocessor contains four write
buffers to enhance the performance of consecutive
writes to memory. The buffers can be filled at a rate

of one write per clock until all four buffers are filled. -

When all four buffers are empty and the bus is idle, a
write request will propagate directly to the external
bus bypassing the write buffers. If the bus is not
available at the time the write is generated internally,
the write will be placed in the write buffers and prop-
agate to the bus as soon as the bus becomes avail-
able. The write is stored in the on-chip cache imme-
diately if the write is a cache hit.

Writes will be driven onto the external bus in the

same order in which they are received by the write
butfers. Under certain conditions a memory read will

2-306

L7E D EE 482L175 0127464 920 WEITLL

2
intgl.
go onto the external bus before the memory writes

pending in the buffer even though the writes oc-
curred earlier in the program execution.

A memory read will only be reordered in front of all
writes in the buffers under the following conditions: If
all writes pending in the buffers are cache hits and
the read is a cache miss. Under these conditions the
Intel486 Microprocessor will not read from an exter-
nal memory location that needs to be updated by
one of the pending writes.

Reordering of a read with the writes pending in the
buffers can only occur once before all the buffers
are emptied. Reordering read once only maintains
cache consistency. Consider the following example:

The CPU writes to location X. Location X is in the
internal cache, so it is updated there immediately.
However, the bus is busy so the write out to main
memory is buffered (see Figure 6.3(a)). At this point,
any reads to location X would bs cache hits and
most up-to-date data would be read.

486 CPU Cache Write Buffer Main Memory
w
X| newdatax X{ new datax X data x
Y datay
4
Figure 6.3(a)

The next instruction causes a read to location Y.
Location Y is not in the cache (a cache miss). Since
the write in the write buffer is a cache hit, the read is
reordered. When location Y is read, it is put into the
cache. The possibility exists that location Y will re-
place location X in the cache. If this is true, location
X would no longer be cached (see Figure 6.3(b)).

1486 CPU Cache Write Buffer Main Memory
w
Y| datay X new data x X data x
Y
z
Figure 6.3(b)

Cache consistency has been maintained up to this
point. If a subsequent read is to location X {(now a
cache miss) and it was reordered in front of the buff-
ered write to location X, stale data would be read.
This is why only 1 read is allowed to be reordered.
Once a read is reordered, all the writes in the write
buffer are flagged as cache misses to ensure that no
more reads are reordered. Since one of the condi-

PRELIMINARY l

INTEL CORP (UP/PRPHLS)

]

intel.

tions to reorder a read is that all writes in the write
buffer must be cache hits, no more reordering is al-
lowed until all of those flagged writes propogate to
the bus. Similarly, if an invalidation cycle is run al}

entries in the write buffer are flagged as cache miss-
es.

For multiple processor systems and/or systems us-
ing DMA techniques, such as bus snooping, focked
semaphores should be used to maintain cache con-
sistency.

6.3.1 WRITE BUFFERS AND 1/0 CYCLES

Input/Output (I/0) cycles must be handled in a dif-
ferent manner by the write buffers.

1/0 reads are never reordered in front of buffered
memory writes. This insures that the intel486 Micro-
processor will update all memory locations before
reading status from an 1/0 device.

The Intel486 Microprocessor never buffers single
170 writes. When processing an OUT instruction, in-
ternal execution stops until the 1/0 write actually
completes on the external bus. This allows time for
the external system to drive an invalidate into the
Intel486 Microprocessor or to mask interrupts before
the processor progresses to the instruction foilowing
OUT. REP QUTS instructions will be buffered.

170 device recovery time must be handled slightly
differently by the Intel486 Microprocessor than with
the 386 Microprocessor. 1/0O device back-to-back
write recovery times could be guaranteed by the 386
Microprocessor by inserting a jump to the next in-
struction in the code that writes to the device. The
jump forces the 386 Microprocessor to generate a
prefetch bus cycle which can't begin until the I/0
write completes.

Inserting a jump to the next write will not work with
the Intel486 Microprocessor because the prefetch
could be satisfied by the on-chip cachse. A read cycle
must be explicitly generated to a non-cacheable lo-
cation in memory to guarantee that a read bus cycle
is performed. This read will not be allowed to pro-
ceed to the bus until after the I/0 write has complet-
ed because 1/0 writes are not buffered. The |/0 de-
vice will have time to recover to accept another write
during the read cycle.

6.3.2 WRITE BUFFERS IMPLICATIONS ON
LOCKED BUS CYCLES

Locked bus cycles are used for read-modify-write
accesses to memory. During a read-modify-write ac-
cess, a memory base variable is read, modified and
then written back to the same memory location. itis
important that r.0 other bus cycles, generated by

I PRELIMINARY

L7E

intel486™ DX MICROPROCESSOR

other bus masters or by the Intel486 Microprocessor
itself, be allowed on the external bus between the
read and write portion of the locked sequence.

During a locked read cycle the Intel486 Microproc-
essor will always access external memory, it will
never look for the location in the on-chip cache, but
for write cycles, data is written in the internal cache
(if cache hit) and in the external memory. All data
pending in the Intel486 Microprocessor’s write buff-
ers will be written to memory before a locked cycle is
allowed to proceed to the external bus.

The Intel486 Microprocessor will assert the LOCK #
pin after the write buffers are emptied during a
locked bus cycle. With the LOCK # pin asserted, the
microprocessor will read the data, operate on the
data and place the results in a write buffer. The con-
tents of the write buffer will then be written to exter-
nal memory. LOCK# will become inactive after the
write part of the locked cycle.

6.4 Interrupt and Non-Maskable
Interrupt Interface

The Inteld86 Microprocessor provides two asyn-
chronous interrupt inputs, INTR (interrupt request)
and NM! (non-maskable interrupt input). This section
describes the hardware interface between the in-
struction execution unit and the pins. For a descrip-
tion of the algorithmic response to interrupts refer to
Section 2.7. For interrupt timings refer to Section
7.2.10.

6.4.1 INTERRUPT LOGIC

The Intel486 Microprocessor contains a two-clock
synchronizer on the interrupt line. An interrupt re-
quest will reach the internal instruction execution
unit two clocks after the INTR pin is asserted, if
proper setup is provided to the first stage of the syn-
chronizer.

There is no special logic in the interrupt path other
than the synchronizer. The INTR signal is level sen-
sitive and must remain active for the instruction exe-
cution unit to recognize it. The interrupt will not be
serviced by the Intei486 Microprocessor if the INTR
signal does not remain active.

The instruction exscution unit will look at the state of
the synchronized interrupt signal at specific clocks
during the execution of instructions (if interrupts are
enabled). These specific clocks are at instruction
boundaries, or iteration boundaries in the case of
string move instructions. Interrupts will only be ac-
cepted at these boundaries.

An interrupt must be presented to the Intel486 Mi-
croprocessor INTR pin three clocks before the end
of an instruction for the interrupt to be acknowl-

2-307

D N 4826175 0l2?4L5 8L7 EMITLL

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

edged. Presenting the interrupt 3 clocks before the
end of an instruction allows the interrupt to pass
through the two clock synchronizer leaving one
clock to prevent the initiation of the next sequential
instruction and to begin interrupt service. If the inter-
rupt is not received in time to prevent the next in-
struction, it will be accepted at the end of next in-
struction, assuming INTR is still held active. The in-
terrupt service microcode will start after two dead
clocks.

The longest latency between when an interrupt re-
quest is presented on the INTR pin and when the
interrupt service begins is: longest instruction used
+ the two clocks for synchronization + one clock
required to vector into the interrupt service micro-
code.

6.4.2 NMI LOGIC

The NMI pin has a synchronizer like that used on the
INTR line. Other than the synchronizer, the NM! log-
ic is different from that of the maskable interrupt.

NMi is edge triggered as opposed to the level trig-
gered INTR signal. The rising edge of the NM! signal
is used to generate the interrupt request. The NMi
input need not remain active untif the interrupt is ac-
tually serviced. The NMI pin only needs to remain
active for a single clock if the required setup and
hold times are met. NMI will operate properly if it is
held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four
clocks after it is asserted to reset the edge triggered
logic. A subsequent NM! may not be generated if the
NMI is not held inactive for at least two clocks after
being asserted.

The NMI input is internally masked whenever the
NMI routine is entered. The NMI input will remain
masked untit an IRET (return from interrupt) instruc-
tion is executed. Masking the NMI signai prevents
recursive NMI calls. If another NMI occurs while the
NMI is masked off, the pending NMI will be executed
after the current NMi is done. Only one NMI can be
pending while NM! is masked.

6.5 Reset and Initialization

The Intel486 DX Microprocessor has a built in self
test (BIST) that can be run during reset. The BIST is
invoked if the AHOLD pin is asserted for 2 clocks
before and 2 clocks after RESET is deasserted.
RESET must be active for 15 clocks with or without
BIST enabled. To ensure proper results, FLUSH #
must not be asserted while BIST is executing. Refer
to Section 8.0 for information on Intel486 DX Micro-
processor testability.

2-308

G?7E P EE 4826175 0l274bbk ?T3 MEITLL

L]

intgl.
The Intel486 Microprocessor registers have the val-
ues shown in Table 6.2 after RESET is performed.
The EAX register contains information on the suc-
cess or failure of the BIST if the self test is executed.
The DX register always contains a component iden-
tifier at the conclusion of RESET. The upper byte of
DX (DH) will contain 04 and the lower byte (DL) will
contain a stepping identifier (see Table 6-3). The
floating point registers are initialized as if the FINIT/
FNINIT (initialize processor) instruction was execut-
ed if the BIST was performed. if the BIST is not exe-
cuted, the floating point registers are unchanged.

Table 6.2. Register Values after Reset

Register Initial Value initial Value
(BIST) {No Bist)

EAX Zoro (Pass) Undefined

ECX Undefined Undefined

EDX 0400 + Revision ID 0400+ Revision |D

EBX Undefined Undefined

ESP Undefined Undefined

EBP Undefined Undefined

ESt Undefined Undefined

EDI Undefined Undefined

EFLAGS 00000002h 00000002h

EIP OFFFOh OFFFOh

ES 0000h 0000h

Ccs FOOOh* FOOOh*

SS 0000h 0000h

DS 0000h 0000h

FS 0000h 0000h

GS 0000h 0000h

IDTR Base=0, Limit=3FFh Base=0, Limit=3FFh

CRO 60000010h 60000010h
DR7 00000000h 00000000h
cw 037Fh Unchanged
SW 0000h Unchanged
T™W FFFFh Unchanged
FIP 00000000h Unchanged
FEA 00000000h Unchanged
FCS G000h Unchanged
FDS 0000h Unchanged
FOP 000h Unchanged
FSTACK Undefined Unchanged

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

Table 6-3. Intel486™ CPU Revision 1D

Intel486™ CPU Component Revision
Stepping Name 1D D
B3 04 01
B4 04 ot
B5 04 01
B6 04 01
co 04 02
C1 04 03
DO 04 ' 04
cA2 04 10
cA3 04 10
[e1=]0] 04 11
cB1 04 11
Intel OverDrive™
Processor
Stepping Name
A2 04 32
B1 04 33

The Intel486 Microprocessor will start executing in-
structions at location FFFFFFFOH after RESET.
When the first InterSegment Jump or Call is execut-
ed, address lines A20-A31 will drop LOW for CS-rel-
ative memory cycles, and the Intel486 Microproces-
sor will only execute instructions in the lower one
Mbyte of physical memory. This allows the system
designer to use a ROM at the top of physical memo-
ry to initialize the system and take care of RESETs.

RESET forces the Intel486 Microprocessor to termi-
nate all execution and local bus activity. No instruc-
tion or bus activity will occur as long as RESET is
active.

All entries in the cache are invalidated by RESET.

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

6.5.1 PIN STATE DURING RESET

The Intel486 Microprocessor recognizes and can re-
spond to HOLD, AHOLD, and BOFF # requests re-
gardiess of the state of RESET. Thus, even though
the processor is in reset, it can still float its bus in
response to any of these requests.

While in reset, the Intel486 Microprocessor bus is in
the state shown in Figure 6.4 if the HOLD, AHOLD
and BOFF # requests are inactive. Note that the ad-
dress (A31-A2, BE3#-BEO#) and cycle definition
(M/10#, D/C#, W/R #) pins are undefined from the
time reset is asserted up to the start of the first bus
cycle. All undefined pins (except FERR #) assume
known values at the beginning of the first bus cycle.
The first bus cycle is always a code fetch to address
FFFFFFFOH.

FERR # reflects the state of the ES (Error Summary
status) bit in the floating point unit status word. The
ES bit is initialized whenever the floating point unit
state is initialized. The floating point unit's status
word register can be initialized by BIST or by execut-
ing FINIT/FNINIT instruction. Thus, after reset and
before executing the first FINIT or FNINIT instructon,
the values of the FERR# and the numeric status
word register bits 0-7 depends on whether or not
BIST is performed. Table 6-4 shows the state of
FERR# signal after reset and before the execution
of the FINIT/FNINIT instruction.

Table 6-4
FPU Status
P e:")sr; ed FE:: * Word Register
Bits 0~7
Inactive Inactive
YES (High) (Low)
NO Undefined Undefined
{Low or High) {Low or High)

After the first FINIT or FNINIT instruction, FERR #
pin and the FPU status word register bits (0-7) will
be inactive irrrespective of the Built-In Seif-Test

(BIST).

2.309

GPE D W 482L1l75 Dl274b7? L3T EMITLL

L7E D BB 482b1l75 0l27?4k8 576 EMITLL

INTEL CORP (UP/PRPHLS)

intal.

Intel486™ DX MICROPROCESSOR

‘9IQRIS 018 Y19 pue DDA Je)e Sui | ISes| JE JOj peUBsSE &4 01 | 3S3Y 6.1nbai sjesel dn-1emod 'S1ese) wiem Joj yipim osind 13834 SHID S1 9

*13534 Buunp Ajreusou peziuboses s pioH ‘G

‘Jow aq ISnw

sewq ploy pue dnies QIOHY (1SIB) 1591 -Hes-ulng ey) exoaul 0} 13STH jo eBpe Bullies sy} o) Joud ebpe 12 BUl 10} (8ANOE) UBW UBALP ©q PINCUS QTOHY ¥
"(1518) 1se£-H16S-u-ping Buunp (sanceur) ybiy UeAUp 8q I1SNW £HSNTH OE

‘peussseap Buieq [ISIH 10 SHID 01 UM Pejels-u} pesjuesrent ese SINAINO |ty ‘8PO 1581 IdING s1e1S

-1 8y} 8%0AUl 0) 1353Y Jo abpe Bunie; o Jeye 1D oM puk o) Joud SHTD OMY IO (BANDE) MO| USALP Bq 1SN | *AISNOUOIYIUASE UBALD SI # HSNTd USUM "GE
18W eq 1snMw SaWN pioy pue dmes #HSN 14 'PeUessesp Buieq 1353 JO SHTO O UIIM pejels-U) peejuesent ose SINAING ||y “8pOw

1501 INdINQ BIBIS-1UL BUL ©XOAU! 0} 1 35T JO 8bpe Buie; eyy o} soud ebpe Y10 eyl 4o} (BAROE) MO| UBAUD eq PINOYS Jt ‘AISNOUOIYOUAS UBAUD SI #HSM T4 USUM ‘e

‘uonesado

Jedosd einsue 0) 1353 Jo ebpe Buijjes ey Jeye sy D oMy puk o} Joud SHTD oM} 10} (eAndeul) yBiy usaup eq 1snw §t *AISNOUOIYOUASE USALP SI # WOZY USUM ‘G2
‘18w 8q IShW sewn ploy pue dnes
#WozZv ‘uonesedo Jedoid ainsue 01 1 353y jo sbpe Buyie) ey; 03 soud eBpe Y7 eu) 1o} (eanoew} YBiy usALp Bq 1SN i *AISNOUQIYOUAS UBAUD SI £ NOZY USUM B2

‘ofipe y20[0 oyweds e uo uonuBooss eejuerent 0} Auo Jew 8q snus 02) ‘Jndul snouoIyOUAse ue st | 3S3Y °L

2E~-0vv0re = 5
........... g ((((
y 74
A NN i
: 1/ aiiHn
ANRAN
Y74
ANAY @ V74
N\ ® /77
L/ ® ANAN
. ® V772N
— N\ 0 /77
ey

YO

£-0d0
0. 1tg
oo

‘#dHId

#4/4 '#2/0
#3201d Oy Ty

02d ‘1Md ‘eg38-038

15v78 ‘woin *ty- ISy
0388

asay

(outsn}
#NOZY

(out)
sNOZY

(ovken)
sHSNH
{ouks)

sHSNH

QI0HY

13y

‘SALON

Figure 6.4. Pin States during RESET

PRELIMINARY I

2-310

INTEL CORP (UP/PRPHLS)

intal.
7.0 BUS OPERATION

7.1 Data Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
dword lengths may be transferred without restric-
tions on physical address alignment. Data may be
accessed at any byte boundary but two or three cy-
cles may be required for unaligned data transters.
See Section 7.1.3 Dynamic Bus Sizing and 7.1.6 Op-
erand Alignment. '

The InteldB6 Microprocessor address signals are
split into two components. High-order address bits
are provided by the address lines, A2-A31. The byte
enables, BEO # ~-BE3 #, form the low-order address
and provids linear selects for the four bytes of the
32-bit address bus.

The byte enable outputs are asserted when their as-
sociated data bus bytes are involved with the pres-
ent bus cycle, as listed in Table 7.1. Byte enable
patterns which have a negated byte enable separat-
ing two or three asserted byte enables will never
occur (see Table 7.5). All other byte enable patterns
are possible.

Table 7.1. Byte Enables and Assoclated

Data and Operand Bytes

Byte
Enable Associated Data Bus Signals
Signal

BEO# | DO-D7 (byte O-——least significant)
BEt# | D8-D15 (byte 1)

BE2# | D16-D23 (byte2)

BE3# D24-D31 (byte 3—most significant)

I PRELIMINARY

G7E D HEH 4382bL1l75 01l274bL9 u02 MEITLL

Intel486™ DX MICROPROCESSOR

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary. Use
of the byte enables to create A0 and A1 is shown in
Table 7.2. The byte enables can also be decoded to
generate BLE+# (byte low enable) and BHE # (byte
high enable). These signals are needed to address
16-bit memory systems (see Section 7.1.4 Inter-
facing with 8- and 16-bit memories).

Table 7.2. Generating A0-A31 from
BEO#-BE3# and A2-A31

intel486™ CPU Address Signals

A3l A2 BE3# | BE2# |BE1# |BEO#
Physical Base

Address
A3 ... A2|At{AD
A3 ...l A2l 010]| X X X Low
A3 ...l A2| 0|1t X X Low | High
%< 1 1 IR A2(11]0 X Low | High | High
A3t Ll A2] 1| 1} Low | High | High | High

7.1.1 MEMORY AND /0 SPACES

Bus cycles may access physical memory space or
1/O space. Peripheral devices in the system may ei-
ther be ‘memory-mapped, or |/O-mapped, or both.
Physical memory addresses range from 00000000H
to FFFFFFFFH (4 gigabytes). I/0 addresses range
from 00000000H to O00OFFFFH (64 Kbytes) for pro-
grammed 1/0. See Figure 7.1.

2-311

INTEL CORP (UP/PRPHLS) B?7E D W 482L17?5 0127470 l24 EEITLL

-
Intel486™ DX MICROPROCESSOR |nte|
®

FFFFFFFFH vommonnsy
i v,
VoA
e T
v ,"// /:
A
s NOT /7
sACCESSIBLEy
V.S
[|
/ /7:
pa
e v
A
4GBYTE :/'/ /'
[]
H // S
/ NOT /):
:ACCESS!BLEl
7//
[} /
v
O0OOFFFFH ACCESSIBLE
64 kBYTE PROGRAMMED
00000000H 00000000H 1/0 SPACE 240440-33
Physical Memory Space 1/Q Space
Figure 7.1. Physical Memory and 1/0 Spaces
.1.2 MEMOR :
T Oy AnD N/ SPACE 32-Bit Wide Organization
. FFFFFFFFH FFFFFFFCH
The Intel486 Microprocessor datapath to memory
and input/output (I/0) spaces can be 32-, 16- or
8-bits wide. The byte enable signals, BEO# -BE3 #,
allow byte granularity when addressing any memory 00000003H 00000000H
or 1/0 structure whaether 8, 16 or 32 bits wide. BE3# BE2# BE1# BEO#
24044034
The Intel486 Microprocessor includes bus control
pins, BS16# and BS8#, which allow direct connec-
tion to 16- and 8-bit memories and 1/0 devices. Cy- 16-Bit Wide Organization
cles to 32-, 16- and B-bit may occur in any se- FFFFFFFFH FFFFFFFEH
quence, since the BS8+# and BS16# signals are
sampled during each bus cycle.
32-bit wide memory and 1/0Q spaces are organized
as arrays of physical 4-byte words. Each memory or
I/0 4-byte word has four individually addressable 00000001H === === 00000000H
bytes at consecutive byte addresses (see Figure BHE# BLE#
7.2). The lowest addressed byte is associated with 240440-35

data signals DO-D7; the highest-addressed byte
with D24-D31. Physical 4-byte words begin at ad-
dresses divisible by four.

Figure 7.2. Physical Memory
and |/0 Space Organization

2-312 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

L]

intgl.

16-bit memories are organized as arrays of physical
2-byte words. Physical 2-byte words begin at ad-
dresses divisible by two. The byte enables BEQ # -

BE3+#, must be decoded to A1, BLE# and BHE # to
address 16-bit memories (see Section 7.1.4).

To address 8-bit memories, the two low order ad-
dress bits A0 and A1, must be decoded from BEO # -
BE3#. The same logic can be used for 8- and 16-bit
memories since the decoding logic for BLE # and AQ
are the same (see Section 7.1.4).

7.1.3 DYNAMIC DATA BUS SIZING

Dynamic data bus sizing is a feature allowing proc-
essor connection to 32-, 16- or B-bit buses for mem-
ory or 1/0. A processor may connect to all three bus
sizes. Transfers to or from 32-, 16- or 8-bit devices
are supported by dynamically determining the bus
width during each bus cycle. Address decoding cir-
cuitry may assert BS16# for 16-bit devices, or
BS8+# for 8-bit devices during each bus cycle. BS8 #
and BS16+# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both
BS16# and BS8+# are asserted.

BS16# and BS8+# force the Inteld86 Microproces-
sor to run additional bus cycles to complete re-
quests larger than 16- or 8 bits. A 32-bit transfer will
be converted into two 16-bit transfers {(or 3 transfers
if the data is misaligned) when BS16# is asserted.
Asserting BS8# will convert a 32-bit transfer into
four 8-bit transfers.

Extra cycles forced by BS16# or BS8# should be
viewed as independent bus cycles. BS16# or BS8 #
must be driven active during each of the extra cycles
unless the addressed device has the ability to
change the number of bytes it can return between
cycles.

LG7E D WW 4826175 0127471 OLD EMITLL

Intel486™ DX MICROPROCESSOR

The intei486 Microprocessor will drive the byte en-
ables appropriately during extra cycles forced by
BS8# and BS16#. A2-A31 will not change if ac-
cesses are to a 32-bit aligned area. Table 7.3 shows
the set of byte enables that will be generated on the
next cycle for each of the valid possibilities of the
byte enables on the current cycle.

The dynamic bus sizing feature of the intel486 Mi-
croprocessor is significantly different than that of the
386 Microprocessor. Unlike the 386 Microprocessor,
the Intel486 Microprocessor requires that data bytes
be driven on the addressed data pins. The simpiest
example of this function is a 32-bit aligned, BS16#
read. When the Intel486 Microprocessor reads the
two high order bytes, they must be driven on the
data bus pins D16-D31. The Intel486 Microproces-

sor expects the two low order bytes on D0-D15. W

The 386 Microprocessor expects both the high and
low order bytes on DO~D15. The 386 Microproces-
sor always reads or writes data on the lower 16 bits
of the data bus when BS16# is asserted.

The external system must contain buffers to enable
the Intel486 Microprocessor to read and write data
on the appropriate data bus pins. Table 7.4 shows
the data bus lines where the Intel486 Microproces-
sor expects data to be returned for each valid com-
bination of byte enables and bus sizing options.

Valid data will only be driven onto data bus pins cor-
responding to active byte enables during write cy-
cles. Other pins in the data bus will be driven but
they will not contain valid data. Unlike the 386 Micro-
processor, the InteldB6 Microprocessor will not du-
plicate write data onto parts of the data bus for
which the corresponding byte enable is negated.

Table 7.3. Next Byte Enable Values for BSn# Cycles

Current Next with BS8 # Next with BS16 #
BE3# BE2# BE1# BEO# | BE3# BE2+ BE1# BEO# | BE3# BE2# BE1# BEO#
1 1 1 0 n n n n n n n n
1 1 0 0 1 1 0 1 n n n n
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 ¢} 1 n n n n n n n n
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 n n n n n n n n
0 0 1 1 0 1 1 1 n n n n
o] 1 1 1 n n n n n n n n

“n"" means that another bus cycle will not be required to satisty the request.

I PRELIMINARY

2-313

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

L7E D EE 4826175 0l27u4v2 TT? EEITLD

intel.

Table 7.4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BEO# w/o BS8+#/BS16# wBS8# wBs16+#
1 1 1 0 D7-D0 07-D0 D7-DO
1 1 0 0 D15-D0 D7-D0 D15-DO
1 0 0 0 D23-D0 D7-DO D15-DO
0 0 0 0 D31-DO D7-DoO D15-D0
1 1 0 1 D15-D8 D15-D8 D15-D8
1 0 0 1 D23-D8 Di15-D8 D15-D8
0 0 0 1 D31-D8 D15-D8 D15-D8
1 0 1 1 D23-D16 D23-D16 D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 D31-D24 D31-D24

7.1.4 INTERFACING WITH 8-, 16- AND 32-BIT
MEMORIES

In 32-bit physical memories such as Figure 7.3, sach
4-byte word begins at a byte address that is a muiti-
ple of four. A2-A31 are used as a 4-byte word se-
lect. BEO# -BE3 # select individual bytes within the
4-byte word. BS8# and BS16# are negated for all
bus cycles involving the 32-bit array.

32, DATA BUS (D0-D31) .
Intel488™ ’ | 32-8i7
CcPU ADDRESS BUS (BEO#-BE3#,A2-A31) | MENORY
»
BS84 Tasmu
“HIGH"” "HIGH"
240440-36

Figure 7.3. Intei486™ Microprocessor
with 32-Bit Memory

16- and 8-bit memories require external byte swap-
ping logic for routing data to the appropriate data
lines and logic for generating BHE #, BLE# and A1.
In systems where mixed memory widths are used,
extra address decoding logic is necessary to assert
BS16# or BS8#.

Figure 7.4 shows the Intel486 microprocessor ad-
dress bus interface to 32-, 16- and 8-bit memories.
To address 16-bit memories the byte enables must
be decoded to produce A1, BHE# and BLE # (AQ).
For 8-bit wide memories the byte enables must be
decoded to produce A0 and A1. The same byte se-
lect logic can be used in 16- and 8-bit systems since
BLE # is exactly the same as AQ (see Table 7.5).

BEO#-BE3# can be decoded as shown in Table
7.5 to generate A1, BHE# and BLE #. The byte se-
lect logic necessary to generate BHE # and BLE # is
shown in Figure 7.5,

Intel486™ Address Bus (A31-A2 BEO¥-BE3#) 32-8it
Microprocessor 7] Memory
» r
asg# BS16#

A31-A2 |
Addreas P] 1s-Bit
Decode - BHEW, BLEW, A1 Memory

BEQ#-BE3# Byte
7] Select Logic

AO(BLE#), A1]
71 e-Bit
A31-A2 | Memory

240440-37
Figure 7.4. Addressing 16- and 8-Bit Memories
2-314

PRELIMINARY I

INTEL CORP (UP/PRPHLS) E?7E D BN 482L1L75 0127473 933 EMNITLL

Intel486™ DX MICROPROCESSOR

intgl.

Table 7.5. Generating A1, BHE # and BLE # for Addressing 16-Bit Devices

Intel486™ CPU Signals 8, 16-Bit Bus Signals
Comments
BE3# BE2# BE1#" BEO# Al BHE # BLE # (A0)
H* H* H* H* X X X x—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* X X X x—not contiguous bytes
L* H* L* H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L* H* L* X X X x—not contiguous bytes
L L L H L L H
L L L L L L L
BLE # asserted when DO-D7 of 16-bit bus is active.
BHE # asserted when DB-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.
Key:
x = don'tcare
H = high voltage level
L = low voltage leve!
* = anon-occurring pattern of Byte Enables; either none are asserted,
or the pattern has Byte Enables asserted for non-contiguous bytes
BEO# A1 BE1# BHE
BE1# BE3#
240440-38 240440-39
240440-40

Figure 7.5. Logic to Generate A1, BHE # and BLE # for 16-Bit Busses

Combinations of BEO# -BE3# which never occur
are those in which two or three asserted byte en-
ables are separated by one or more negated byte
enables. These combinations are “don’t care” con-
ditions in the decoder. A decoder can use the non-
occurring BEQ # -BE3# combinations to its best ad-
vantage.

I PRELIMINARY

Figure 7.6 shows an Intel4B6 Microprocessor data
bus interface to 16- and 8-bit wide memories. Exter-
nal byte swapping logic is needed on the data lines
so0 that data is supplied to, and received from the
intel486 Microprocessor on the correct data pins
(see Table 7.4).

2-315

INTEL CORP (UP/PRPHLY)

Intel486™ DX MICROPROCESSOR

b7?E D WEH u482bL1l75 0l2e7474 87T EEITLL

intgl.

00-D7 4
< #
Intel4ns™ 28015, 4 o 32-mit
Microprocessor ¢ D18-023 i 4 o] Memory
|, 024-D3t ", 4
Z Y 3 - "
ass#
BS16# (A2-A31, BEO#-BE3#)
Byte
! s",:p . © 18 | 18-Bit
Logic | 7 71 Memory
4
h 4 h 4
Address Byte .8 R 8-Bit
Decode Swap |€ Ls 1 Memory
Logic
240440-74

Figure 7.6. Data Bus Interface to 16- and 8-bit Memorles

7.1.5 DYNAMIC BUS SIZING DURING CACHE
LINE FILLS

BS8+# and BS16# can be driven during cache line
fills. The Intel486 Microprocessor will generate
enough 8- or 16-bit cycles to fill the cache line. This
can be up to 16 8-bit cycles.

The external system should assume that all byte en-
ables are active for the first cycle of a cache line fill.
The intel486 Microprocessor will generate proper
byte enables for subsequent cycles in the line fill.
Table 7.6 shows the appropriate A0 (BLE #), A1 and
BHE# for the various combinations of the Intel486
Microprocessor byte enables on both the first and
subsequent cycles of the cache line fill. The “*”
marks all combinations of byte enables that will be
generated by the Intel4B6 Microprocessor during a
cache line fill.

7.1.6 OPERAND ALIGNMENT

Physical 4-byte words begin at addresses that are
multiples of four. It is possible to transfer a logical
operand that spans more than one physical 4-byte
word of memory or 1/0 at the expense of extra cy-
cles. Examples are 4-byte operands beginning at ad-
dresses that are not evenly divisible by 4, or 2-byte
words split between two physical 4-byte words.
These are referred to as unaligned transfers,

Operand alignment and data bus size dictate when
muitiple bus cycles are required. Table 7.7 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple cycles are required to transfer a
multi-byte logical operand, the highest-order bytes
are transferred first. For example, when the proces-
sor does a 4-byte unaligned read beginning at loca-
tion x11 in the 4-byte aligned space, the three high
order bytes are read in the first bus cycle. The low
byte is read in a subsequent bus cycle.

Table 7.6. Generating A0, A1 and BHE # from the Inteld86™ Microprocessor Byte Enables

BE3# BE2+# BE1# BEOC #

First Cache Fill Cycle
A0

Any Other Cycle

Al BHE # A0 Al BHE #

- - - 000000 =
- ek ok -k - - OO0 OO

= 00 O0Q =00 = -

COO0OCOLOO0OODO0O

s NeRoloNoNoNeoNoNoNe)
- OO = = - O0000
-—- e QOO0 0O0
OO =00 000Q0 =

‘locoooocococoo

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

L?E D HEE 4826175 0127475 706 EMITLL

Intel486™ DX MICROPROCESSOR

Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand
1 2 4
Physical Byte Address in
Memory (Low Order Bits) xx 00 01 10 n 0o o1 1.0 "
Transfer Cycles hb hb hw h3
over 32-Bit Bus bl w W Wy d 13 Iw b
Transfer Cycles over b hb w hb hw mw
16-Bit Data Bus
b
= BS16# Asserted W ho v b hw b w ho
mw b
Transfer Cycles over _ b hb mhb mib
8-Bit Data Bus b | b | w | b || mb [® ho | mho
= BS8# Asserted
hb hb hb b mhb mib b hb
‘ hb | mhb | mb Ib
KEY:
b = byte transfer h = high-order portion
w = 2-byte transfer | = low-order portion 4-Byte Operand m [mib [mhb [hﬂ
3 = 3-byte transfer m = mid-order portion t 1
d = 4-byte transfer '
byte with byte with
lowast highest
address address

The function of unaligned transfers with dynamic
bus sizing is not obvious. When the external systems
asserts BS16# or BS8# forcing extra cycles, low-
order bytes or words are transferred first (opposite
to the example above). When the Intel486 Micro-
processor requests a 4-byte read and the external
system asserts BS16 #, the lower 2 bytes are read
first followed by the upper 2 bytes.

In the unaligned transfer described above, the proc-
essor requested three bytes on the first cycle. If the
external system asserted BS16# during this 3-byte
transfer, the lower word is transferred first followed
by the upper byte. In the final cycle the lower byte of
the 4-byte operand is transferred as in the 32-bit ex-
ample above.

7.2 Bus Functional Description

The Inteld486 Microprocessor supports a wide variety
of bus transfers to meet the needs of high perform-
ance systems. Bus transfers can be single cycle or
multiple cycle, burst or non-burst, cacheable or non-
cacheable, 8-, 16- or 32-bit, and pseudo-locked. To
support multiprocessing systems there are cache in-
validation cycles and locked cycles.

l PRELIMINARY

This section begins with basic non-cacheable non-
burst single cycle transfers. It moves on to muitiple
cycle transfers and introduces the burst mode.
Cacheability is introduced in Section 7.2.3. The re-
maining sections describe locked, pseudo-locked,
invalidate, bus hold and interrupt cycles.

Bus cycles and data cycles are discussed in this
section. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the Intel486 Microprocessor during a data cycle. A
bus cycle contains one or more data cycles.

Refer to Section 7.2.13 for a description of the bus
states shown in the timing diagrams.

)

7.2.1 NON-CACHEABLE NON-BURST SINGLE
CYCLE

7.2.1.1 No Wait States

The fastest non-burst bus cycle that the Intel486 Mi-
croprocessor supports is two clocks long. These cy-
cles are called 2-2 cycles because reads and writes
take two cycles each. The first 2 refers to reads and

2-317

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

the second to writes. For exampls, if a wait state
needs to be added to a write, the cycle would be
called 2-3.

Basic two clock read and write cycles are shown in
Figure 7.7. The Intel486 Microprocessor initiates a
cycle by asserting the address status signal (ADS #)
at the rising edge of the first clock. The ADS# out-
put indicates that a valid bus cycle definition and
address is available on the cycle definition lines and
address bus.

The non-burst ready input (RDY #) is returned by the
external system in the second clock. RDY # indi-
cates that the external system has presented valid
data on the data pins in response to a read or the
external system has accepted data in response to a
write.

The Intel486 Microprocessor samples RDY # at the
end of the second clock. The cycle is complete if
ROY# is active (LOW) when sampled. Note that
RDY # is ignored at the end of the first clock of the
bus cycle.

The burst last signal (BLAST #) is asserted (LOW)
by the Intel486 Microprocessor during the second
clock of the first cycle in all bus transfers illustrated
in Figure 7.7. This indicates that each transfer is
complete after a single cycle. The Intel486 Micro-
processor asserts BLAST # in the last cycle of a bus
transfer.

The timing of the parity check output (PCHK #) is
shown in Figure 7.7. The Intel486 Microprocessor
drives the PCHK # output one clock after ready ter-
minates a read cycle. PCHK# indicates the parity
status for the data sampled at the end of the previ-
ous clock. The PCHK # signal can be used by the
external system. The Intel486 Microprocessor does
nothing in response to the PCHK # output.

7.2.1.2 Inserting Wait States

The external system can insert wait states into the
basic 2-2 cycle by driving RDY # inactive at the end
of the second clock. RDY # must be driven inactive
to insert a wait state. Figure 7.8 illustrates a simple
non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to
an Inteld486 Microprocessor bus cycle by maintaining
RDY # inactive.

The burst ready input (BRDY #) must be driven inac-
tive on all clock edges where RDY # is driven inac-
tive for proper operation of these simple non-burst
cycles.

2.318

L?E D HN 482b175 01l27u4?b b2 WEITLL

-
intal.
7.2.2 MULTIPLE AND BURST CYCLE BUS
TRANSFERS

Multiple cycle bus transfers can be caused by inter-
nal requests from the Intel486 Microprocessor or by
the external memory system. An internal request for
a 64-bit floating point load or a 128-bit pre-fetch
must take more than one cycle. Internal requests for
unaligned data may also require multiple bus cycles.
A cache line fill requires muitiple cycles to complete.
The external system can cause a multiple cycle
transfer when it can only supply 8 or 16 bits per
cycle.

Only muitiple cycle transfers caused by internal re-
quests are considered in this section. Cacheable cy-
cles and 8- and 16-bit transfers are covered in Sec-
tions 7.2.3 and 7.2.5. -

7.2.2.1 Burst Cycles

The Intel486 Microprocessor can accept burst cy-
cles for any bus requests that require more than a
single data cycle. During burst cycles, a new data
item is strobed into the Intel4B86 Microprocessor ev-
ery clock rather than every other clock as in non-
burst cycles. The fastest burst cycle requires 2
clocks for the first data item with subsequent data
items returned every clock.

The Intel486 Microprocessor is capabie of bursting a
maximum of 32 bits during a write. Burst writes can
only occur if BS8+# or BS16# is asserted. For exam-
ple, the [ntel486 Microprocessor can burst write four
8-bit operands or two 16-bit operands in a single
burst cycle. But the Intel486 Microprocessor cannot
burst multiple 32-bit writes in a single burst cycle.

Burst cycles begin with the Intel486 Microprocessor
driving out an address and asserting ADS# in the
same manner as non-burst cycles. The intel486 mi-
croprocessor indicates that it is willing to perform a
burst cycle by holding the burst last signal
(BLAST #) inactive in the second clock of the cycle.
The external system indicates its willingness to do a
burst cycle by returning the burst ready signal
(BRDY #) active.

The addresses of the data items in a burst cycle will
all fall within the same 16-byte aligned area (corre-
sponding to an internal Inteld86 Microprocessor
cache line). A 16-byte aligned area begins at loca-
tion XXXXXXX0 and ends at location XXXXXXXF.
During a burst cycle, only BEO-3#, Ap, and A3 may
change. Ay-Azq, M/IO#, D/C#, and W/R # will re-
main stable throughout a burst. Given the first ad-
dress in a burst, external hardware can easily calcu-
late the address of subsequent transfers in advance.
An external memory system can be designed to
quickly fill the Intel486 microprocessor internal
cache lines. ,

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

B?E D N 482L175 0127477 589 EEITLL

Intel486™ DX MICROPROCESSOR

| [') ! |
' ' MK IR © AAUKIUARAXIEY ! /A

rovg XRCECLEOLCI KL OOLUUAIXATAR

[XA

", nm ., T” , M . ®” ,n , 1 , n 2 , T
1 L]] 1
| ! 1 ' ! | ! | !
CLK
1 ' I ! ' ') ¢ '
L] L)]]
1 '])
ADS# I) | ' 1 h j) '
e
A2-A31 : : - . . ! " ! .
M/10§ i x ' |J] ! x ! ! ' |
/C# L ! L ! L ! 2 X ! .
BEO-34 : M ; . \ N 1 ' '
: : I : .) | " v
W/R§ ' ' ' '
1 .) . 1
) 1 | ! 1 ' 1 t [}

| '
' '

[
] 1
1 1
1 ¥
1 b
] i
| 1
L] 1
+ '

] ! : X) . : . 1
s D S Y A VA W Y AN WY A
! , [) !) | . !
DATA : : @ ——{ FRoM cPu)= : {Fu)- R G
' ' T ‘ T X i . i
PCHK# : . : : L - : . '
) :) \ ‘ / : , 1 \ ' / :
READ WélTE READ WRITE
24044050
Figure 7.7. Basic 2-2 Bus Cycle
n o, T ., T ., 1 ' , M , T ., T , =N
CLK : y \ \ \ y '
! ' | ! : | !
ADS# : \ : ’ : | \ | ’ :r)
A2=A31 | : : . : : '
Nles B | B | |
BEO-3# | 1 1 ' ' [t
W/R§ : \ ! : : / E E !
: : : n ! ! -
rove YOCOOOCOSACOOOGCO00KE, N0+ ZRN00cCnacoccny OO+ /XXXk0)
BLAST# x \ ' / \ , : /_

I PRELIMINARY

1
[\ (>_ —

DATA T 1 FROM CPU |
. \cru/™ '-

! READ ! WRITE !

240440-51
Figure 7.8. Basic 3-3 Bus Cycle
2-319

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Burst cycles are not limited to cache line fills. Any
multiple cycle read request by the Intel486 Micro-
processor can be converted into a burst cycle. The
intel486 Microprocessor will only burst the number
of bytes needed to complete a transfer. For exam-
ple, eight bytes will be bursted in for a 64-bit floating
point non-cacheabie read.

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # (non-burst ready) in the first cycle
of a transfer. For cycles that cannot be bursted such
as interrupt acknowledge and hait, BRDY # has the
same effect as RDY#. BRDY# is ignored if both
BRDY # and RDY # are returned in the same clock.
Memory areas and peripheral devices that cannot
perform bursting must terminate cycles with RDY #.

7.2.2.2 Terminating Multiple and
Burst Cycle Transfers

The Intel486 Microprocessor drives BLAST # inac-
tive for all but the last cycle in a multiple cycle trans-
fer. BLAST# is driven inactive in the first cycle to
inform the external system that the transfer could
take additional cycles. BLAST # is driven active in
the last cycle of the transfer indicating that the next
time BRDY# or RDY # is returned the transfer is
complete.

BLAST # is not valid in the first clock of a bus cycle.
It should be sampled only in the second and subse-
quent clocks when RDY # or BRDY # is returned.

The number of cycles in a transfer is a function of
several factors including the number of bytes the mi-
croprocessor needs to complete an internal request
(1, 2, 4, 8, or 16), the state of the bus size inputs
(BS8# and BS16#), the state of the cache enable
input (KEN#) and alignment of the data to be trans-
ferred.

When the Inteld86 Microprocessor initiates a re-
quest it knows how many bytes will be transferred
and if the data is aligned. The external system must
tell the microprocessor whether the data is cache-
able (if the transfer is a read) and the width of the
bus by returning the state of the KEN#, BS8# and
BS16 # inputs one clock before RDY # or BRDY # is
returned. The Inteld86 Microprocessor determines
how many cycles a transfer will take based on its
internal information and inputs from the external sys-
tem. .

BLAST # is not valid in the first clock of a bus cycle

because the intel486 Microprocessor cannot deter-
mine the number of cycles a transfer will take until

2-320

G7E P W 4826175 0127478 415 EEITLL

o

intal.
the external system returns KEN#, BS8# and
BS16#. BLAST# should only be sampled in the

second and subsequent clocks of a cycle when the
external system returns RDY # or BRDY #.

The system may terminate a burst cycle by returning
RDY# instead of BRDY#. BLAST# will remain
deasserted until the last transfer. However, any
transfers required to complete a cache line fill will
follow the burst order, e.g., if burst order was 4, 0, C,
8 and RDY # was returned at after 0, the next trans-
fers will be from C and 8.

7.2.2.3 Non-Cacheable, Non-Burst, Multiple
Cycle Transfers

Figure 7.9 illustrates a 2 cycle non-burst, non-cache-
able multiple cycle read. This transfer is simply a
sequence of two single cycle transfers. The Intel486
Microprocessor indicates to the external system that
this is a multiple cycle transfer by driving BLAST #
inactive during the second clock of the first cycle.
The external system returns RDY # active indicating
that it will not burst the data. The external system
also indicates that the data is not cacheable by re-
turning KEN# inactive one clock before it returns
RDY# active. When the Intel486 Microprocessor
samples RDY # active it ignores BRDY #.

Each cycle in the transfer begins when ADS# is
driven active and the cycle is complete when the
external system returns RDY # active.

The Intel486 Microprocessor indicates the last cycle
of the transfer by driving BLAST # active. The next
RDY # returned by the external system terminates
the transfer.

7.2.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # in the first cycle of the transter.
This is illustrated in Figure 7.10.

There are several features to note in the burst read.
ADS# is only driven active during the first cycle of
the transfer. RDY # must be driven inactive when
BRDY # is returned active.

BLAST # behaves exactly as it does in the non-burst
read. BLAST # is driven inactive in the second clock
of the first cycle of the transfer indicating more cy-
cles to follow. In the last cycle, BLAST # is driven
active telling the external memory system to end the
burst after returning the next BRDY #.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

L?E D EE 482L175 0l27479 351 EEITLI

Intel486™ DX MICROPROCESSOR

A2-A31

ADS# ! \ ' \ ’ !
1 !

]
M/10§ L
D/CH |

X

F-F - - -~

X

W/R#
BEO=3# '

RDY#

BROY#

I 1
PR CIOCU R ECEACEAR TN, | TEARLRROT ! /A
' 1 1 ¢ b

PELEELILS ORI R LR RIPI R LRI EER IR IRER eI 40004
i ! [} 1

i ! L ! i
KEN : : | : :
] : 1 : y
] L 1
BLASTY i S A U
' N] j [
| ' ' I)
bATA : —)
1 ' 1] |
1st IE)ATA 2nd DATA 24044052
Figure 7.9. Non-Cacheable, Non-Burst, Multiple Cycle Transfers
", M , Y2 , 12 , mWm , m
ax I ' ! ’ '
! X : ! !
ADS# ! \ ‘ ’ T- ' X
1]
A2-/A3| ! ' . ' '
oy e G
v — AL X
BEO~3# l ! ! ')
rov - AXAXRRAUACARACERRRARAERR \ROY + \RKACAKERRRRAARR
; . ,) |
srovy AREICLUCCOCCRCCRORRCA TN ¢ /R)NNHMN"NNO
] 1 [
f t 1]]
KEN# : ‘ ' ' !
] ¥ v] 1
i ! . ' |
BLASTH X 7 T\ [
! : :)]
t []
DATA : ; O '
) ' ' 240440-53

I PRELIMINARY

Figure 7.10. Non-Cacheable Burst Cycie

2-321

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

7.2.3 CACHEABLE CYCLES

Any memory read can become a cache fill operation.
The external memory system can allow a read re-
quest to fill a cache line by returning KEN# active
one clock before RDY # or BRDY # during the first
cycle of the transfer on the external bus. Once
KEN# is asserted and the remaining thrae require-
ments described below are met, the Inteid86 Micro-
processor will fetch an entire cache line regardless
of the state of KEN#. KEN# must be returned ac-
tive in the last cycle of the transfer for the data to be
written into the internal cache. The Intel486 Micro-
processor will only convert memory reads or pre-
fetches into a cache fill.

KEN # is ignored during write or I/0 cycles. Memory
writes will only be stored in the on-chip cache if
there is a cache hit. I/0 space is never cached in
the internal cache.

To transform a read or a prefetch into a cache line
fill the following conditions must be met:

1. The KEN# pin must be asserted one clock pri-
or to RDY # or BRDY # being returned for the
first data cycle.

2. The cycle must be of the type that can be inter-
nally cached. (Locked reads, 1/0Q reads, and
interrupt acknowledge cycles are never cach-
ed).

3. The page table entry must have the page
cache disable bit (PCD) set to 0. To cache a
page table entry, the page directory must have
PCD=0. To cache reads or prefetches when
paging is disabled, or to cache the page direc-
tory entry, control register 3 (CR3) must have
PCD=0.

4. The cache disable (CD) bit in controt register 0
(CRO) must be clear. .

External hardware can determine when the Intel486
Microprocessor has transformed a read or prefetch
into a cache fill by examining the KEN#, M/IO#,
D/C#, W/R#, LOCK#, and PCD pins. These pins
convey to the system the outcome of conditions 1-3
in the above list. In addition, the Intel486 drives PCD
high whenever the CD bit in CRO is set, so that ex-
ternal hardware can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

2-322

G?E D W 482175 012?480 073 ENITLL

intgl.

7.2.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte
enables should be ignored. In a non-cacheable
memory read, the byte enables indicate the bytes
actually required by the memory or code fetch.

The Intel486 Microprocessor expects to receive val-
id data on its entire bus (32 bits) in the first cycleof a
cache line fill. Data should be returned with the as-
sumption that all the byte enable pins are driven ac-
tive. However if BS8# is asserted only one byte
need be returned on data lines D0-D7. Similarly if
BS16+# is asserted two bytes should be returned on
DO-D15.

The Intel486 Microprocessor will generate the ad-
dresses and byte enables for all subsequent cycles
in the line fill. The order in which data is read during
a line fill depends on the address of the first item
read. Byte ordering is discussed in Section 7.2.4.

7.2.3.2 Non-Burst Cacheable Cycles |,

Figure 7.11 shows a non-burst cacheable cycle. The
cycle becomes a cache fill when the Intel486 Micro-
processor samples KEN# active at the end of the
first clock. The Intel486 Microprocessor drives
BLAST # inactive in the second clock in response to
KEN#. BLAST # is driven inactive because a cache
fil requires 3 additional cycles to complete.
BLAST# remains inactive until the last transfer in
the cache line fill. KEN# must be returned active in
the last cycle of the transfer for the data to be writ-
ten into the internal cache.

Note that this cycle would be a single bus cycle if
KEN# was not sampled active at the end of the first
clock. The subsequent three reads would not have
happened since a cache fill was not requested.

The BLAST # output is invalid in the first clock of a
cycle. BLAST# may be active during the first clock
due to earlier inputs. Ignore BLAST # untit the sec-
ond clock.

During the first cycle of the cache line fill the exter-
nal system should treat the byte enables as if they
are all active. In subsequent cycles in the burst, the
Intel486 Microprocessor drives the address lines
and byte enables (see Section 7.2.4.2 for Burst and
Cache Line Fill Order).

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

LPE D WM 482bL175 0127481 TOT EMITLY

Intel486™ DX MICROPROCESSOR

CLK | |

A2=A31 |

i
i

ADS# \ ' ’ 1 ~ ’ ' \ ’ 1 \ ’ t
1 ! . [) 1

n o, 12 , M ., 7 , u

'
1 +
! ' | X]
[[/ [

D/CH

) |
'
! ‘
M/I0# .L ,
i)
I I

X X

Y X

'
i
t
i
)
[
[
'
i
l

W/R¢

BEO-34 I

RO mmmummommou\)mummm\ mmmmm\)mmmnm\)omm
BROYY mmm-mmmmmmoomnmmmmooommmemmmmmmoomommmmm

i |

.

| I | |
1 "
KEN# o\ ' ! u :] '
| | t | i t '
| : ' : | : | : ;
T T T T * T ,_
BLAST# |r x ' / : s ' ’ : \ 1 ’ : \) \ |
' ' "]
! ' ! ' ! 1 ! i |
DATA ! : T o [\ ' T : [0\
\ : \CPy/ : \CPU/ : CPY : \CPu/
240440-54

Figure 7.11. Non-Burst, Cacheable Cycles

7.2.3.3 Burst Cacheable Cycles

Figure 7.12 illustrates a burst mode cache fill. As in
Figure 7.11, the transfer becomes a cache line fill
when the external system returns KEN# active at
the end of the first clock in the cycle.

I PRELIMINARY

The external system informs the Intel486 Microproc-
essor that it will burst the line in by driving BROY #
active at the end of the first cycle in the transfer.

Note that during a burst cycle ADS # is only driven
with the first address. '

2.323

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

E7E D EH 482b175 0127482 94b EEITLL

no, T , T2 ., 12 , T , 1 , 0
LK | ' ‘ ' ' :

ADS# : \ ' / : ;r :r .

M ——— L

D/Cz' IL X 1 1 t ' !

W/R# . [] [1 I’
iy B S GN GE O
Rove KAREANANCACKAKERCRRKARARAN - \KERRY WK+ VR + N0
smovs - KOCONOOGOCOCOUCMOONA | AN & 0000 © A0 Ao
KEN# Y AT

BLAsTs 7 . T\ [
o ————
perk o s X

240440-55

Figure 7.12. Burst Cacheable Cycle

7.2.3.4 Effect of Changing KEN# during a
Cache Line Fill

KEN# can change multiple times as long as it ar-
rives at its final value in the clock before RDY # or
BROY # is returned. This is illustrated in Figure 7.13.
Note that the timing of BLAST# follows that of
KEN# by one clock. The Intel486 samples KEN#
every clock and uses the value returned in the clock
before ready to determine if a bus cycle would be a

2-324

cache line fill. Similarly, it uses the value of KEN # in
the last cycle, before early RDY # to load the line
just retrieved from the memory into the cache.
KEN# is sampled every clock, it must satisfy setup
and hold time.

KEN# can also change muitiple times before a burst

cycle as long as it arrives at its final value one clock
before ready is returned active.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?7E D BN 482b175 0127483 842 EEITLL

intgl.

Intel486™ DX MICROPROCESSOR

n T . T2 . T2 \ T2 , Tt . T2)
] 1 1 1] 1]
CLK | ' ¢ ' 1 !
) : ; : ! ! '
i L 1 1
I
X . : ' ! . !
A4-A31, | ' 1 ' ! \ t
M/104, ' K 1 1 1 ' ' |
D/Cy. i | | ! 1
W/RE \ . | : i : I
A2-A3, \ - , T
BEO-34 | ‘ \ ‘ ! x '
1 ¥] t
H

rove 000NN D07 00+ Ao <

' i

)
! : i
[
reng Y A R
! '] 1) ' i)
| 1 [1 '
- T t Y
BLASTY ' x : / : \ | , ' ' |
v l ' 1 ! ! !
| ' ' 1 ! i !
DATA , : L : {20) : U
| \ \)
t ! ' | w '
240440-56

Figure 7.13. Effect of Changing KEN #

7.2.4 BURST MODE DETAILS

7.2.4.1 Adding Wait States to Burst Cycles

Burst cycles need not raturn data on every clock.
The Inteld86 Microprocessor will only strobe data
into the chip when either RDY # or BRDY # are ac-
tive.

I PRELIMINARY

Driving BRDY# and RDY# inactive adds a wait
state to the transfer. A burst cycle where two clocks
are required for every burst item is shown in Figure
7.14.

2-325

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

L?E D EN 4826175 0127484 719 EEITLL

", n ., T2 , T2 , T2 ., T2 , Y2 , T2 , 1
| [' ’) ' ' [\
CLK f 1 t 1 1 ' [} 1
! ! ! : ! : ! : »
ADS# | \ ' / N : \ . , j \
X . X : I : ; X i
Al-/A31, : ! ! ! ! . N . '
M/104,) \) 1 ') 1
D/C#, : X | |) | [1 \ !
W/R# ! r :) 1 1 1 : 1
1 - e
A2-A3, 1 ' 1 1 ' 1 '
BEO-34 : T ! ! X ! ' X ' ' X ' '
i 1 ' \ ' ' 1 ' \
t 1 []] {] 1 [l
rove JXOCOMOGOOCKXROMO0N0N - WK < N0+ N0 KRR N+ KRR
: l . : : , ' Z !
' ‘ Tt |
srovy QOOOOCOCOOCOONO00NN /X000 OO0\« /KR \OOo\ /0000y« AR,
1) 1 1 i] 1]
) H] [l : 1] [} 1
T ' N ") .) :
KEN 1 i t 1 1] 1
* : _'J ' t 1 t 1} __,_/ :
! ! ! ; I I : i '
L T 1 [¥ 1 !
BLAST# 1 x X / 1 ‘r lr ' ' ~ ' t
. X | ') : | I i
DATA . ; /\ 70 X /7o\ : 10
! ! \cPu/ : \cPy/™ : CcPY : <cpu>
, 240440-57
Figure 7.14, Slow Burst Cycle
7.2.4.2 Burst and Cache Line Fill Order Table 7.8. Burst Order
The burst order used by the Intel486 Microprocessor First Second Third Fourth
is shown in Table 7.8. This burst order is followed by Addr. Addr. Addr. Addr.
any burst cycle (cache or not), cache line fill (burst 0 4 8 c
or not) or code prefetch. 4 0 c 8
The microprocessor presents each request for data 8 c 0 4
in an order determined by the first address in the C 8 4 0

transfer. For example, if the first address was 104
the next three addresses in the burst will be 100,
10C and 108.

2-326

An example of burst address sequencing is shown in

Figure 7.15.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) BPE D EER u482bl?5 0127485 b55 EMITLIL

ln@ ° Intel486™ DX MICROPROCESSOR

m o, ™ , T2 , 17 ., 12 , 712 , U

- 1) | ' |)
' 1 ']

S VY A S
AZ-A31 E x Xxoo xIOC " x 108 |
! 1
rovs - AXEARANKARRKARKRRRRKARRRERY, + VAKRY WK+ WX/ WRKRXeG

amovs - OCOOOCCO0OCC0NONA ¢ 000N /00000 /00000 + /0o

104

' '
']
T =
1 '
!

- -

w T LT
BLAST# .r X EL / § i \ : Z
DATA :r ; Jo—&) (&)

240440-58

‘ Figure 7.15. Burst Cycle Showing Order of Addresses

The sequences shown in Table 7.7 accommodate The Intel486 Microprocessor will automatically gen-
systems with 64-bit busses as well as systems with orate another normal bus cycle after being interrupt-
32-bit data busses. The sequence applies to all ad to complete the data transfer. This is called an
bursts, regardless of whether the purpose of the interrupted burst cycle. The external system can re-
burst is to fill a cache line, do a 64-bit read, ordo a spond to an interrupted burst cycle with another

pre-fetch. If either BS8+# or BS16# is returned ac- burst cycle.

tive, the InteldB6 Microprocessor completes the

transfer of the current 32-bit word before progress- The external system can interrupt a burst cycle by
ing to the next 32-bit word. For example, a BS16# returning RDY # instead of BRDY#. RDY # can be
burst to address 4 has the following order: 4-6-0-2- returned after any number of data cycles terminated
C-E-8-A. with BRDY #.

An example of an interrupted burst cycle is shown in
7.24.3 Interrupted Burst Cycles Figure 7.16. The Intel486 Microprocessor immedi-
ately drives ADS # active to initiate a new bus cycle
after RDY # is returned active. BLAST# is driven
inactive one clock after ADS# begins the second
_bus cycle indicating that the transfer is not complete.

Some memory systems may not be able to respond
with burst cycles in the order defined in Table 7.7.
To support these systems the Intel486 Microproces-
sor allows a burst cycle to be interrupted at any time.

I PRELIMINARY 2.327

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

B7E D EE 4826175 0127?48b 591 ERITLIL

CLK i

N m R T2 R T2 T

| CPU

ADS# : :
o T
e
BLAST# E x E / ;r ; \ i / ir \ E ’
—— (@ G

240440-58

Figure 7.16. Interrupted Burst Cycle

KEN+# need not be returned active in the first data
cycle of the second part of the transfer in Figure
7.16. The cycle had been converted to a cache fill in
the first part of the transfer and the Intel486 Micro-
processor expects the cache fill to be compieted.
Note that the first half and second half of the trans-
fer in Figure 7.16 are each two cycle burst transfers.

The order in which the Intel486 Microprocessor re-
quests operands during an interrupted burst transfer
is determined by Table 7.7. Mixing RDY+# and
BROY # does not change the order in which oper-
and addresses are requested by the Intel486 Micro-
processor.

2-328

An example of the order in which the intel486 Micro-
processor requests operands during a cycle in which
the external system mixes RDY # and BRDY# is
shown in Figure 7.17. The Intel486 Microprocessor
initially requests a transfer beginning at location 104.
The transfer becomes a cache line fill when the ex-
ternal system returns KEN # active. The first cycle of
the cache fill transfers the contents of location 104
and is terminated with RDY #. The Intel486 Micro-
processor drives out a new request (by asserting
ADS #) to address 100. If the external system termi-
nates the second cycle with BRDY #, the Intel486
Microprocessor will next request/expect address
10C. The correct order is determined by the first cy-
cle in the transfer, which may not be the first cycle in
the burst if the system mixes RDY # with BRDY #.

PRELIMINARY I

INTEL CORP

(UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

T2, 12 , T2 , ™

x vo104

100

XlOC: X1oa.

i

wors L S D7~ e
BROY# : [MK

AV CCEC R I)“N\)NN\

-4 d--

i i

1]
1 ‘ ’]] \ ’
KEN # 1 1 : 1 1]
! : \ | X
T T 1 [
BLAST# \ X . / | S . , .
: 1 : :
] ! T
DATA " : cPy
! 1

1

1

)

" TO 0
[CPU

'

240440-60

Figure 7.17. Interrupted Burst Cycle with Unobvious Order of Addresses

7.2.5 8- AND 16-BIT CYCLES

The Intel486 Microprocessor supports both 16- and
8-bit external busses throughthe BS16# and BS8 #
inputs. BS16# and 8S8# allow the external system
to specify, on a cycle by cycle basis, whether the
addressed component can supply 8, 16 or 32 bits.
BS16# and BS8# can be used in burst cycles as
well as non-burst cycles. If both BS16# and BS8#
are returned active for any bus cycle, the Intel486
Microprocessor will respond as if only BS8# were
active.

The timing of BS16# and BS8# is the same as that

of KEN#. BS16# and BS8# must be driven active
before the first RDY # or BRDY # is driven active.

I PRELIMINARY

Driving the BS16# and BS8# active can force the
Intel486 Microprocessor to run additional cycles to
complete what would have been only a single 32-bit
cycle. BS8# and BS16# may change the state of
BLAST# when they force subsequent cycles from
the transfer.

Figure 7.18 shows an example in which BS8#
forces the Intel486 Microprocessor to run two extra
cycles to complete a transfer. The Intel486 Micro-
processor issues a request for 24 bits of information.
The external system drives BSB# active indicating
that only eight bits of data can be supplied per cycle.
The Intel486 Microprocessor issues two extra cycles
to complete the transfer.

2-329

L?E D W 482b175 0127487 424 EEITLL

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

L7E D W 4826175 0127488 364 EMITLI

1

)

]
ADS# ! 1 | ' i
) 1 . |

ROY#

1
I
|]
A2-/A31 n N .
M/104 :
Ve D | . | : A
W/RH . ' | : | ' |
] | 1 |
BEO-3# : x \) T ' | x : | x
] [M
1

AN A AN

) XN

+
'
i

s 1\ S
BLAST# : X E / : \ E / : \ f \ ! /—
DATA \ 4; u IE @ ;L @

240440-61

Figure 7.18. 8-Bit Bus Size Cycle

Extra cycles forced by the BS16# and BS8 # should
be viewed as independent bus cycles. BS16# and
BS8# should be driven active for each additional
cycle unless the addressed device has the ability to
change the number of bytes it can return between
cycles. The Inteld86 Microprocessor will drive
BLAST # inactive until the last cycle before the
transfer is complete.

Refer to Section 7.1.3 for the sequencing of ad-
dresses while BS8# or BS16# are active.

2-330

BS8# and BS16# operate during burst cycles in ex-
actly the same manner as non-burst cycles. For ex-
ample, a single non-cacheable read could be trans-
ferred by the Intel486 Microprocessor as four 8-bit
burst data cycles. Similarly, a single 32-bit write
could be written as four 8-bit burst data cycles. An
example of a burst write is shown in Figure 7.19.
Burst writes can only occur if BSB8# or BS16# is
asserted.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

G7E D W 4826175 0127489 2TO EEITLI

Intel486™ DX MICROPROCESSOR

S SO S

m_

e Y
e N N e
I T o o e s m W
oor (T

240440-62

Figure 7.19. Burst Write as a Result of BS8# or BS16 #

7.2.6 LOCKED CYCLES

Locked cycles are generated in software for any in-
struction that performs a read-modify-write opera-
tion. During a read-modify-write operation the proc-
essor can read and modify a variable in external
memory and be assured that the variable is not ac-
cessed between the read and write.

Locked cycles are automatically generated during
certain bus transfers. The xchg (exchange) instruc-
tion generates a locked cycle when one of its oper-
ands is memory based. Locked cycles are generat-
ed when a segment or page table entry is updated
and during interrupt acknowledge cycles. Locked cy-
cles are also generated when the LOCK instruction
prefix is used with selected instructions.

I PRELIMINARY

Locked cycles are implemented in hardware with the
LOCK# pin. When LOCK # is active, the processor
is performing a read-modify-write operation and the
external bus should not be relinquished until the cy-
cle is complete. Multiple reads or writes can be
locked. A tocked cycle is shown in Figure 7.20.
LOCK # goss active with the address and bus defini-
tion pins at the beginning of the first read cycle and
remains active until RDY # is returned for the last
write cycle. For unaligned 32 bits read-modify-write

-operation, the LOCK# remains active for the entire

duration of the multiple cycle. It will go inactive when
RDY # is returned for the last write cycle.

2-331

INTEL CORP (UP/PRPHLS)

Iintel486™ DX MICROPROCESSOR

L7E D W 4826175 0127490 Ti2 EEITLL

2, ®m

/10§
D/C#
BEO-3§

w/RE X \ [

1 !]

ROY§ NNN“MN“NNNNCN\)NNNMNNN\)mmo
| : ' :)

S : —

WRITE

I
'
1
A2-A31 "
!
L
1

DATA

LOCKA

| ‘

READ

240440-63

Figure 7.20. Locked Bus Cycle

When LOCK # is active, the Intel486 Microprocessor
will recognize address hold and backoff but will not
recognize bus hold. It is left to the external system to
properly arbitrate a central bus when the Intel486
Microprocessor generates LOCK#.

7.2.7 PSEUDO-LOCKED CYCLES

Pseudo-locked cycles assure that no other master
will be given control of the bus during operand trans-
fers which take more than one bus cycle. Examples
include 64-bit floating point read and writes, 64-bit
descriptor loads and cache line fills.

Pseudo-locked transfers are indicated by the
PLOCK# pin. The memory operands must be
aligned for cormrect operation of a pseudo-locked cy-
cle. ’

PLOCK # need not be examined during burst reads.
A 64-bit aligned operand can be retrieved in one
burst (note: this is only valid in systems that do not
interrupt bursts).

The system must examine PLOCK # during 64-bit
writes since the Inteld86 Microprocessor cannot
burst write more than 32 bits. However, burst can be
used within each 32-bit write cycle if BS8+# or
BS16# is assertad. BLAST will be deasserted in re-
sponse to 8S8# or BS16#. A 64-bit write will be
driven out as two non-burst bus cycles. BLAST # is
asserted during both writes since a burst is not pos-

2-332

sible. PLOCK# is asserted during the first write to
indicate that another write follows. This behavior is
shown in Figure 7.21.

The first cycle of a 64-bit floating point write is the
only case in which both PLOCK# and BLAST # are

- asserted. Normally PLOCK# and BLAST# are the

inverse of each other.

During all of the cycles where PLOCK # is asserted,
HOLD is not acknowledged until the cycle com-
pletes. This results in a large HOLD latency, espe-
cially when BS8+# or BS16# is asserted. To reduce
the HOLD latency during these cycles, windows are
available between transfers to allow HOLD to be ac-
knowledged during non-cacheable, non-bursted
code prefetches. PLOCK# will be asserted since
BLAST # is negated, but it is ignored and HOLD is
recognized during the prefetch.

PLOCK# can change several times during a cycle
seftling to its final value in the clock ready is re-
turned.

7.2.8 INVALIDATE CYCLES

Invalidate cycles are needed to keep the Intel486
Microprocessor’s internal cache contents consistent
with external memory. The Intel4B6 microprocessor
contains a mechanism for listening to writes by other
devices to external memory. When the processor
finds a write to a Section of external memory con-

PRELIMINARY l

INTEL CORP {UP/PRPHLS}

LYPE D

M 4826175 0L27491 959 ER ITLY

intel486™ DX MICROPROCESSOR

m

T2 1Al T2

1
]
A2;A3! .L !
M/104
0/cH L
BEO=34 '
W/R§ ! ’

PLOCK#

-

RDY#

(MAAUAACLLAACLEAUCERI | AXCAKERR /XX

BLAST#

T

DATA

\ L

WRIME

< FROM CPU >—-‘-—-—' FROM,CPU

wdl
T 240440-84

Figure 7.21. Pseudo Lock Timing

tained in its internal cache, the processor's internal
copy is invalidated.

Invalidations use two pins, address hold request
(AHOLD) and valid external address (EADS#).
There are two steps in an invalidation cycle. First,
the external system asserts the AHOLD input forcing
the Intel486 Microprocessor to immediately relin-
quish its address bus. Next, the external system as-
serts EADS# indicating that a valid address is on
the Intel486 Microprocessor’'s address bus. EADS #
and the invalidation address, Figure 7-22 shows the
fastest possible invalidation cycle. The Intel486 cy-
cle CPU recognizes AHOLD on one CLK edge and
floats the address bus in response. To allow the ad-
dress bus to float and avoid contention, EADS # and
the invalidation address should not be driven until
the following CLK edge. The microprocessor reads
the address over its address lines. If the microproc-
essor finds this address in its internal cache, the
cache entry is invalidated. Note that the Intel486 Mi-
croprocessor's address bus is input/output unlike
the 386 Microprocessor's bus, which is output only.

The Intel486 Microprocessor immediately relinquish-
es its address bus in the next clock upon assertion
of AHOLD. For example, the bus could be 3 wait
states into a read cycle. If AHOLD is activated, the
Intel486 Microprocessor will immediately float its

I PRELIMINARY

address bus before ready is returned terminating the
bus cycle.

When AHOLD is asserted only the address bus is
floated, the data bus can remain active. Data can be
returned for a previously specified bus cycle during
address hold (see Figures 7.22, 7.23).

EADS # is normally asserted when an external mas-
ter drives an address onto the bus. AHOLD need not
be driven for EADS # to generate an internal invali-
date. if EADS # alone is asserted while the intel486
Microprocessor is driving the address bus, it is pos-
sible that the invalidation address will come from the
Intel486 Microprocessor itself.

Note that it is also possible to run an invalidation
cycle by asserting EADS# when HOLD or BOFF #
is asserted.

Running an invalidate cycle prevents the Intel486
Microprocessor cache from satistying other internal
requests, so invalidations should be run only when
necessary. The fastest possible invalidate cycle is
shown in Figure 7.22, while a more realistic invalida-
tion cycle is shown in 7.23. Both of the examples
take one clock of cache access from the rest of the
Intel486 Microprocessor.

2-333

INTEL CORP (UP/PRPHLS) b7E D NN 432L175 0127492 895 MEITLL

]
Intel486™ DX MICROPROCESSOR 'nU o

(
m ., m , T ., W , nwn , w , 1 ., 7T
CLK : t ¥) ! b 1 :
! ! : ; ' : : :
ADSH ! \ : / ' : ! \ ! /[|
! ! | ! | : : ;
ADDR e]), : @ . D
! 1 1 1 1 : | :
|) 1 1 t] t
AHOLD ! , E E E \ | : : :
W
rovy AOXOECCCORCOOCRECCUEROORO, /XKUY /X
' i : : ! : ; :
§ 1 /_\ ' ' ['
i ? &) ! : @r !
i f 1} 1 | i ' '
L] H
BREQ ' ’ : : : : : \ . s .
I ' ' 240440-65
Figure 7.22. Fast Internal Cache Invalidation Cycle
n, m , ¥ ., w ., W , " n 12
CLK : 1 1 1 1 ! 1
! ‘ | : | ' :
o T\
t
_ ' ' ' : : ' \
ADoR)~ —E—
- ' ' |
1 ' 1 b t) N
AHOLD : [l : : \ : I
L
EADS : : v : ' 3
(] ' t 1 b N ! .]
i ¢ : v t I]
rovg ARXCOCOCROCENCACOGIO, /RO RO U O A A A LA AR
. ! : ! ! ! !
1 1] !]
. : @ : : | :
t | | 1 ' ! 1
¥ 1 1
o A VI S S A A
' 240440-66
Figure 7.23. Typicai Internal Cache Invalidation Cycle
2334 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

7.2.8.1 Rate of Invalidate Cycles

The Intel486 Microprocessor can accept one invali-
date per clock except in the last clock of a iine fill.
One invalidate per clock is possible as long as
EADS # is negated in ONE or BOTH of the following
cases:

1. In the clock RDY # or BRDY # is returned for
the last time.

2. In the clock following RDY # or BRDY # being
returned for the last time.

This definition allows two system designs. Simple
designs can restrict invalidates to one every other
clock. The simple design need not track bus activity.
Alternatively, systems can request one invalidate
per clock provided that the bus is monitored.

7.2.8.2 Running Invalidate Cycles Concurrently
with Line Fills

Precautions are necessary to avoid caching stale
data in the Intel486 Microprocessor's cache in a sys-
tem with a second level cache. An example of a
system with a second level cache is shown in Figure
7.24. An external device can be writing to main
memory over the system bus while the Intel486 Mi-
croprocessor is retrieving data from the second level
cache. The Intel486 Microprocessor will need to in-
validate a line in its internal cache if the external
device is writing to a main memory address also
contained in the Intel486 Microprocessor’s cache.

A potential problem exists if the external device is
writing to an address in external memory, and at the
same time the Intel4B6 Microprocessor is reading
data from the same address in the second level
cache. The system must force an invalidation cycle
to invalidate the data that the Intel486 Microproces-
sor has requested during the line fill.

I PRELIMINARY

L7E D BB 442bL175 0127493 72) ENITLY

Intel486™ DX MICROPROCESSOR

Intel486 ™

Microprocessor

@ Address, Data & Control Bus

Seocond
Level
Cache

U

System Bus

(3

External
Memory

U

Extarnal
Bus Master

240440-67

Figure 7.24. System with Second Level Cache

If the system asserts EADS # before the first data in
the line fill is returned to the Intel486 Microproces-
sor, the system must return data consistent with the
new data in the external memory upon resumption of
the line fill after the invalidation cycle. This is illus-
trated by the asserted EADS# signal labeled 1 in
Figure 7.25.

If the system asserts EADS# at the same time or
after the first data in the line fill is returned (in the
same clock that the first RDY# or BRDY # is re-
turned or any subsequent clock in the line fill) the
data will be read into the Intel486 Microprocessors
input buffers but it will not be stored in the on-chip
cache. This is illustrated by asserted EADS # signal
labeled 2 in Figure 7.25. The stale data will be used
to satisfy the request that initiated the cache fill cy-
cle.

2-335

INTEL CORP (UP/PRPHLS)

Intel4867 DX MICROPROCESSOR

b?E D EE 4821?75 0127494 bbd EEITLL

CLK Y

ADS§ ~ ’

'
'
1
1
i
ADDR . x
'
1
1
1

AHOLD ’

EADS#

N R et it b b

., T2, T2 -, T2 ', 17 , ™|
Ll t ' 1 1
1] 1 1
) ‘ ' ' '
¥ T T L
' 1 L} 1]
: : : : '
' 1 t N 1
t L}
0 ,——.———-——
>"+' +< c9u> : \ !
| '
]
1
1

PO -

i\
1 1 1 1
rovy ROCOCCECRECOCO00CCR00OO RO 000U+ Ao/ W00 Y07 \omm

srovs AXCKACARAARANGAKARRRARR + \RRER + VROGRXA 20600 /0 0o A0

PERVRUEC PRI P E

A
[
[
[
i
'
+
'
|

1 1
1

KENg

DATA

ARy

B Y B
R R

NOTES:

1. Data returned must be consistent if its address equals the invalidation address in this clock
2. Data returned will not be cached if its address equals the invalidation address in this clock

24044068

Figure 7.25. Cache Invalidation Cycle Concurrent with Line Fill

7.29 BUS HOLD

The Intel486 Microprocessor provides a bus hold,
hold acknowledge protocol using the bus hold re-
quest (HOLD) and bus hold acknowledge (HLDA)
pins. Asserting the HOLD input indicates that anoth-
er bus master desires control of the Intel486 Micro-
processor's bus. The processor will respond by
floating its bus and driving HLDA active when the
current bus cycls, or sequence of locked cycles is
complete. An example of a HOLD/HLDA transaction
is shown in Figure 7.26a. Unlike the 386 Microproc-
essor, the Intel486 Microprocessor can respond to
HOLD by floating its bus and asserting HLDA while
RESET is asserted.

Note that HOLD will be recognized during un-aligned
writes {less than or equal to 32-bits) with BLAST #
being active for each write. For greater than 32-bit or
un-aligned write, HOLD# recognition is prevented
by PLOCK# getting asserted.

2-336

For cacheable and nonbursted or bursted cycles,
HOLD is acknowledged during backoff only if HOLD
and BOFF # are asserted during an active bus cycle
(after ADS # asserted) and before the first RDY # or
BRDY # has besn returned (see Figure 7.26b). The
order in which HOLD and BOFF # go active is unim-
portant (so long as both are active prior to the first
RDY #/BRDY# returned by the system). Figure
7.26b shows the case where HOLD is asserted first;
HOLD could be asserted simultaneously or after
BOFF# and still be acknowledged.

The pins floated during bus hold are: BEO# -BE3 #,
PCD, PWT, W/R#, D/C#, M/IC#, LOCK#,
PLOCK#, ADS#, BLAST#, DO-D31, A2-A31,
DPO-DP3.

7.2.10 INTERRUPT ACKNOWLEDGE

The Intel486 Microprocessor generates interrupt ac-
knowledge cycles in response to maskable interrupt
requests generated on the interrupt request input
(INTR) pin. Interrupt acknowledge cycles have a
unique cycle type generated on the cycle type pins.

PRELIMINARY I

INTEL CORP (UP/PRPHLSY) G?E D EE 482L175 0127495 5Ty EEITLL

. .
Inu R Intel486™ DX MICROPROCESSOR

CLK

ADS#

A2=-A31
M/104
D/Ch

1
>]
W/R§ x : - ' i
BEO-3# 1) 1 ']

rove ROEKOROCCCERXELOIX AL XX R XA XX AXK | [ARG AT

L

] I

1 L] i

' 1
DATA . FROM CPU Yt -

' | 1—_..__f] 1

: ' : ' : !

[! T !
How ey N S

L 1 | ¥

1 1]

' ! 1 ! ' t

'] t | :
HLDA ! | ; A , \

T \ T ' ! '

240440-89

Figure 7.26a. HOLD/HLDA Cycles

A e ¢ L L 1 1 L i | ' [
ADS# | |\ |, ') 1 1 1 ¢ e
M/lo# / =
D/C# \ -

] 1 L T LI L LA L] T 1 i i
W/Rﬂ_—_—P-\ [' 1 P ' ' |’ [t [
KEN#

BRDY#
' ' ' | ') ' [' 1 ' t
. F L A L . L L .
RDY#
HOLD A
HLDA) ' 1 (| [§ 1 |J|]]

v ' | t ' ' v 1 v [' '

T T T T T T
{ i I | i
240440-BS

Figure 7.26b. HOLD Request Acknowledged during BOFF #

l PRELIMINARY 2.337

INTEL CORP (UP/PRPHLS)

Intel486™™ DX MICROPROCESSOR

An example interrupt acknowledge transaction is
shown in Figure 7.27. Interrupt acknowledge cycles
are generated in locked pairs. Data returned during
the first cycle is ignored. The interrupt vector is re-
turned during the second cycle on the lower 8 bits of
the data bus. The Intel486 Microprocessor has 256
possible interrupt vectors.

B7E D EH 4826175 012749k 430 MEITLL

-

intgl.
The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycls is
4 (A31-AJ low, A2 high, BE3#-BE1+# high, and
BEO# low). The address driven during the second

interrupt acknowledge cycle is 0 (A31-A2 low,
BE3#-BE1# high, BEO# low). :

| | i
: ! :
ADS# | \

ADDR !

nm—

rove RCCAMCRANKALOLOUOECETT U)ONNN

[
)
DATA T
1
)

LOCK#) \

R

-

A
AMUUALL AN ALULUU)MNN

¥
t
T
1
|
|
1

B o

B el

Figure 7.27. Interrupt Acknowledge Cycles

2-338

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

L]

intal.

Each of the interrupt acknowledge cycles are termi-
nated when the external system returns RDY # or
BRDY #. Wait states can be added by withholding
RDY # or BRDY #. The Intel486 Microprocessor au-
tomatically generates four idle clocks between the

first and second cycles to allow for 8259A recovery
time.

7.2.11 SPECIAL BUS CYCLES

The Intel486 Microprocessor provides four special
bus cycles to indicate that certain instructions have
been executed, or certain conditions have occurred
internally. The special bus cycles in Table 7.9 are
defined when the bus cycle definition pins are in
the following state: M/IO#=0, D/C#=0 and
W/R# =1. During these cycles the address bus is
driven low while the data bus is undefined.

Two of the special cycles indicate halt or shutdown.
Another special cycle is generated when the In-
tel486 Microprocessor executes an INVD (invalidate
data cache) instruction and could be used to flush
an external cache. The Write Back cycle is generat-
ed when the Inteld86 Microprocessor executes the
WBINVD (write-back invalidate data cache) instruc-
tion and could be used to synchronize an external
write-back cache.

L?E D WM u482L17?5 0127497 377 EMITLL

Iintel486™ DX MICROPROCESSOR

The external hardware must acknowledge these
special bus cycles by returning RDY # or BRDY #.

Table 7.9. Special Bus Cycle Encoding

Special
#
BE3# | BE2 BE1# | BEO# Bus Cycle
1 1 1 0 Shutdown
1 1 V] 1 Flush
1 0 1 1 Halt
0 1 1 1 Write Back

7.2.11.1 Hait Indication Cycle

The Intel486 Microprocessor halts as a result of exe-
cuting a HALT instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed.
The halt indication cycle is identified by the bus defi- §
nition signals in special bus cycle state and a byte
address of 2. BEO# and BE2+# are the only signals
distinguishing halt indication from shutdown indica-
tion, which drives an address of 0. During the halt
cycle undefined data is driven on DO-D31. The halt
indication cycle must be acknowledged by RDY # or
BROY # asserted.

M/I0#
o/C#

1
]
¥
A2=A31 L
1
1
BEO=3#]

\
'

x v 100
)
T
'

!]

1
ADSH —__._/_'_____"L_/
1

rove SO e oy \mol A0 \mol

| ' 1 ' ' ' 1 '
CETI PRI LI R LI RGO ER IO PR L)NN\)NN\)NH\

' '
[} |
T T
1 1
[1
1]
1 1
1]
] 1
T T

XI 04 koa E

+
[}
r
1
1
[l '
. '
] t
1]
T

¢
t
1
[l
1

)
] 1 ' 1) 1]
T 1] 1
KEN# ' \ : / ') ! \ . / , ' \ ; / :
! . : : : ! : : ! :
BOFF# i l \ : : / i : : ‘ , .
! i ! ! : : : i : |
T T r ' ' . : : : !
BLASTH B BN (R A : D\
v] [} |] |) | I
i ' ' 1 ' ' 1 ' ' |
] ' + 1 ' '
o ——
' ' ' ‘ ' ' ' " 2a0a40-71
Figure 7.28. Restarted Read Cycle
2-339

I PRELIMINARY

INTEL CORP (UP/PRPHLS)

intel486™ DX MICROPROCESSOR

B?E D EH 4ad2bl7?5 0L2?u498 203 EEITLL

CLK [/

ADS§

ADDR

|
1
" t
3
1
SPEC !
I

x ¢ 100
i \

v g

1 t

RDY#

1 i :r
H : 100
! [
AR O X OO X)

srovs RO IOAREXXOLERCOMTOOCENXCCATECCO OGO OO O, /X

I
[
|
L.
|
i
i

X

1 |
T ™
BOFF# ' :
! 1 |
[}]]
] 1 '_t——‘
DATA + L FROM CPU
l | _—F_'[

FROM CPU

) Ny

240440-72

Figure 7.29. Restarted Write Cycle

A halted Intel486 Microprocessor resumes execu-
tion when INTR (if interrupts are enabled) or NMi or
RESET is asserted.

7.2.11.2 Shutdown indication Cycle

The Intel486 Microprocessor shuts down as a result
of a protection fault while attempting to process a
double fault. Signaling its entrance into the shut-
down state, a shutdown indication cycle is per-
formed. The shutdown indication cycle is identified
by the bus definition signals in special bus cycle
state and a byte address of 0.

7.2.12 BUS CYCLE RESTART

In a multi-master system another bus master may
require the use of the bus to enable the Intel486
Microprocessor to complete its current bus request.
In this situation the Inteld486 Microprocessor will
need to restart its bus cycle after the other bus mas-
ter has completed its bus transaction.

A bus cycle may be restarted if the external system
asserts the backoff (BOFF #) input. The Intel486 Mi-
croprocessor samples the BOFF # pin every clock.
The iIntel486 Microprocessor will immediately (in the
next clock) float its address, data and status pins
when BOFF # is asserted (see Figure 7.28). Any bus
cycle in progress when BOFF # is asserted is abort-

2-340

ed and any data returned to the processor is ig-
nored. The same pins are floated in response to
BOFF # as are fioated in response to HOLD. HLDA
is not generated in response to BOFF #. BOFF#
has higher priority than RDY # or BRDY #. If either
RDY # or BRDY # are returned in the same clock as
BOFF #, BOFF # takes effect.

The device asserting BOFF # is free to run any cy-
cles it wants while the Intel486 Microprocessor bus
is in its high impedance state. If backoff is requested
after the Intel486 Microprocessor has started a cy-
cle, the new master should wait for memory to return
RDY+# or BRDY# before assuming control of the
bus. Waiting for ready provides a handshake to in-
sure that the memory system is ready to accept a
new cycle. If the bus is idle when BOFF # is assert-
ed, the new master can start its cycle two clocks
after issuing BOFF #. :

The external memory can view BOFF # in the same
manner as BLAST #. Asserting BOFF # tells the ex-
ternal memory system that the current cycle is the
last cycle in a transfer.

The bus remains in the high impedance state until
BOFF # is negated. Upon negation, the Intel486 Mi-
croprocessor restarts its bus cycle by driving out the
address and status and asserting ADS#. The bus
cycle then continues as usual.

PRELIMINARY |

INTEL CORP (UP/PRPHLS)

intal.

Asserting BOFF # during a burst, BS8# or BS16#
cycle will force the Inteld86 Microprocessor to ig-
nore data returned for that cycle only. Data from pre-
vious cycles will still be valid. For example, if
BOFF # is asserted on the third BROY # of a burst,
the Intel486 Microprocessor assumes the data re-
turned with the first and second BRDY #’s is correct
and restarts the burst beginning with the third item.
The same rule applies to transfers broken into multi-
ple cycle by BS8# or BS16#,

Asserting BOFF # in the same clock as ADS# will
cause the Intel486 Microprocessor to float its bus in
the next clock and leave ADS# floating low. Since
ADS # is floating low, a peripheral may think that a
new bus cycle has begun even-though the cycle was

L?E D EN 4826175 0127499 14T EEITLL

Intel486™ DX MICROPROCESSOR

aborted. There are two possible solutions to this
problem. The first is to have all devices recognize
this condition and ignore ADS# until ready comes
back. The second approach is to use a “two clock”
backoff; in the first clock AHOLD is asserted, and in
the second clock BOFF # is asserted. This guaran-
taes that ADS # will not be floating low. This is only
necessary in systems where BOFF # may be assert-
ed in the same clock as ADS#.

7.2.13 BUS STATES

A bus state diagram is shown in Figure 7.30. A de-
scription of the signals used in the diagram is given
in Table 7.10.

(ROY# ASSERTED + {(BROY# « BLAST#)JASSERTED)

(HOLD + AHOLD + NO REQUEST) o
BOFF# NEGATED

REQUEST PENDING ¢
(RDY® ASSERTED + (BROY# o BLAST#)ASSERTED) »
HOLD NEGATED
AHOLD NEGATED »
BOFF#® NEGATED *

T
Yiwrv GATED/
BOFF# <*

& BOFF#
NEGATED

REQUEST PENDING »
HOLD NEGATED
AHOLD NEGATED =
BOFF# NEGATED

NE
&
ASSERTED Ff,af&

BOFF# ASSERTED

AHOLD NEGATED »
BOFF# NEGATED o
(HOLD NEGATED*)

* HOLD is only factored Into this state transition if T, was entered while a
nen—cacheable, non-bursted, code prefetch was in progress.

Gtherwise, ignors HOLD.
240440-73

Figure 7.30. Bus State Diagram

Table 7.10. Bus State Description

State Means

Ti Bus is idle. Addrass and status signals may be driven to undefined values, or
the bus may be floated to a high impedance state.

T1 First clock cycle of a bus cycle. Valid address and status are driven and
ADS # is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the
cycle is a write, or data is expected if the cycle is a read. RDY # and BRDY #
are sampled.

Tib First clock cycle of a restarted bus cycle. Valid address and status are driven
and ADS # is asserted.

T Second and subsequent clock cycles of an aborted bus cycle.

I PRELIMINARY 2341

INTEL CORP (UP/PRPHLS)

Intel486™™ DX MICROPROCESSOR

7.2.14 FLOATING POINT ERROR HANDLING

The Intel486 Microprocessor provides two options
for reporting floating point errors. The simplest
method is to raise interrupt 16 whenever an un-
masked floating point error occurs. This option may
be enabled by setting the NE bit in control register 0
(CRO). -

The Intel486 Microprocessor also provides the op-
tion of allowing external hardware to determine how
floating point errors are reported. This option is nec-
essary for compatibility with the error reporting
scheme used in DOS based systems. The NE bit
must be cleared in CRO to enable user-defined error
reporting. User-defined error reporting is the default
condition because the NE bit is cleared on reset.

Two pins, floating point error (FERR#) and ignore
numeric error (IGNNE #), are provided to direct the
actions of hardware if user-defined arror reporting is
used. The Intel486 Microprocessor asserts the
FERR# output to indicate that a floating point error
has occurred. FERR # corresponds to the ERROR #
pin on the 387 math coprocessor. However, there is
a difference in the behavior of the two.

In some cases FERR# is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR # at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSEALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive
FERR+# only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., alt other in-
structions).

For both sets of exceptions above, the 387 Math
Coprocessor asserts ERROR+# when the error oc-
curs and does not wait for the next floating point
instruction to be encountered.

IGNNE # is an input to the Intel486 Microprocessor.

2-342

G7E D WM 4826175 0127500 791 MEITLL

L]

intal.
When the NE bit in CRO is cleared, and IGNNE # is
asserted, the Intel486 Microprocessor will ignore a
user floating point error and continue executing
floating point instructions. When IGNNE # is negat-
ed, the Intel486 Microprocessor will freeze on float-
ing point instructions which get errors (except for the
control instructions FNCLEX, FNINIT, FNSAVE,
FNSTENV, FNSTCW, FNSTSW, FNSTSW AX, FNE-
NI, FNDISI and FNSETPM). IGNNE # may be asyn-
chronous to the Intel486 clock.

In systems with user-defined error reporting, the
FERR# pin is connected to the interrupt controller.
When an unmasked floating point error occurs, an
interrupt is raised. if IGNNE # is high at the time of
this interrupt, the Intel486 Microprocessor will freeze
(disallowing execution of a subsequent floating point
instruction) until the interrupt handler is invoked. By
driving the IGNNE # pin low {(when clearing the inter-
rupt request), the interrupt handler can allow exscu-
tion of a floating point instruction, within the interrupt
handler, before the error condition is cleared (by
FNCLEX, FNINIT, FNSAVE or FNSTENV). If execu-
tion of a non-contro! floating point instruction, within
the floating point interrupt handler, is not needed,
the IGNNE # pin can be tied HIGH.

7.2.15 FLOATING POINT ERROR HANDLING IN
AT COMPATIBLE SYSTEMS

The Intel486 DX Microprocessor provides special
features to allow the implementation of an AT com-
patible numerics error reporting scheme. These fea-
tures DO NOT replace the external circuit. Logic is
still required that decodes the OUT FO instruction
and latches the FERR# signal. What follows is a
description of the use of these Intel486 DX Micro-
processor features.

The features provided by the Intel486 DX Microproc-
essor are the NE bit in the Machine Status Register,
the IGNNE # pin, and the FERR # pin.

The NE bit determines the action taken by the In-
1el486 DX Microprocessor when a numerics error is
detected. When set this bit signals that non-DOS
compatible error handling will be implemented. In
this mode the Intel486 DX Microprocessor takes a
software exception (16) if a numerics error is detect-
ed.

If the NE bit is reset the Intel486 DX Microprocessor
uses the IGNNE # pin to allow an external circuit to
control the time at which non-control numerics in-
structions are allowed to execute. Note that floating
point control instructions such as FNINIT and
FNSAVE can be executed during a floating point er-
ror condition regardless of the state of IGNNE #.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

"

intgl.

To process a floating point error in the DOS environ-
ment the following sequence must take place:

1. The error is detected by the Intel4d86 DX Micro-
processor which activates the FERR # pin.

FERR # is latched so that it can be cleared by the
OUT FO instruction.

. The latched FERR # signal activates an interrupt
at the interrupt controller. This interrupt is usually
handied on IRQ13.

. The Interrupt Service Routine (ISR) handles the
error and then clears the interrupt by executing an
OUT instruction to port FO. The address FO is de-
coded externally to clear the FERR# latch. The
IGNNE # signal is also activated by the decoder
output.

. Usually the ISR then executes an FNINIT instruc-
tion or other control instruction before restarting
the program. FNINIT clears the FERR # output.

2.

Intel486™ DX MICROPROCESSOR

Figure 7.31 illustrates the circuit required to perform
this function. Note that this circuit has not been test-
ed. Itis included as an example of the required error
handling logic.

Note that the IGNNE# input allows non-control in-
structions to be executed prior to the time the
FERR# signal is reset by the Intel486 DX Micro-
processor. This function is implemented to allow ex-
act compatibility with the AT implementation. Most
programs reinitialize the floating point unit before
continuing after an error is detected. The floating
point unit can be reinitialized using one of the follow-
ing four instructions: FCLEX, FINIT, FSAVE,
FSTENV.

RESET

1/0 PORT FO
Address decoder

y

Processor Bus

4

CLR

Q
q Oq FERR®
Q
PR
T
g sv intel486™ DX
CLR J Microprocessor
Q D
o1
Q
— PR
—> 82594 T sv
N Programmable
interrupt IGNNE#
IRQ13 Controller
INTR
240440-95
Figure 7.31. DOS Compatible Numerics Error Circuit
2-343

I PRELIMINARY

L7E D HE 4826175 0127501 b2d WMRITL]Y

INTEL CORP {UP/PRPHLS}

Intel486™ DX MICROPROCESSOR

8.0 Intei486 CPU TESTABILITY

Testing the Inteld86 Microprocessor can be divided
into three categories: Built-In Self Test (BIST),
Boundary Scan, and external testing. BIST performs
basic device testing on the Inteld86 CPU, including
the non-random logic, control ROM (CROM), trans-
lation lookaside buffer (TLB), and on-chip cache
memory. Boundary Scan provides additional test
hooks that conform to the IEEE Standard Test Ac-
cess Port and Boundary Scan Architecture (IEEE
Std.1149.1). The Intel486 Microprocessor also has a
test mode in which all of its outputs are tristated.
Additional testing can be performed by using the test
registers within the intel486 CPU.

8.1 Built-In Self Test (BIST)

The BIST is initiated by asserting AHOLD (address
hold) on the falling edge of RESET. AHOLD is a
synchronous signal only. It should be asserted in the
clock prior to RESET going from High to Low to start
BIST. FLUSH# must also be asserted (driven low)
prior to the falling edge of RESET to start BIST.
FLUSH# must be deasserted (driven high) during
BIST. A20M # must be deasserted (driven high) dur-
ing the falling edge of RESET to start BIST. The
BIST takes approximately 2**20 clocks, or approxi-
mately 42 milliseconds with a 25 MHz Intel486 mi-
croprocessor. No bus cycles will be run by the In-
teld86 Microprocessor until the BIST is concluded.
Note that for the Intel486 Microprocessor the RE-
SET must be active for 15 clocks with or without
BIST being enabled for warm resets.

The results of BIST is stored in the EAX register.
The Intei486 Microprocessor has successfully-
passed the BIST if the contents of the EAX register
are zero. If the results in EAX are not zero then the
BIST has detected a flaw in the microprocessor. The

L?E D

]

intgl.
microprocessor performs reset and begins normal
operation at the completion of the BIST.

The non-random logic, control ROM, on-chip cache
and translation lookaside buffer (TLB) are tested
during the BIST.

The cache portion of the BIST verifies that the
cache is functional and that it is possible to read and
write to the cache. The BIST manipulates test regis-
ters TR3, TR4 and TRS5 while testing the cache.
These test registers are described in Section 8.2.

The cache testing algorithm writes a value to each
cache entry, reads the value back, and checks that
the correct value was read back. The algorithm may
be repeated more than once for each of the 512
cache entries using different constants.

The TLB portion of the BIST verifies that the TLB is
functional and that it is possible to read and write to
the TLB. The BIST manipulates test registers TR6
and TR7 while testing the TLB. TR6 and TR7 are
described in Section 8.3,

8.2 On-Chip Cache Testing

The on-chip cache testability hooks are designed to
be accessible during the BIST and for assembly lan-
guage testing of the cache.

The Intel486 Microprocessor contains a cache fill
buffer and a cache read butfer. For testability writes,
data must be written to the cache fill buffer before it
can be written to a location in the cache. Data must
be read from a cache location into the cache read
buffer before the microprocessor can access the
data. The cache fill and cache read buffer are both
128 bits wide.

a1 []
TR3
DATA Cache Data
Test Register
3t 11 10 9 8 7 6 5 4 3 2 1 0
LRU Bits Valid Bits TR4
Tag Valid| (used anly (used only Cache Status
during reads)| during reads) Test Register
31 1 10 4 3 2 1 0
TRS
Set Select Entry | Control [Cache Controi
Select Tast Register
= unused
Figure 8.1. Cache Test Registers
2.344

PRELIMINARY I

B 44526175 0127502 5Ly WMR ITLL

INTEL CORP (UP/PRPHLS)

intgl.

8.2.1 CACHE TESTING REGISTERS TR3, TR4
AND TRS

Figure 8.1 shows tha three cache testing registers:
the Cache Data Test Register (TR3), the Cache
Status Test Register (TR4) and the Cache Control
Test Register (TR5). External access to these regis-
ters is provided through MOV reg, TREG and MOV
TREG, reg instructions.

Cache Data Teét Register: TR3

The cache fill buffer and the cache read buffer can
only be accessed through TR3. Data to be written to
the cache fill buffer must first be written to TR3. Data
read from the cache read buffer must be loaded into
TR3.

TR3 is 32 bits wide while the cache fill and read
buffers are 128 bits wide. 32 bits of data must be
written to TR3 four times to fill the cache fill buftfer.
32 bits of data must be read from TR3 four times to
empty the cache read buffer. The entry select bits in
TRS5 determine which 32 bits of data TR3 will access
in the buffers.

Cache Status Test Register: TR4

TR4 handles tag, LRU and valid bit information dur-
ing cache tests. TR4 must be loaded with a tag and
a valid bit before a write to the cache. After a read
from a cache entry, TR4 contains the tag and valid
bit from that entry, and the LRU bits and four valid
bits from the accessed set.

Cache Control Test Register: TR5
TRS specifies which testability operation will be per-

formed and the set and entry within the set which
will be accessed.

Intel486™ DX MICROPROCESSOR

The seven bit set select field determines which of
the 128 sets will be accessed.

The functionality of the two entry select bits depend
on the state of the control bits. When the fill or read
buffers are being accessed, the entry select bits
point to the 32-bit location in the buffer being ac-
cessed. When a cache location is specified, the en-
try select bits point to one of the four entries in a set.
Refer to Table 8.1.

Five testability functions can be performed on the
cache. The two control bits in TRS specify the oper-
ation to be executed. The five operations are:

1. Write cache fill buffer

2. Perform a cache testability write
3. Perform a cache testability read
4. Read the cache read buffer

5. Perform a cache flush

Table 8.1 shows the encoding of the two control bits
in TR5 for the cache testability functions. Table 8.1
also shows the functionality of the entry and set se-
lect bits for each control operation.

The cache tests attempt to use as much of the nor-
mal operating circuitry as possible. Therefore when
cache tests are being performed, the cache must be
disabled (the CD and NW bits in control register
must be set to 1 to disable the cache. See Section
5).

8.2.2 CACHE TESTABILITY WRITE

A testability write to the cache is a two step process.
First the cache fill buffer must be loaded with 128
bits of data and TR4 loaded with the tag and valid
bit. Next the contents of the fill buffer are written to a
cache location. Sample assembly code to do a write
is given in Figure 8.2.

Table 8.1. Cache Control Bit Encoding and Effect of
Control Bits on Entry Select and Set Select Functionality

Control Bits Operation Entrl-! Sel::ct Bits Set Select Bits
Bit1 | Bito unction
0 0 Enable { Fill Buffer Write Select 32-bit location in fill/read _
a Read Buffer Read | buffer
0 1 Perform Cache Write Select an entry in set. Select a set to write to
0 Perform Cache Read Select an entry in set. Select a set to read from
1 1 Perform Flush Cache —_ —_

I PRELIMINARY

2-345

B7E) EE 482bL17?5 0127503 4TO EEITL]

INTEL CORP (UP/PRPHLS) L7E D WH 482L175 012?504 337 MEITLL

n
Intel486™ DX MICROPROCESSOR Int9| o

Sample Assembly Code

An example assembly language sequence to perform a cache write is:
s eax. ebx. ecx. edx contain the cache line to write
: edi contains the tag information to load
; CRO already says to enable reads/write to TRS
H

£ill the cache buffer

mov esi,0 ; set up command

mov tr5,esi ; load to TRS ;
mov tr3,eax s load data into cache rill buffer
mov es5i,4

mov tr5,esi
mov tr3,ebx
mov e5i,8

mov tr5,esi
mov tr3,ecx
mov esi,Och
mov trd,esi
mov tr3,edx

load the Cache Status Register

wo we weo

mov tr4,edi s load 21-bit tag and valid bit

perform the cache write

ws wo we

mov esi,l
mov tr5,esi ; write the cache (set 0, entry 0)

An example assembly language sequence to perform a cache read is:

data into eax, ebx, ecx, edx; status into edi

read the cache line back

- wn we we

mov es8i,2
mov tr5,esi ; do cache testability read (set 0, entry 0)

read the data from the read buffer

mov esi,0

mov tr5,esi
mov eax,tird
mov esi,4

mov tr5,esi
mov ebx,trd
mov es51,8

mov tr5,esi
mov ecx,trd
mov es1,0ch
mov tr5,esi
mov edx,tr3

read the status from TR4

e we o»

mov edi,tr4

Figure 8.2 Sample Assembly Code for Cache Testing

2.346 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

L]

intgl.

Loading the fill buffer is accomplished by first writing
to the entry select bits in TR5 and setting the control
bits in TR5 to 00. The entry select bits identify one of
four 32-bit locations in the cache fill buffer to put 32
bits of data. Following the write to TRS, TR3 is writ-
ten with 32 bits of data which are immediately
placed in the cache fill buffer. Writing to TR3 initiates
the write to the cache fill buffer. The cache fill buffer
is loaded with 128 bits of data by writing to TR5 and
TR3 four times using a different entry select location
each time.

TR4 must be loaded with the 21-bit tag and valid bit
{bit 10 in TR4) before the contents of the fill buffer
are written to a cache location.

The contents of the cache fill buffer are written to a
cache location by writing TR5 with a control field of
01 along with the set select and entry select fields.
The set select and entry select field indicate the lo-
cation in the cache to be written. The normal cache
LRU update circuitry updates the internal LRU bits
for the selected set.

Note that a cache testability write can only be done
when the cache is disabled for replaces (the CD bit

is control register 0 is reset to 1). Also note that care

must be taken when directly writing to entries in the
cache. If the entry is set to overlap an area of mem-
ory that is being used in external memory, that
cache entry could inadvertently be used instead of
the external memory. Of coursse, this is exactly the
type of operation that one would desire if the cache
were to be used as a high speed RAM.

8.2.3 CACHE TESTABILITY READ

A cache testability read is a two step process. First
the contents of the cache location are read into the
cache read buffer. Next the data is examined by
reading it out of the read buffer. Sample assembly
code to do a testability read is given in Figure 8.2.

Reading the contents of a cache location into the
cache read buffer is initiated by writing TR5 with the
control bits set to 10 and the desired seven-bit set
select and two-bit entry select. In response to the
write to TRS5, TR4 is loaded with the 21-bit tag field
and the single valid bit from the cache entry read.
TR4 is also foaded with the three LRU bits and four
valid bits corresponding to the cache set that was
accessed. The cache read buffer is filled with the
128-bit value which was found in the data array at
the specified location.

The contents of the read butfer are examined by
performing four reads of TR3. Before reading TR3
the entry select bits in TRS must loaded to indicate
which of the four 32-bit words in the read buffer to

I PRELIMINARY

L?E D WM 43d2L1L?5 0127505 273 MMITLL

Intel486™ DX MICROPROCESSOR

transfer into TR3 and the control bits in TR5 must be
loaded with 00. The register read of TR3 will initiate
the transfer of the 32-bit value from the read buffer
to the specified general purpose register.

Note that it is very important that the entire 128-bit
quantity from the read buffer and also the informa-
tion from TR4 be read before any memory refer-
ences are allowed to occur. if memory operations
are allowed to happen, the contents of the read buff-
er will be corrupted. This is because the testability
operations use hardware that is used in normal
memory accesses for the Intel4d86 microprocessor
whether the cache is enabled or not.

8.2.4 FLUSH CACHE

Thé control bits in TR5 must be written with 11 to §
flush the cache. None of the other bits in TR5 have
any meaning when 11 is written to the control bits.
Flushing the cache will reset the LRU bits and the
valid bits to 0, but will not change the cache tag or
data arrays.

When the cache is flushed by writing to TR5 the
special bus cycle indicating a cache flush to the ex-
ternal system is not run (see Section 7.2.11, Special
Bus Cycles). The cache should be flushed with the
instruction INVD (Invalidate Data Cache) instruction
or the WBINVD (Write-back and Invalidate Data
Cache) instruction.

8.3 Translation Lookaside Buffer
(TLB) Testing

The Intel486 Microprocessor TLB testability hooks
are similar to those in the 386 Microprocessor. The
testability hooks have been enhanced to provide
added test features and to include new features in
the Inteld86 Microprocessor. The TLB testability
hooks are designed to be accessible during the
BIST and for assembly language testing of the TLB.

8.3.1 TRANSLATION LOOKASIDE BUFFER
ORGANIZATION

The Intel486 Microprocessors TLB is 4-way set as-
sociative and has space for 32 entries. The TLB is
logically spiit into three blocks shown in Figure 8.3.

The data block is physically split into four arrays,
each with space for eight entries. An entry in the
data block is 22 bits wide containing a 20-bit physi-
cal address and two bits for the page attributes. The
page attributes are the PCD (page cache disable) bit
and the PWT (page write-through) bit. Refer to Sec-
tion 4.5.4 for a discussion of the PCD and PWT bits.

2-347

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

LPE D BB u482L1l?5 0127506 10T EMITLY

intgl.

Toag Page
17 Bits Protection
8 Togs Bits
4 Bits

Physicol Page
Address Attributes
20 Bits 2 Bits 8 Entries

LRY
Bits

-

8
Entries

Figure 8.3. TLB Organization

The tag block is also split into four arrays, one for
each of the data arrays. A tag entry is 21 bits wide
containing a 17-bit linear address and four protec-
tion bits. The protection bits are valid (V), user/su-
pervisor (U/S), read/write (R/W) and dirty (D).

The third block contains eight three bit quantities
used in the pseudo least recently used (LRU) re-
placement algorithm. These bits are called the LRU
bits. The LRU replacement algorithm used in the

TLB is the same as used by the on-chip cache. For a
description of this algorithm refer to Section 5.5.

8.3.2 TLB TEST REGISTERS TR6 AND TR7

The two TLB test registers are shown in Figure 8.4.
TR6 is the command test register and TR7 is the
data test register. External access to these registers
is provided through MOV reg,TREG and MOV
TREG reg instructions.

a1 1211 10 9 8 7 6 5 4
TRE
Linear Address V| D [DHUUHWWEL - - TLB Command
- Test Register
31 1211 10 9 8 7
ATR?
Physical Address PCOlPWTlL2|L1} LO T “{7L8 Data
LRU Bits :{Test Register
Tt 1
Replacement Pointer Select (Writes) ~ Replacement Pointer (Writes)
A4 = unused Hit Indication (Lookup) Hit Location (Lookup)
Figure 8.4. TLB Test Registers
2-348

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?E D EE 4826175 0127507 O4b EEITLD

L]
an » Intel486™ DX MICROPROCESSOR

Command Test Register: TR6 test write, TR7 contains the physical address and
- the page attribute bits to be stored in the entry. After

TR6 contains the tag information and control infor- a TLB test lookup hit, TR7 contains the physical ad-
mation used in a TLB test. Loading TR6 with tag and dress, page attributes, LRU bits and entry location
control information initiates a TLB write or lookup from the access.
test.

TR7 contains a 20-bit physical address (bits 12-31),
TR8 contains thres bit fields, a 20-bit linear address two bits for PCD (bit 11) and PWT (bit 10) and three
(bits 12-31), seven bits for the TLB tag protection bits for the LRU bits (bits 7-9). The LRU bits in TR7
bits (bits 5-11) and one bit (bit 0) to define the type are only used during a TLB lookup test. The func-
of operation to be performed on the TLB. tionality of TR7 bit 4 differs for TLB writes and look-

ups. The encoding of bit 4 is defined in Tables 8.4
The 20-bit linear address forms the tag information and 8.5. Finally TR7 contains two bits (bits 2-3) to
used in the TLB access. The lower three bits of the specify a TLB replacement pointer or the location of

linear address select which of the eight sets are ac- a TLB hit.
cessed. The upper 17 bits of the linear address form
the tag stored in the tag array. Table 8.4. Encoding of Bit 4 of TR7 on Writes

’ - . TR7 Replacement Polinter
The seven TLB tag protection bits are described be-
low. 9P Bit4 Used on TLB Write
v: The valid bit for this TLB entry 0 Pseudo-LRU Replacement Pointer
D,D#: The dirty bit for/from the TLB entry 1 Data Test Register Bits 3:2
U,U#: The user/supervisor bit for/from the TLB

entry Table 8.5. Encoding of Bit 4 of TR7 on Lookups
W,W#: The read/write bit for/from the TLB entry TR7 Meaning after TLB

) Bit 4 Lookup Operation

Two bits are used to represent the D, U/S and R/W N -
bits in the TLB tag to permit the option of a forced 0 TLB Lookup Resulted in a Miss
miss or hit during a TLB lookup operation. The 1 TLB Lookup Resulted in a Hit

forced miss or hit will occur regardless of the state

of the actual bit in the TLB. The meaning of these A replacement pointer is used during a TLB write.

pairs of bits is given in Table 8.2. The pointer indicates which of the four entries in an
accessed set is to be written. The replacement

The operation bit in TR6 determines if the TLB test pointer can be specified to be the internal LRU bits

aperation will be a write or a lookup. The functionof or bits 2-3 in TR7. The source of the replacement

the operation bit is given in Table 8.3. pointer is specified by TR7 bit 4. The encoding of bit

4 during a write is given by Table 8.4.
Table 8.3. TR6 Operation Bit Encoding

Note that both tastability writes and lookups affect

;IF:?) t:LBBelo’Z:f':::: :d the state of the internal LRU bits regardiess of the
replacement pointer used. All TLB write operations

0 TLB Write) (testability or normail operation) cause the written
1 TLB Lookup entry to become the most recently used. For exam-

ple, during a testability write with the replacement
pointer specified by TR7 bits 2-3, the indicated en-
try is written and that entry becomes the most re-
cently used as specified by the internal LRU bits.

Data Test Reglster: TR?7

TR7 contains the information stored or read from the
data block during a TLB test operation. Before a TLB

Table 8.2. Meaning of a Pair of TR6 Protection Bits

TR6 Protection Bit TR6 Protection Bit# Meaning on Meaning on
(B) (B#) TLB Write Operation TLB Lookup Operation
0] Undefined ‘Miss any TLB TAG Bit B
0 1 Write 0 to TLB TAG BitB Match TLB TAG BitBif 0
1 0 Write 1 to TLB TAG BitB Match TLB TAG Bit B if 1
1 1 Undefined Match any TLB TAG Bit 8

I PRELIMINARY 2.349

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

There are two TLB testing operations: write entries
into the TLB, and perform TLB lookups. One major
enhancement over TLB testing in the 386 Micro-
processor is that paging need not be disabled while
executing testability writes or lookups.

Note that any time one TLB set contains the same
linear address in more than one of its entries, look-
ing up that linear address will give unpredictabie re-
sults. Therefore a single linear address should not
be written to one TLB set more than once.

8.3.3 TLB WRITE TEST

To perform a TLB write TR7 must be loaded fol-
lowed by a TR6 load. The register operations must
be performed in this order since the TLB operation is
triggered by the write to TR6.

TR7 is loaded with a 20-bit physical address and
values for PCD and PWT to be written to the data
portion of the TLB. In addition, bit 4 of TR7 must be
loaded to indicate whether to use TR7 bits 3-2 or the
internal LRU bits as the replacement pointer on the
TLB write operation. Note that the LRU bits in TR7
are not used in a write test.

TR6 must be written to initiate the TLB write opera-
tion. Bit 0 in TR6 must be reset to zero o indicate a
TLB write. The 20-bit linear address and the seven
page protection bits must also be written in TR6 to
specify the tag portion of the TLB entry. Note that
the three least significant bits of the linear address
specify which of the eight sets in the data block will
be loaded with the physical address data. Thus only
17 of the linear address bits are stored in the tag
array.

8.3.4 TLB LOOKUP TEST

To perform a TLB lookup it is only necessary to write
the proper tags and control information into TR6. Bit
0 in TR6 must be set to 1 to indicate a TLB lookup.
TR6 must be loaded with a 20-bit linear address and
the seven protection bits. To force misses and
matches of the individual protection bits on TLB
lookups, set the seven protection bits as specified in
Table 8.2.

A TLB lookup operation is initiated by the write to
TR6. TR7 will indicate the result of the lookup opera-
tion following the write to TR6. The hit/miss indica-
tion can be found in TR7 bit 4 (see Table 8.5).

TR7 will contain the foliowing information if bit 4 indi-
cated that the lookup test resulted in a hit. Bits 2-3
will indicate in which set the match occurred. The 22
most significant bits in TR7 will contain the physical
address and page attributes contained in the entry.

2-350

L7E D WM 482bLL7?5 0127508 T82 EEITL]

=
intel.
Bits 9-7 will contain the LRU bits associated with

the accessed set. The state of the LRU bits is previ-
ous to their being updated for the current lookup.

If bit 4 in TR7 indicated that the lookup test resulted
in a miss the remaining bits in TR7 are undefined.

Again it should be noted that a TLB testability lookup -
operation affects the state of the LRU bits. The LRU
bits will be updated if a hit occurred. The entry which
was hit will become the most recently used.

8.4 Tristate OQutput Test Mode

The Intel486 Microprocessor provides the ability to
float all its outputs and bidirectional pins. This in-
cludes all pins floated during bus hold as well as
pins which are never floated in normal operation of
the chip (HLDA, BREQ, FERR# and PCHK#),
When the Intel486 microprocessor is in the tri-state
output test mode external testing can be used to test
board connections.

The ftri-state test mode is invoked by driving
FLUSH# low for 2 clocks before and 2 clocks after
RESET going low. The outputs are guaranteed to tri-
state no later than 10 clocks after RESET goes low
(see Figure 6.4). The Intel486 Microprocessor re-
mains in the tristate test mode until the next RESET.

8.5 Intel486™ Microprocessor
Boundary Scan (JTAG)

The Intel486 Microprocessor (50 MHz version only)
provides additional testability features compatible
with the IEEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Std.1149.1). The
test logic provided aliows for testing to insure that
components function correctly, that interconnec-
tions between various components are correct, and
that various components interact correctly on the
printed circuit board.

The boundary scan test logic consists of a boundary
scan register and support logic that are accessed
through a test access port (TAP). The TAP provides
a simple serial interface that makes it possible to
test all signal traces with only a few probes.

The TAP can be controlled via a bus master. The
bus master can be either automatic test equipment
or a component (PLD) that interfaces to the four-pin
test bus.

PRELIMINARY |

INTEL CORP (UP/PRPHLS)

.
intal.
8.5.1 BOUNDARY SCAN ARCHITECTURE

The boundary scan test logic contains the following
elements:

- Test access port (TAP), consisting of input pins
TMS, TCK, and TD!; and output pin TDO.

- TAP controller, which interprets the inputs on the
test mode select (TMS) line and performs the
corresponding operation. The operations per-
formed by the TAP include controlling the in-
struction and data registers within the compo-
nent.

— Instruction register (IR), which accepts instruc-
tion codes shifted into the test logic on the test
data input (TDI) pin. The instruction codes are
used to select the specific test operation to be
performed or the test data register to be ac-
cessed.

— Test data registers: The Intel486 Microprocessor
contains three test data registers: Bypass regis-
ter (BPR), Device Identification register (DID),
and Boundary Scan register (BSR).

The instruction and test data registers are separate
shift-ragister paths connected in parallel and have a
common serial data input and a common serial data
output connected to the TAP signals, TDI and TDO,
respectively.

8.5.2 DATA REGISTERS
The Intsel486 CPU contains the two required test

data registers; bypass register and boundary scan -

register. In addition, they also have a device identifi-
cation register.

Intel486™ DX MICROPROCESSOR

Each test data register is serially connected to TDI
and TDO, with TD! connected to the most significant
bit and TDO connected to the least significant bit of
the test data register. Data is shifted one stage (bit
position within the register) on each rising edge of
the test clock (TCK).

In addition the intel486 CPU contains a runbist regis-
ter to support the RUNBIST boundary scan instruc-
tion.

8.5.2.1 Bypass Register

The Bypass Register is a one-bit shift register that
provides the minimal length path between TDI and
TDO. This path can be selected when no test opera-
tion is being performed by the component to allow g
rapid movement of test data to and from other com- §
ponents on the board. While the bypass register is
selected, data is transferred from TDI to TDO with-
out inversion.

8.5.2.2 Boundary Scan Register

The Boundary Scan Register is a single shift register
path containing the boundary scan cells that are
connected to all input and output pins of the Intel486
CPU. Figure 8.5 shows the logical structure of the
boundary scan register. While output cells determine
the value of the signal driven on the corresponding
pin, input cells only capture data; they do not affect
the normal operation of the device. Data is trans-
ferred without inversion from TDI to TDO through the
boundary scan register during scanning. The bound-
ary scan register can be operated by the EXTEST
and SAMPLE instructions. The boundary scan regis-
ter order is described in Section 8.5.5.

BOUNDARY SCAN REGISTER

.
[]
1}
1
1
[]
! - .
i
]) SYSTEM
H By o/s BIDIRECTIONAL
: CELL T PN
: | :
‘ ! B/S)
SYSTEM § i s i
ILNQ;:J? gE/LSL SYSTEM '
H ! LoGic 8/S : SYSTEM
CELL 3-STATE
Tex ! ¥ OUTPUT
H) I H
H 1 1
H] B/S]
1 [CELL i
1 1 1
1 1]
b - - —od - - mewessased
T 00
240440-88
Figure 8.5. Logical Structure of Boundary Scan Register
2-351

I PRELIMINARY

L7E D ER 4826175 0127509 919 EMITLL

INTEL CORP (UP/PRPHLS)

intel486™ DX MICROPROCESSOR

8.5.2.3 Device Identification Register

The Device Identification Register contains the man-
utacturer’s identification code, part number code,
and version code in the format shown in Figure 8.6.
Table 8.6 lists the codes corresponding to the In-
tel486 CPU.

8.5.2.4 Runbist Register

The Runbist Register is a one bit register used to
report the results of the Intel486 CPU BIST when it
is initiated by the RUNBIST instruction. This register
is loaded with a *'1" prior to invoking the BIST and is
loaded with “0” upon successful completion.

8.5.3 INSTRUCTION REGISTER

The Instruction Register (IR) allows instructions to
be serially shifted into the device. The instruction
selects the particular test to be performed, the test
data register to be accessed, or both. The instruc-

L?E D WH 482L175 0127510 L30 MEITLY

tion register is four (4) bits wide. The most significant
bit is connected to TDI and the Ieast significant bit is
connected to TDO. There are no parity bits assoclat-
ed with the Instruction register. Upon entering the
Capture-IR TAP controller state, the instruction reg-
ister is loaded with the default instruction “0001",
SAMPLE/PRELOAD. Instructions are shifted into
the instruction register on the rising edge of TCK
while the TAP controller is in the Shift-IR state.

8.5.3.1 Intel486 CPU Boundary Scan
Instruction Set

The Intel486 CPU supports all three mandatory
boundary scan instructions (BYPASS, SAMPLE/
PRELOAD, and EXTEST) along with two optional in-
structions (IDCODE and RUNBIST). Table 8.7 lists
the Intel486 CPU boundary scan instruction codes.
The instructions listed as PRIVATE cause TDO to
become enabled in the Shift-DR state and cause
“0" to be shifted out of TDO on the rising edge of
TCK. Execution of the PRIVATE instructions will not
cause hazardous operation of the intel486 CPU.

3130292

27262524232221201918 17 1615 14 13 £I110 9876543211/0

VERSION PART NUMBER

MANUFACTURER
IDENTITY

240440-89

Figure 8.6. Format of Device ldentification Register
Table 8.6. Device Identification Register Codes

Component Code Version Code Part Number Code Manufacturer Identity
Intel486 CPU (Ax) 00h 0410h . 09h
Intel486 CPU (Bx) 00h 0411h 09h

2-352

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intal.

Table 8.7. Boundary Scan Instruction Codes

Instruction Code Instruction Name
0000 EXTEST

0001 SAMPLE

0010 IDCODE

0011 PRIVATE

0100 PRIVATE

010t PRIVATE

0110 PRIVATE

o1 PRIVATE

1000 RUNBIST

1001 PRIVATE

1010 PRIVATE

1011 PRIVATE

1100 PRIVATE

1101 PRIVATE

1110 PRIVATE

1111 BYPASS

EXTEST The instruction code is “0000". The EX-

SAMPLE/
PRELOAD

TEST instruction allows testing of cir-
cuitry external to the component pack-
age, typically board interconnects. it
does so by driving the values loaded
into the Intel486 CPU’s boundary scan
register out on the output pins corre-
sponding to each boundary scan cell
and capturing the values on Intel486
CPU input pins to be loaded into their
comresponding boundary scan register
locations. 1/0 pins are selected as input
or output, depending on the value load-
ed into their control setting locations in
the boundary scan register. Values
shifted into input latches in the bounda-
1y scan register are never used by the
internal logic of the Intel486 CPU.

NOTE:

After using the EXTEST instruction, the
Intel486 CPU must be reset before nor-
mal (non-boundary scan) use.

The instruction code is “0001". The
SAMPLE/PRELOAD has two functions
that it performs. When the TAP control-
ler is in the Capture-DR state, the SAM-
PLE/PRELOAD instruction allows a
“snap-shot” of the normal operation of

l PRELIMINARY

IDCODE

BYPASS

RUNBIST

L?7E P EH 482b175 0127511 577 EMITLI

Intel486™ DX MICROPROCESSOR

the component without interfering with
that normal operation. The instruction
causes boundary scan register cells as-
sociated with outputs to sample the val-
ue being driven by the Intel486 CPU. It
causes the cells associated with inputs
to sample the value being driven into
the Intel486 CPU. On both outputs and
inputs the sampling occurs on the rising
edge of TCK. When the TAP controller
is in the Update-DR state, the SAM-
PLE/PRELOAD instruction preloads
data to the device pins to be driven to
the board by executing the EXTEST in-
struction. Data is preloaded to the pins
from the boundary scan register on the
falling edge of TCK.

The instruction code is “0010”. The ID-
CODE instruction selects the device
identification register to be connected
to TDI and TDO, allowing the device
identification code to be shifted out of
the device on TDO. Note that the de-
vice identification register is not altered
by data being shifted in on TDI.

The instruction code is “1111". The
BYPASS instruction selects the bypass
register to be connected to TDI or TDO,
effectively bypassing the test logic on
the Intel486 microprocessor by reduc-
ing the shift length of the device to one
bit. Note than an open circuit fault in the
board level test data path will cause the
bypass register to be selected following
an instruction scan cycle due to the
pull-up resistor on the TDI input. This
has been done to prevent any unwant-
ed interference with the proper opera-
tion of the system logic.

The instruction code is “1000". The
RUNBIST instruction selects the one (1)
bit runbist register, loads a value of “1"
into the runbist register, and connects it
to TDO. i also initiates the built-in self
test (BIST) feature of the Intel486 CPU,
which is able to detect approximately
60% of the stuck-at faults on the In-
tel486 CPU. The Intel486 CPU AC/DC
Specifications for Vg and CLK must be
met and reset must have been asserted
at least once prior to executing the
RUNBIST boundary scan instruction.
After loading the RUNBIST instruction
code in the instruction register, the TAP
controller must be placed in the Run-
Test/Idle state. BIST begins on the first
rising edge of TCK after entering the
Run-Test/idle state. The TAP con-

2-353

INTEL CORP (UP/PRPHLS)

intel486™ DX MICROPROCESSOR

troller must remain in the Run-Test/Idle
state until BIST is completed. it requires
1.2 million clock (CLK) cycles to com-
plete BIST and report the result to the
runbist register. After completing the 1.2
million clock (CLK) cycles, the value in
the runbist register should be shifted
out on TDO during the Shift-DR state. A
value of 0" being shifted out on TDO
indicates BIST successfully completed.
A value of “1” indicates a failure oc-
curred. After executing the RUNBIST in-
struction, the Intel486 CPU must be re-
set prior to normal operation.

8.5.4 TEST ACCESS PORT (TAP)
CONTROLLER

The TAP controller is a synchronous, finite state ma-
chins. It controls the sequence of operations of the
test logic. The TAP controller changes state only in
response to the following events:

1. arising edge of TCK
2. power-up.

intgl.

The value of the test mode state (TMS) input signal
at a rising edge of TCK controls the sequence of the
state changes. The state diagram for the TAP con-
troller is shown in Figure 8.7. Test designers must
consider the operation of the state machine in order
to design the correct sequence of values to drive on
TMS.

8.5.4.1 Test-Logic-Reset State

In this state, the test logic is disabled so that normal
operation of the device can continue unhindered.
This is achieved by initializing the instruction register
such that the IDCODE instruction is loaded. No mat-
tor what the original state of the controller, the con-
troller enters Test-Logic-Reset state when the TMS
input is held high (1) for at least five rising edges of
TCK. The controller remains in this state while TMS
is high. The TAP controller is also forced to enter
this state at power-up.

8.5.4.2 Run-Test/Idle State

A controller state between scan operations. Once in
this state, the controiler remains in this state as long

‘ Test-Logic—Resst

> Shift-DR

Select-DR-Scan M

Capture—DR

»
I o I

Pause-DR

Update-DR

2}

> Shift-IR

[¢]
1
Q
1

1
]
1

Update-iR

Q

o

! o

v

240440-90

Figure 8.7. TAP Controller State Diagram

2-354

PRELIMINARY I

LPE D WM 482bL1l75 0127512 403 EMITLI

INTEL CORP (UP/PRPHLS)

intgl.

as TMS is held low. In devices supporting the
RUNBIST instruction, the BIST is performed during
this state and the result is reported in the runbist
register. For instruction not causing functions to exe-
cute during this state, no activity occurs in the test
logic. The instruction register and all test data regis-
ters retain their previous state. When TMS is high
and a rising edge is applied to TCK, the controller
moves to the Select-DR state.

8.5.4.3 Select-DR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-DR state, and a scan se-
quence for the selected test data register is initiated.
If TMS is held high and a rising edge is applied to
TCK, the controller moves to the Select-IR-Scan
state.

The instruction does not change in this state.

8.5.4.4 Capture-DR State

In this state, the boundary scan register captures
input pin data if the current instruction is EXTEST or
SAMPLE/PRELOAD. The other test data registers,
which do not have parallel input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or the Shift-DR state if
TMS is low.

8.5.4.5 Shift-DR State

In this controller state, the test data register con-
nected between TDI and TDO as a result of the cur-
rent instruction, shifts data one stage toward its seri-
al output on sach rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or remains in the Shift-
DR state if TMS is low.

8.5.4.6 Exit1-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-

l PRELIMINARY

Intel486™ DX MICROPROCESSOR

nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.7 Pause-Dr State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the test data
register in the serial path between TDi and TDO. An
example of using this state could be to allow a tester
to reload its pin memory from disk during application
of a long test sequence.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-DR
state.

8.5.4.8 Exit2-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controlier to enter the Update-DR state, which termi-
nates the scanning process. if TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.9 Update-DR State

The boundary scan register is provided with a
latched parallel output to prevent changes at the
parallel output while data is shifted in response to
the EXTEST and SAMPLE/PRELOAD instructions.
When the TAP controller is in this state and the
boundary scan register is selected, data is latched
onto the parallel output of this register from the shift-
register path on the falling edge of TCK. The data
held at the latched parallel output does not change
other than in this state.

All shift-register stages in test data register selected
by the current instruction retains its previous value
during this state. The instruction does not change in
this state.

2.355

LPE D ®HM 4826175 0127513 34T EEITLI

INTEL CORP (UP/PRPHLS)

(ntel486™ DX MICROPROCESSOR

8.5.4.10 Select-IR-Scan State

This is a temporary controlier state. The test data
register selected by the current instruction retains its
previous state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-IR state, and a scan se-
quence for the instruction register is initiated. If TMS
is held high and a rising edge is applied to TCK, the
controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

8.5.4.11 Capture-IR State

In this controller state the shift register contained in
the instruction register loads the fixed value “0001"
on the rising edge of TCK.

The test data register selected by the current in-
struction ratains it previous valus during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or the Shift-IR state if TMS
is held low.

8.5.4.12 Shift-IR State

In this state the shift register contained in the in-
struction register is connected between TDI and
TDO and shifts data one stage towards its serial out-
put on each rising edge of TCK.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or remains in the Shift-IR
state if TMS is held low.

8.5.4.13 Exit1-IR State
This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the

controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a

2-356

L]

intel.
rising edge is applied to TCK, the controller enters
the Pause-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.14 Pause-IR State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the instruction
register. .

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controiler moves to the Exit2-IR
state.

8.5.4.15 Exit2-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. if TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.16 Update-|R State

The instruction shifted into the instruction register is
latched onto the parailel output from the shift-regis-
ter path on the falling edge of TCK. Once the new
instruction has been latched, it becomes the current
instruction.

Test data registers selected by the current instruc-
tion retain the previous value. N
8.5.5 BOUNDARY SCAN REGISTER CELL
The boundary scan register contains a cell for each

pin, as well as cells for control of 1/0 and tristate
pins.

PRELIMINARY I

L?E D WM 4825175 0127514 28L EEITLL

INTEL CORP (UP/PRPHLS)

L]
intel.
The following is the bit order of the Intel486 CPU

boundary scan register: (from left to right and top to
bottom).

TDI — WRCTL ABUSCTL BUSCTL MISCCTL
ADS# BLAST# PLOCK# LOCK# PCHK#
BRDY# BOFF# BS16# BS8# RDY# KEN#
HOLD AHOLD CLK HLDA WR# BREQ BEO+#
BE1# BE2# BE3# MIO# DC# PWT PCD
EADS# A20M# RESET FLUSH# INTR NMI
FERR# IGNNE# D31 D30 D29 D28 D27 D26
D25 D24 DP3 D23 D22 D21 D20 D19 D18 D17
D16 DP2 D15 D14 D13 D12 D11 D10 D9 D8
DP1 D7 D6 D5 D4 D3 D2 D1 DO DPO A31 A30
A29 A23 A27 A26 A25 A24 A23 A22 A21 A20
A19 A13 A17 A16 A15 A14 A13 A12 A11 A1D
A9 A8 A7 A6 RESERVED A5 A4 A3
A2 — TDO ' i

“RESERVED" corresponds to no connect “NC” sig-
nals on the Intel486 CPU.

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

All the *CTL cells are control cells that are used to
select the direction of bidirectional pins or tristate
output pins. If “1" is loaded into the control cell
(*CTL), the associated pin(s) are tristated or selact-
ed as input. The following lists the control cells and
their corresponding pins.

1. WRCTL controls the D31-0 and DP3-0 pins.
2. ABUSCTL controls the A31-A2 pins.

3. BUSCTL controls the ADS#, BLAST#,
PLOCK #, LOCK#, WR#, BEO#, BE1#, BE2#,
BE3#, MIO#, DC#, PWT, and PCD pins.

4. MISCCTL controls the PCHK#, HLDA, BREQ,
and FERR # pins.
8.5.6 TAP CONTROLLER INITIALIZATION

The TAP controller is automatically initialized when a
device is powered up. In addition, the TAP controller
can be initialized by applying a high signal level on
the TMS input for five TCK periods.

8.5.7 BOUNDARY SCAN DESCRIPTION
LANGUAGE (BSDL)
Available through intel.

2-357

L7E D W 4826175 0127515 112 MRITLY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

9.0 DEBUGGING SUPPORT

The Inteld86 Microprocessor provides several fea-
tures which simplify the debugging process. The
three categories of on-chip debugging aids are:

1) the code execution breakpoint opcode (OCCH),

2) the single-step capability prbvided by the TF bit
in the flag register, and

3) the code and data breakpoint capability provided
by the Debug Registers DR0~3, DR6, and DR7.

9.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail-
abtle for use by software debuggers. The breakpoint
opcode is 0CCH, and generates an exception 3 trap
when executed. In typical use, a debugger program
can “plant” the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n=3.
The only difference between INT 3 (0CCh) and INT n
is that INT 3 is never IOPL-sensitive but INT n is
IOPL-sensitive in Protected Mode and Virtual 8086
Mode.

9.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger's stack. It then typically
transfers controi to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one
instruction of the user program.

Since the exception 1 occurs as a trap (that is, it
occurs after the instruction has aiready executed),
the CS:EIP pushed onto the debugger's stack points
to the next unexecuted instruction of the program
being debugged. An exception 1 handler, merely by
ending with an |RET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

9.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the Inteld86 Microprocessor. They allow
data access breakpoints as well as code execution
breakpoints. Since the breakpoints are indicated by

2-358

L?E D WM 482L175 0127516 059 WEITLL

a

intgl.
on-chip registers, an instruction execution break-
point can be placed in ROM code or in code shared

by several tasks, neither of which can be supported
by the INT3 breakpoint opcode.

The Intel486 Microprocessor contains six Debug
Registers, providing the ability to specify up to four
distinct breakpoints addresses, breakpoint control
options, and read breakpoint status. Initially after re-
set, breakpoints are in the disabled state. Therefore,
no breakpoints will occur unless the debug registers
are programmed. Breakpoints set up in the Debug
Registers are autovectored to exception number 1.

9.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DR0-DR3))

Up to four breakpoint addresses can be specified by
writing into Debug Registers DRO-DR3, shown in
Figure 9.1. The breakpoint addresses specified are
32-bit linear addresses. Intel486 Microprocessor
hardware continuously compares the linear break-
point addresses in DRO-DR3 with the linear ad-
dresses generated by executing software (a linear
address is the result of computing the effective ad-
dress and adding the 32-bit segment base address).
Note that if paging is not enabled the linear address
equals the physical address. If paging is enabled,
the linear address is translated to a physical 32-bit
address by the on-chip paging unit. Regardless of
whether paging is enabled or not, however, the
breakpoint registers hold linear addresses.

9.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure 9.1,
allows several debug control functions such as en-
abling the breakpoints and setting up other control
options for the breakpoints. The fields within the De-
bug Control Register, DR7, are as follows:

LEN:I (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four break-
points. LEN specifies the length of the associated
breakpoint field. The choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-
tion breakpoints must have a length of 1 (LENi =
00). Encoding of the LENi field is as follows:

PRELIMINARY '

INTEL CORP {UP/PRPHLS} &LYE D MR u432L17?5 0127517 TS5 @M ITLL

.
“1@ » inteld86 ™™ DX MICROPROCESSOR

31 . 16 15 0
BREAKPOINT 0 LINEAR ADDRESS DRO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPQOINT 3 LINEAR ADDRESS DR3
Intgl reserved. Do not define. DR4
Intgl reserved. Do not define. DR5
' o ‘ 8|B|B A ~i-18|8[B|B

) o ’ » TSDOOOOO 0 03210 DR6
LEN {R|W| LEN {R(W| LEN |R|W| LEN |R(W G G[L|G|L|GIL{G|L|G]|L
3 |33 2 [2]2] 1 |1]1]| o |o]0]|?|%D|%°%e|e|3|a|2|2|1|1]0|0] OR7

31 16 15 0

NOTE:

0 indicates intel reserved: Do not define; SEE SECTION 2.3.10

Figure 9.1. Debug Registers
Usage of Least DR2=00000005H; LEN2 = 00B
LENI Breakpoint Significant Bits in a1 0
Encoding | Field Width Breakpoint Address
Registeri, (i=0—-3) 00000008H
00 1 byte All 32-bits used to bkpt fld2 00000004H
specify a single-byte
breakpoint field. 00000000H
01 2 bytes A1-A31 used to specify
a two-byte, word- DR2=00000005H; LEN2 = 01B
aligned breakpoint field. 31 0
AQ in Breakpoint
Address Register is not
used. 00000008H
10 Undefined— <« bkpt fld2 — [00000004H
do not use | 00000000H
this encoding
11 4 bytes A2-A31 used to specify _ - —
a four-byte, dword- DR2=00000005H; LEN2 = 11B
atigned breakpoint field. A 0
A0 and Alin
Breakpoint Address 00000008H
Register are not used.
«— Dbkptfld2 — 00000004H
The LENI field controls the size of breakpoint field i
by controlling whether all low-order linear address I [I 00000000H
bits in the breakpoint address register are used to
detect the breakpoint event. Therefore, all break-
point fields are aligned; 2-byte breakpoint fields be- RWi (memory access qualifier bits)
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries. A 2-bit RW field exists for each of the four break-
L. . . points. The 2-bit RW field specifies the type of usage
The following is an example of various size break- \hich must occur in order to activate the associated

point fields. Assume the breakpoint linear address in breakpoint.
DR2 is 00000005H. In that situation, the following

illustration indicates the region of the breakpoint

field for lengths of 1, 2, or 4 bytes.

I PRELIMINARY 2-359

INTEL CORP (UP/PRPHLS)

intel486™ DX MICROPROCESSOR

RW Usage
Encoding Causing Breakpolnt
00 Instruction execution only
01 Data writes only
10 Undefined—do not use this encoding
11 Data reads and writes only

RW encoding 00 is used to set up an instruction
exacution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points.

Note that instruction execution breakpoints are
taken as faults {i.e., before the instruction exe-
cutes), but data breakpoints are taken as traps
{i.e., after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 (write/read). LEN
can = 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i = 0-3). RWi
must = 00 and LEN must = 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The
GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger can have full control over the De-

2-360

“intgl.

bug Register resources when required. The GD bit,
when set, causes an exception 1 fault if an instruc-
tion attempts to read or write any Debug Register.
The GD bit is then automatically cleared when the
exception 1 handler is invoked, allowing the excep-
tion 1 handler free access to the debug registers.

GE and LE (Exact data breakpoint match, global and
local)

The breakpoint mechanism of the Intel486 Micro-
processor differs from that of the 386. The Intel486
Microprocessor always does exact data breakpoint
matching, regardless of GE/LE bit settings. Any data
breakpoint trap will be reported exactly after comple-
tion of the instruction that caused the operand trans-
fer. Exact reporting is provided by forcing the In-
tel488 Microprocessor execution unit to wait for
completion of data operand transfers before begin-
ning execution of the next instruction.

When the Intel486 Microprocessor performs a task
switch, the LE bit is cleared. Thus, the LE bit sup-
ports fast task switching out of tasks, that have
enabled the exact data breakpoint match for their
task-local breakpoints. The LE bit is cleared by the
processor during a task switch, to avoid having ex-
act data breakpoint match enabled in the new task.
Note that exact data breakpoint match must be re-
enabled under software control.

The Intel486 Microprocessor GE bit is unaffected
during a task switch. The GE bit supports exact data
breakpoint match that is to remain enabled during all
tasks executing in the system.

Note that instruction execution breakpoints are al-
ways reported exactly.

Gi and Li (breakpoint enable, ‘global and local)

If sither Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRi, the length
in LENi and the usage criteria in RWi) is enabled. If
sither Gi or Li is set, and the Intel486 Microproces-
sor detects the ith breakpoint condition, then the ex-
ception 1 handler is invoked.

when the Intel486 Microprocessor performs a task
switch to a new Task State Segment (TSS), all Li
bits are cleared. Thus, the Li bits support fast task
switching out of tasks that use some task-local
breakpoint registers. The Li bits are cleared by the
processor during a task switch, to avoid spurious ex-
ceptions in the new task. Note that the breakpoints
must be re-enabled under software control.

- Al Intel486 Microprocessor Gi bits are unaffected

during a task switch. The Gi bits support breakpoints
that are active in all tasks executing in the system.

PRELIMINARY I

L?E D HEN u4ad2bl?5s 0127518 921 EEITLY

’
INTEL CORP (UP/PRPHLS)

intal.

9.3.3 DEBUG STATUS REGISTER (DRS)

A Debug Status Register, DR6 shown in Figure 9.1,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

1) DRO Breakpeint fault/trap.
2) DR1 Breakpoint fault/trap.
3) DR2 Breakpoint fault/trap.
4) DR3 Breakpoint fault/trap.
5) Single-step (TF) trap.

6) Task switch trap.

7) Fault due to attempted debug register access
when GD=1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid future confusion in identitying the
source of exception 1.

The fields within the Debug Status Register, DR6,
are as follows:

Bi (debug fault/trap due to breakpoint 0-3)

Four breakpoint indicator flags, BO-B3, correspond
one-to-one with the breakpoint registers in DRO~
DR3. A flag Bi is set when the condition described
by DRi, LENi, and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected,
the processor will invoke the exception 1 handler.
The exception is handied as a fault if an instruction
execution breakpoint occurred, or as a trap if a data
breakpoint occurred.

I PRELIMINARY

Intel486™ DX MICROPROCESSOR

IMPORTANT NOTE: A flag Bi is set whenever the
hardware detects a match condition on enabled
breakpoint i. Whenever a match is detected on at
least one enabled breakpoint i, the hardware imme-
diately sets all Bi bits corresponding to breakpoint
conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handler may see
that multiple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi set) are
true indications of why the exception 1 handler was
invoked.

BD (debug fault due to_attempted register access
when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping).

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having a
Intel486 Microprocessor TSS with the T bit set. Note
the task switch into the new task occurs normally,
but before the first instruction of the task is execut-
ed, the exception 1 handler is invoked. With respect
to the task switch operation, the operation is consid-
ered to be a trap.

9.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint.

2-361

L7E D W u482L17?5 0127519 868 EEITLL

INTEL CORP (UP/PRPHLS)

Intet486™ DX MICROPROCESSOR

10.0 INSTRUCTION SET SUMMARY

This section describes the Intel486 Microprocessor
instruction set. Tables 10.1 through 10.3 list all in-
structions along with instruction encoding diagrams
and clock counts. Further details of the instruction
encoding are then provided in Section 10.2, which
completely describes the encoding structure and the
definition of all fields occurring within the Intel486
Microprocessor instructions.

10.1 Intel486™ Microprocessor
Instruction Encoding and Clock

Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Tables 10.1
through 10.3 by the processor clock period (e.g.,
40 ns for a 25 MHz Intel486 Microprocessor).

For more detailed information on the encodings of
instructions, refer to Section 10.2 Instruction Encod-
ings. Section 10.2 explains the general structure of
instruction encodings, and defines exactly the en-
codings of all fields contained within the instruction.

INSTRUCTION CLOCK COUNT ASSUMPTIONS

The Inteld86 Microprocessor instruction clock count
tables give clock counts assuming data and instruc-
tion accesses hit in the cache. A separate penalty
column defines clocks to add if a data access miss-
es in the cache. The combined instruction and data
cache hit rate is over 90%.

A cache miss will force the InteldB86 Microprocessor
to run an external bus cycle. The Intel486 Micro-
processor 32-bit burst bus is defined as r—b—w.

Where:

r = The number of clocks in the first cycle of a
burst read or the number of clocks per data
cycle in a non-burst read.

b = The number of clocks for the second and sub-
sequent cycles in a burst read.

w = The number of clocks for a write.

The fastest bus the Intel486 microprocessor can
support is 2—1—2 assuming 0 wait states. The
clock counts in the cache miss penalty column as-
sume a 2—1-—2 bus. For slower busses add r—2
clocks to the cache miss penalty for the first dword
accessed. Other factors also affect instruction clock
counts.

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes
at all times. Else add clocks to reads until the
bus is available.

2-362

2.

10.

1.

12.

L7E D W u482b17?5 0127520 58T EEITLL

"

intgl.
Accesses are aligned. Add three clocks to gach
misaligned access.

. Cache fills complete before subsequent access-

es to the same line. If a read misses the cache
during a cache fill due to a previous read or pre-
fetch, the read must wait for the cache fill to
complete. If a read or write accesses a cache
line still being filled, it must wait for the fill to
complete.

. it an effective address is calculated, the base

register is not the destination register of the pre-
ceding instruction. If the base register is the
destination register of the preceding instruction
add 1 to the clock counts shown. Back-to-back
PUSH and POP instructions are not affected by
this rule.

. An effactive address calculation uses one base

register and does not use an index register.
However, if the effective address calculation
uses an index register, 1 clock may be added to
the clock count shown.

6. The target of a jump is in the cache. If not, add r

clocks for accessing the destination instruction
of a jump. If the destination instruction is not
completely contained in the first dword read,
add a maximum of 3b clocks. If the destination
instruction is not completely contained in the
first 16 byte burst, add a maximum of another
r+3b clocks.

. If no write buffer delay, w clocks are added only

in the case in which all write buffers are full.
Typically, this case rarely occurs.

. Displacement and immediate not used together.

It displacement and immediate used together, 1
clock may be added to the clock count shown.

. No invalidate cycles. Add a delay of 1 clock for

each invalidate cycle if the invalidate cycle con-
tends for the internal cache/external bus when
the Intel486 CPU needs to use it.

Page translation hits in TLB. A TLB miss will add
13, 21 or 28 clocks to the instruction depending
on whether the Accessed and/or Dirty bit in nei-
ther, one or both of the page entries needs to
be set in memory. This assumes that neither
page entry is in the data cache and a pagse fault
does not occur on the address translation.

No exceptions are detected during instruction
execution. Refer to Interrupt Clock Counts Ta-
ble for extra clocks if an interrupt is detected.

Instructions that read multiple consecutive data
items (i.e. task switch, POPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. If not, an extra cache line fill
may be necessary which may add up to (r+ 3b)
clocks to the cache miss panalty.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D WE 482b175 0127521 4lb EMITLI

= |
|nt9|| . Intel486™ DX MICROPROCESSOR

Table 10.1. intel486™ Microprocessor integer Clock Count Summary

INSTRUCTION FORMAT Cache it | POav i | potes
INTEGER OPERATIONS
MOV = Move:

regl toreg2 r1ooo100w [11 reg1 reg;] 1

reg2 to regt | 1000101w [11 reg1 regj“ 1

memary to reg L100010Vw lmod rag r/rn] 1 2

reg to memory L1000100w [mod reg r/ml 1

Immediats to reg [1 100011tw 11 1000 reg]immediatedata 1

or immediate data 1
immediats to Memory [1100011w [med 000 v/m :::;:::em o 1

Memory to Accumulator - 1010000w | full displacernant 1 2
Accumulator to Memory 101000 1w | full displacement 1

MOVSX/MOVZX = Move with Sign/Zero Extenslon
reg2 to regt [00001111[1011211w F1 reg1 regzl 3

memory to reg IJOOOHH [1011111meod reg r/ml 3 2

z instruction

0 MOvVZX
1 MOVSX
PUSH = Push
reg L1111n11[11 110 reg] 4
or 01010 reg 1
memary r11111111 [modﬁo r/m] 4 1 1

immediate 01101050 | immediate data 1
PUSHA=.PushAll 01100000 11

POP = Pop
reg [11 000 ra 4 1

or 01011 reg 1 2

10001111 [modl)OO rlml 5 2 1

—
o
[=3
o
-
-
-

memory

POPA = Pop All 01100001 9 7/15 18/32
XCHG = Exchange
reg with reg2 [1000011wl11 reg1 regz] 3 2
Accumulator with reg 10010 reg 3 2
Memory with reg [1000011w lmod reg r/ml 5 2
NOP = No Operation 10010000 1
LEA = Load EA to Register [10001101 [rnod reg r/ml
no index registar 1
with index register 2

I PRELIMINARY 2-363

INTEL CORP (UP/PRPHLS) L7E D BN u82L1?5 0127522 352 EEITLL

[]
Intel486™ DX MICROPROCESSOR |ntel R

Table 10.1. Intel486™™ Microprocessor Integer Clock Count Summary (Continued)

Penalty It
INSTRUCTION FORMAT Cache Hit Cache Miss Notes

INTEGER OPERATIONS (Continued)

Instruction T
ADD = Add 000
ADC = Add with Canry a10
AND = Logical AND 100
OR = Logical OR 001
SUB = Subtract 101
$BB = Subtract with Borrow on
XOR = Logical Exclusive OR 110
reg1 to reg2 l 00TTTOOW [11 regl reng 1
reg2 to regi [00TTTO1w l11 rogl regzl . 1
memary to register : IT)OTTTO!W[mod reg r/ml 2 2
register to memory IOOTTTOOW lmod reg r/m] : 3 6/2 U
immadiate to register [100000sw [11 TTT reglimmediuteregistef 1
immediate to accumutator 00TTT10w | immediate data t
immediate 1> memory l 100000sw [mod TTT r/m] immediate data 3 6/2 un
Instruction TIT
INC = Increment 000
DEC = Decrament 001
reg r1111111w]11 TTT rogl 1
or 01TTT reg 1
memory |1111111w[modTTT r/ml 3 8/2 usL
instruction T
NOT = Logical Complament a10
NEG = Negate 1
reg FHiOleH TTT reg] 1 .
memory [1111011wfmodTTT r/mI 3 . 8/2 ui
CMP = Compare
regt with reg2 r0011100w l11 regi rogzl 1
reg2 with reg1 r0011101w I11 reg! regz] 1
memory with register 0011100w Imod reg r/nﬂ 2 2
registar with memory [0011101!\! [mod reg r/ml 2 2
immediate with register POODOOsw l11 111 reg] immediate data 1
immediate with acc. 0011110w | immediate data B |
immediate with memaory IiOOOO(sz [mod 111 r/mlimrneda(edah 2 2
TEST = Logical Compare
regt and reg2 r1oooo10w ln regt rogz] 1
memory and register [1000010w [mod reg /m)) 2 2
immediate and register [111101 1w [11 000 roglimmedhledau 1
immediate and acc. 1010100w | immediate data 1
immediate and memory l 1111011w rmod Q00 r/m]lmnedhtedam 2 2

2.364 PRELIMINARY I

INTEL CORP (UP/PRPHLS) b7E D EE u482b175 0127523 299 EEITLL

i ntem . Intel486™ DX MICROPROCESSOR

Table 10.1. Intel486™ Microprocessor integer Clock Count Summary (Continued)

Penaity it
INSTRUCTION FORMAT Cache Hit c Miss| Notes
INTEGER OPEFHATIONS (Continued)
MUL = Multiply (unsigned)
acc. with register l111|011w[11 100 reg—l
Muttiptier-Byte 13/18 MN/MX, 3
Word 13/2¢6 MN/MX, 3
Oword 13/42 MN/MX, 3
acc. with memory L1111011w mod 100 r/m1
Multiplier-Byte 13/18 1 MN/MX, 3
Word 13/28 1 MN/MX, 3
Dword 13/42 1 MN/MX, 3
TWUL = integer Multipiy (signed)
acc. with register LHHOHw[H 101 ngl
Muttiplier-Byte 13/18 MN/MX, 3
. Word 13/28 MN/MX, 3
Dword 13/42 MN/MX, 3
acc. with memory bHvOHwImod\M r/m]
Multiplier-Byte 13718 MN/MX, 3
Word 13/28 MN/MX, 3
Dvrord 13/42 MN/MX, 3
reg1 with reg2 Loooonn[wmnn]n reg1roq;]
Muttiplior-Byte 13/18 MN/MX, 3
Word 13/28 MN/MX, 3
Dweord 13/42 MN/MX, 3
register with memory LOOOOHH [10101111 [mod reg r/mJ
Mutiplier-Byte 13/18 1 MN/MX, 3
Word 13/28 1 MN/MX, 3
Dwrord 13/42 1 MN/MX, 3
regt with imm. to reg2 [G11010s81 [11 reg1 regZ]immediatadau
Multiplier-Byte 13718 MN/MX, 3
Word 13/20 MN/MX, 3
Dwrord 13/42 MN/MX, 3
mem. with imm. 10 reg. I 01101081 [mod reg 1/m| immediate data
Muttiplier-Byte 13/18 2 MN/MX, 3
Word 13/26 2 MN/MX, 3
Dword 13/42 2 MN/MX, 3
DIV = Divide (unsigned)
acc. by fegister Dnmnw[n 110 rog]
Divisor-Byte 16
Wortl 24
Dword . 40
acc. by memory [1111011-lmod110 r/m]
Divisor-Byte 16
Word! 24
Oword 40
DIV = Integer Divide (signed)
acc. by register [11t101aw]11 111 reg
Divisor-Byte 19
Word 27
Oword L]

PRELIMINARY ' 2-365

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

G7E D EE 482bL7?5 027524 125 EMITLI

intgl.

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penaity if
INSTRUCTION FORMAT Cache Hit cache Miss Notes
INTEGER OPERATIONS {Continued)
acc. by momory DHOlemodH!r/ml
Divisor-Byte 20
‘Word 28
Dword 44
CBW/CWD = Convert Byte to Word/
Convert Word to Dword 3
CWD/CDQ = Convert Word to Dword/
Soman st ;
Quad Word
Instruction wr
AOL = Hotate Left 000
ROR = Rotate Right 001
RCL = Flotate through Carry Left 010
ACR = Rotate through Carry Right 011
SHL/SAL = Shift Logical/Arithmetic Left 100
SHR = Shift Logical Right 101
SAR = Shift Arithmetic Right 11
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
regby 1 r1101000w[11 TTT reg] 3
memory by 1 ’ 1101000w lmod TTT r/ml 4]
reg by CL. DHMOOHV[H TTT reﬂ 3
memory by CL F101001w]mod IRAS r/mI 4 8
reg by imenediate count I 1100000w [11 ARAS reglimmediates-bitdata 2
mem by irnmediate count l 1100000w lmod TTT r/mlimnediatse—bhda!a 4]
Through Carry (RCL and RCR)
reg by t ﬁ101000w [11 TTT rag] 3
memory by 1 meoow [mod TTT r/m] 4 8
rag by CL | 1101001 w 111 1T rsgl 8/30 MN/MX, 4
mamory by CL ﬁ101001w [mod TTT rlm] 9/ MN/MX, 5
reg by immediate count [1100000w [11 TTT reg)immediate 8.6t data 8/30 MN/MX, 4
mem by ilnmediate count FiODOOOw [mod TTT r/m]immedialea-bitdam 9/31 MN/MX, 5
Instruction T
SHLD = Shift Left Double 100
SHRD = Shift Aight Double 101
register with immediate WOOOHH I‘lOTTTIOD l11 reg2 reg1]imm8—bi1da!a 2
memory by immediate I 00003111 |10TTT100 Imod reg r/m]imm&bndam 3 e
register by CL 00001111 110TTT101 111 rog2 regﬂ 3
memory by CL 'r00001111 [10TTT10! lmod reg 1/m| 4 5
BSWAP = Byts Swap | 00001111 Inoox reﬂ 1
XADD = Exchange and Add
reg1, reg2 100001111 I1100000w Iﬂ rog2 reﬂ 3
memoary, reg r00001111 IHDDOOOW lmod rog 1/ml 4 8/2 U/
CMPXCHG = Compare and Exchange
rogi, reg2 | 0000t111 I'OHOOOW [11 reg2 reg1J [}
memory, reg FOODOHH]1011000w [mod reg r/m 7710 2 8
2-366

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?E D WM 482b17?5 0127525 Obl EEITLL

[]
ln . Intel486™ DX MICROPROCESSOR
Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)
' Penaity i
INSTRUCTION FORMAT Cache Hit Cache Miss| NOtes
CONTROL TRANSFER (within segment)
MOTE: Times are jurnp taken/not taken
Jeee = Jump oncee .
8-bit displacement m1 11tttn l 8-bit disp. l n T/NT, 23
full displacement [00001111 l 10001tttn]fulldisplacemen! 31 TINT, 23
NOTE: Times are jump taken/not taken
8ETcccc = Set Byte on cece (Times are cecc true/false)
reg [00001111 l 1001tttn [11 000 reg] 43
memory [_ooouun I 1001tttn [mod 000 r/m] X 34
Condition . tttn
ecee
o} Overflow 0000
NO No Overfiow 0001
B/NAE Balow/Nat Above or Equal 0010
NB/AE Not Balow/Above or Equat 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above . ot10
NBE/A Not Balow or Equal/Above o111
s Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Nat Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1104
LE/NG Less Than or Equal/Greater Than 1110
NLE/G NotLess Than or Equal/Greater Than 1111
LOOP = LOGP CX Times [11100010 | avidsp. | e L/NL 23
LOOPZ/LOOPE = Loop with [11100001 | soidisp. | o/ L/NL 23
Zero/Equael
LOOPNZ/LOOPNE = Loop while 11100000 [B-bit disp. 1 9/6 L/NL, 23
Not Zeto
JCXZ = Jump on CX Zero ﬁ1100011 l B-bit disp.] 8/5 T/NT, 23
JECXZ = Jump on ECX Zero r1 1100011 [8-bit disp.] a/5 T/NT, 23
(Address Size Prefix Differentiates JCXZ for JECXZ)
JMP = Unconditions! Jump (within segment))
shont 11101011 | sbitdsp. | 3 723
Diesct full displacement 3 . 7,23
Register Indirect [1111!111'11 100 rng 5 7,23
Memory Indirect [11111111[mod100 r/mI 5 5 7
CALL = Ca¥ (within segment)
Direct 11101000] tull displacement 3 7.2
Register Indirect IT1111111 [11 010 rogl : 5 7,23
Memory Indirect f11111111[mod01o rI;' 5 s 7
RET = Retumn frorn CALL (within segment)
s s
Adding immediate to SP F1000010 I 18-bit disp. l s 5

I PRELIMINARY 2-367

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

L7E D EE 482bL1L?5 0127526 TTS EEITLY

intal.

Table 10.1. inte!486™ Mlcfoprocessor Integer Clock Count Summary (Continued)

Penaity it
UCTION MAT
INSTR! FOR Cache Hit Miss Notes
CONTROL TRANSFER (within segment) (Continued)
ENTER = Entor Procedure F1001000 Emdspmtm]

Level = 0 14

Lovel = 1 17

Level (L) > 1 - 17+3L 8

LEAVE = Leave Procedure 11001001 ' 5 1
MULTIPLE-SEGMENT INSTRUCTIONS
MOY = Move
18Q. to segmant reg. b0001110 111 sreg3 reg] e 0/3 RV/P, ®
memory to sagment reg. l 10001110]mod sreg3 r/m] 9 2/8 RV/P, 9
- segment reg. to reg. [10001‘&0 [11 sreg3 ragl 3
segment reg. to memory [10001100 [mod srog3 r/rn—l 3
PUSH = Push

segment reg. Q00sreg2110 3

(ES, C8, S8, or DS)

segment reg (FS or GS) [00001111 [10 sreg3coo] 3

POP = Pop

segment reg. Q000sreg2111 3/0 2/5 RV/P, 9

(ES, 88, or 0S)

segment reg. (FS ot GS) [00001111 [10 amgaooi]) s AV/P,9

LDS = Load Pointer to DS { 11000101 [mod reg r/m] 8n2 7710 | RV/P.®
LES = Load Pointer to E8 [11000100 [mod reg rrm] 8/12 7110 RV/P, 9
LFS = Load Pointer to FS [00001111 [10110100 [mod reg wm] 6112 7110 | RV/P®
LGS = Load Pointer 1o GS [o0001111] 10110101 [mod reg rm| 8/12 70 | Rvpe
LSS ~ Loed Pointer to $$ [T00001111] 10110010 [mod reg rm] 8/12 7710 | RvP9
CALL = Call

Direct intersagment 10011010 {unsigned full offset, selector 18 2 R,7,22
to same level 20 3 Po
theu Gate to same level 35 [} P9
to inner level, no parameters 69 17 P9
to inner levet, x parameter (d) words 77+4X 17+n P 11,9
o TSS 37+ TS 3 P, 10,9
thru Task Gate 38+TS 3 P.10,9

indirect intersegment F1111111]mod 011 o/m 17 8 R.7
to same lavel 20 10 P9
thvu Gate to same lovel 35 13 P.2
10 inner lavel, no parameters -] 24 P.9
10 inner levet, x parameter (d) words 77+4X 24+n P, 11,9
1o TSS I7+TS 10 P, 10,9
thru Task Gate 38+TS 10 P. 10,9

RET = Return from CALL
o same lovel 17] P.9
o outer lavel a5 12 P9
intersegment adding [11001010 l 16-bit disp.]

imm. to SP 14 8 R7
to same level 18 9 P9
to outer level 36 12 P8

2-368 PRELIMINARY

INTEL CORP (UP/PRPHLS) G7E D WA 482kL17?5 0127527 934 EEITLL

]
|nte| . Intel486™ DX MICROPROCESSOR
Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)
Penalty it
T
INSTRUCTION FORMAT Cache Hit Notes
MULTIPLE-SEGMENT INSTRUCTIONS (Continued)
JMP = Unconditional Jump
Diect intersegment unsigned full oftset, selector 17 2 R.7,22
to same levet 19 3 P9
thru Cail Gate to samae level 32 8 P9
thru TSS 42+4TS 3 P, 10,9
thru Task Gate 434TS 3 P,10,9
Indirect intersegment (11111111 [mod 101 wm] 1 ® R.7.9
to same level 18 10 P.0
thru Call Gate to same level a1 13 P9
thru 7SS 4478 10 P, 10,9
thru Task Gate 42+TS 10 P, 10,9
BIT MANIPULATION
BT = Testbit
register, immediate [00001111 [101110'0 [11 100 rngimm.G—bitdata 3
memory, immediate i 00001111 I1o11101o [modtoo r/m]imm.s—bitdala 3 1
reg1, rag2 IT)ooonn [10100011 In reqzreml 3
memory, reg [00001111 I 10100011 [mod reg r/mJ 8 2
instruction wr
BTS = TestBitand Set BT 0|
BTR = Test Bit and Reset 110
BTC = Test Bit and Compliment 111
register, immediate foooonn [10:11010]n TTT reg]imm.s-bitdnu s
memory, immediate roooonn rtounmo lmod TTT r/mJlmm.B—bhdam 8 2/0 uL
reg1, reg2 [oooonn] 10TTTO1Y [11 reg2 rog1| [
memory, reg [00001111 [10771011 [mod reg rm| 13 an uL
BSF = Scan Bit Forward
reg?, reg2 [oooonn] 10111100 [11 rog2 rog1J 6/42 MN/MX, 12
memory, reg BOOOHH I 10111100 [mod) r/ml 7/43 2 MN/MX, 13
BSR = Scan Bit Reverse
regt, reg2 roooonn 10111101 [11 reg2 regﬂ 6/103 MN/MX, 14
memory, reg [00001111 L1o1111o1 [mod reg rlmI 7/104 1 MN/MX, 1§
STRING INSTRUCTIONS
CMPB — Compee Byte Word . o 18
L06S - Load Bye/Word s 2
10 AL/AX/EAX
MOV = Move ByterWord , 2 o
SCAS = Scan Byte/Word 1010111w -] 2
STOS = Store Byte/Word 5
trom AL/AX/EX
XLAT = Transiate String . 2

| PRELIMINARY 2369

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

b7E

D W 482bl75 0127528 870 WEITLY

intgl.

Table 10.1. Intel486™ Microprocessor integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit c""l | Notes
REPEATED STRING INSTRUCTIONS
Repeated by Countin CX or ECX (C = Count in CX or ECX)
REPE CMPS = Compare String 11110011 [1010011w |
(Find Non-Match)
c=0 s
c>o 7+7c 16,17
REPNE CMPS = CompareString | 11110010 | 1010015w |
(Find Match)
c=0 5
c>o0 747 18,17
REP LODS - Load String [11110011 [1010110w]
c=o0 5
c>0 7+4c 16,18
REP MOVS ~ Move String 11110011 [1010010w |
c=o0 s
c=1 13 1 16
€>1 12+3¢ 16,19
REPE SCAS = Scan String { 11110011 [1010111w]
(Find Non- AL/AX/EAX)
c=0 5
¢>o0 7+5¢ 20
REPNE SCAS = Scan String [11110010 [1010111w]
(Find AL/AX/EAX)
c=0 5
c>o0 7+5¢ 20
REP STOS = Stors String { 11110011 [1010101w |
c=0 5
c>o0 7+4c
FLAG CONTROL
CLC ~ Cloar Carry Flag 2
STC = SetCarry Fag 2
CMC = Complement Carry Flag 2
10 = o vection g .
570 = satDiectoning .
CLI = Clear nterrupt 5
Enabie Flag
ST - SetInterrupt s
Enabie Flag
LA Londt o i .
SAHF = Store AH Into Flags 2
PUSHF = Push Flags 43 AV/P
POPF = Pop Flags 9/6 AvV/P
DECIMAL ARITHMETIC
ARA - ASCH Adjustfor Add s
AAS = ASCIl Adjust for 3
Subtract
AAM = ASCII Adjust for (11010100 [00001010] 15
Muttipty
2-370 PRELIMINARY

INTEL CORP (UP/PRPHLS) L?E D WM 4826175 0127529 707 MEITLI

=
lnteﬂ . Intel486™™ DX MICROPROCESSOR

Table 10.1. Intel486™ Microprocessor integer Clock Count Summary (Continued)

Penaity
INSTRUCTION FORMAT Cache Hit Cache Miss Notes
DECIMAL ARITHMETIC (Continued)
AAD = ASCIl Adjust for L11o10101 100001010] 14
Divide

DAA = Decimal Adjust for Add 2

DAS = Decimal Adjust for Subtract

n

PROCESSOR CONTROL INSTRUCTIONS

LT = ot s
MOV = Move To and From Control/Oebug/Test Registers
CRO from register [00001111 1 00100010 Ln 000 rng ? 17 2
CR2/CR3 from register [00001111 l 00100010 [11 [XL rogJ 4
Aeg from CRO-3 I 00001111 foowoooo [11 eee reg! 4
DRO-3 from register [00001111 l 00100011 [11 ene regl 10
DR6-7 from ragister roooonn [00100011 |11 eee regl 10
Register from DAS-7 [00001111 100100001 [11 0eo rqu 9
Register from DR0-3 l00001111 l 00100001 IH eoe reﬂ 9
TR3 from register ﬁ0001111 1 00100110 [11 011 rng 4
TR4-7 from register @001111 l 00100110 l11 [LLL) reg] 4
Register from TR3 I 00001111 r00100100 [11 011 reﬂ 3
Register from TR4-7 l 00001111 l 00100100I11 L1 rsgl 4
CLTS = Clear Task Switched Flag I 00001111 100000110] : 7 2
INVD = Invalidate Data Cache r00001111 ‘ 00001000 I 4
WBINVD=Wﬂh-Blcklndlnvalmto| 00001111 [00001001 J) 5
Data Cache
INVLPG = {nvalidate TLB Entry
INVLPG memxxy r00001111 I 00000001 [mod 111 r/mJ 12/11 H/NH
PREFIX BYTES
Addrass Size Prefix 1
LOCK = Bus Lock Prefix 1
Operand Size Prefix 1
Segment Override Prefix
s '
os: '
es ,
rs: r
as: 1

I PRELIMINARY - 2an

INTEL CORP (UP/PRPHLS) G?E D HEW 4a2bl?5 0127530 429 EEITLY

L]
Intel486™ DX MICROPROCESSOR . ' 'n@ o

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty i
INSTRUCTION FORMAT Cache Hit Cache Miss| NOtes
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From register [01100011 LH reg! ra;‘]
[
From memory | 01100011 lmod reg r/ml 9
LAR = Load /\ccess Rights
From register LOOOOHH I 00000010 [11 regl rng] 11 3
From memory I 00001111 l 00000010 [n\od reg rImI 11 5
LGOT = Load Global Descriptor
Table register I 00001111 l 00000001 [mod 010 r/mI 12 5
LIDT = Load Interrupt Descriptor
Tabile ragister l Q0001111 l 00000001Tmod 011 r/m] 12 5
LLDT = Load Local Descriptor)
Tabie register from reg. [00001111 [00000000 [11 010 ragl 11 3 ~
Table register from mem. [00001111 [00000000 lmod 010 r/ml 1 [}
LMSW = Load Machine Status Word
From register [Q0001111 l 00000001 [11 110 regl 13
From memory [00001111 I 00000001 lmod 110 r/ml 13 1
LSL = Load Segment Limit
From register [Q0001111 | 00000011 L11 reg1 regzl 10 3
From memory I 00001111 I 00000011 [mod rog r/m] 10 [}
LTR = Load Task Regt
From Register I 00001111 l 00000000 [11 011 reg] 20
From Memory r00001111 [000006000 Imod 011 rlml 20
SGOT = Storn Global Descriptor Table
l 00001111 I 00000001 lmod 000 r/ml 10
SIDT = Stors Interrupt Descriptor Tabie
[00001111 I 00000001 [mod 001 r/m] 10
SLDT = Store Local Descriptor Table
To register I 00001111 loooooooo [11 000 reg] 2
To memory I 00001111 [00000000 [mod 000 r/ml 3
SMSW = Store Machine Status Word
To register I 00001111 [00000001 111 100 rog] 2
To memory I 00001111 l 00000001 [mod 100 r/m] 3
STR = Store Task Register
To register l 00001111 100000000 l11 001 mg] 2
To memory | 00001111 [00000000 Imod 001 r/m] 3
VERR = Verily Read Access
Register | 00001111 l 00000000 lH 100 v/m] 1 3
Memory | 00001111 [00000000 [mod 100 r/m] 11 7
VERW = Verily Write Access
To register |7000011H I 00000000 111 101 reg] 11 k]
To memaory | 00001111 [00000000 lmod 101 r/;l 11 7

2372 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D EE 482b17?5 0127531 365 ENITLL

. R
|nte|’ . Intel486T™™ DX MICROPROCESSOR
Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)
Penalty
INSTRUCTION FORMAT Cache Hit Cache Miss Notes
INTERRUPT INSTRUCTIONS
INT n = interruppt Type n [11001101] type | ‘ INT+4/0 RV/P, 21
INT 3 = interrupt Type 3 INT+0 21
INTO = Interrupt 4 if
Overfiow Flag Set
Taken INT+2 21
Not Taken 3 21
BOUND = Interrupt § if Detect [01100010 [moa reg r/m]
Value Out Range
If in range 7 7 21
If out of range INT+24 7 21
IRET = Interupt Return
Real Mode/Virtual Mode 15 8
Protected Mocte
To same level 20 1" ')
To outer levet 38 19 9
To nested task (EFLAGS.NT = 1) TS+32 4 9,10
External Interrupt INT+11 21
NMI = Non-Maskable Interrupt INT+3 21
Page Fault INT+ 24 21
VM$8 Exceptions
cu INT+8 21
STI INT+8 21
INTn INT+9
PUSHF INT+9 21 -
POPF INT+8 21
iRET . INT+8
N
Fixed Port INT+50 21
Variable Port INT+51 21
out :
Fixed Port INT+50 21
Variable Port INT+51% 21
INS INT +50 21
ouTS INT + 50 21
REP INS - INT +51 21
REPQUTS . INT+561 21
Task Switch Clock Counts Table
Method Value for TS
Cache Hit Miss Penalty
VM/intei486 CPU/286 TSS To Intel4d86 CPU TSS 162 55
VM/Intel486 CPU/286 TSS To 286 TSS 143 31
VM/Intel486 CPU/286 TSS To VM TSS 140 37

| PRELIMINARY | 2373

INTEL CORP (UP/PRPHLS) G?E D N 4826175 0127532 2T1L MEITLL

-
Intel486™ DX MICROPROCESSOR lntel
®
Interrupt Clock Counts Table
Method Value for INT
Cache Hit Miss Penalty Notes
Real Mode . 26 2
Protected Mode
Interrupt/Trap gate, same level 44 8 9
Interrupt/Trap gate, different level 71 17 9
Task Gate 37+ TS 3 9,10
Virtual Mode .
Interrupt/Trap gate, different level 82 17
Task gate 37+ TS 3 10
Abbreviations Definition
16/32 16/32 bit modes
u/L unlocked/locked
MN/MX minimum/maximum
L/NL loop/no loop
RV/P real and virtual mode/protected mode
R real mode
P) protected mode
T/NT taken/not taken
H/NH hit/na hit
NOTES:

1. Assuming that the operand address and stack address fall in different cache sets.
2. Always locked, no cache hit case.
3. Clocks = 10 + max{loga(iml),n}
m = muitiplier value {min clocks for m=0)
n= 3/5for tm
4, Clocks = {quotient(count/operand length)}*7+9
= 8 if count < operand length (8/16/32)
5. Clocks = (quotient(count/operand length)}*7+9
= 9 if count < operand length (8/16/32)
6. Equai/not equal cases (penaity is the same regardlass of lock).
7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets.
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame.
9. Add 11 clocks for each unaccessed descriptor load.
10. Refer to task switch clock counts table for value of TS.
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes.
For notes 12-13: (b = 0-3, non-zero byte number);
(i = 0-1, non-zero nibble number);
(n = 0-3, non bit number in nibble);
12. Clocks = 8+4 (b+1) + 3(i+1) + 3(n+1)
= B if sacond operand =
13. Clocks = 8+4(b+1) + 3(+1) + 3(n+1)
= 7 if second operand = 0
For notes 14-15: (n = bit position 0-31)
14, Clocks = 7 + 3(32—n)
8 if second operand = 0
15. Clocks = 8 + 3(32—n)
7 if second operand = 0
16. Assuming that the two string addresses fall in different cache sets.
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare.
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load.
18. Cache miss penalty: add 4 clocks for every 16 bytes moved.
(1 clock for the first operation and 3 for the second)
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned.
(2 clocks each for first and second operations)
21. Refer to interrupt clock counts table for value of INT
22. Clock count includes one clock for using both displacement and immediate.
23. Refer to assumption 6 in the case of a cache miss.

2374 PRELIMINARY I

INTEL CORP (UP/PRPHLS) LPE D WM 482L175 0127533 134 MEITLL

L]
lntej R Intel486™ DX MICROPROCESSOR

Table 10.2. Intel486™ Microprocessor 1/0 Instructions Clock Count Summary

Protected | Protected
INSTRUCTION FORMAT .ty | Mode Mode | VIUEEE | porey
(CPL<IOPLY(CPL > IOPL)
1/0 INSTRUCTIONS
IN = Input from:
Fixed Port {1110010w] portnumber | 14 » 29 27
Variable Port 14 8 28 2
OUT = Output to:
Fixed Port [1110011w] portrumber | 18 1 at Py
o o 6l o | = | =
INS = Input Byte/Word 17 10 3z 2
from DX Port
OUTS = Output Byte/Word 17 10 a2 a0 1
1o DX Port
REP INS = Input String [11110011Jo110110w] 16+8c | 10+8c | 320+8c | 20+8c 2
REP OUTS = Output String [11110011] 0110111w] 17+5¢ | 11+5c | 31+5c | 0+5c 3

NOTES:

1. Two clock cache miss penalty in all cases.

2. ¢ = countin CX or ECX.

3. Cache miss penalty in alt modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation.

I PRELIMINARY 2.375

INTEL CORP (UP/PRPHLS) b?E D WM 482L175 0127534 074 EEITLL

]
Intel486™ DX MICROPROCESSOR |n'|'e|
i ®
Table 10.3. intel486T™ Microprocessor Floating Point Clock Count Summary
Cache Hit Concurrent
Penatty it Execution
INSTRUCTION FORMAT Avg (Lower | CacheMiss | Avg{Lowsr | Notes
Rangs ... Range...
Upper Range) Upper Range)
DATA TRANSFER
FLD = Real Load to ST(0)
32-bit memory |11011 oo1[mod 000 rm| sibrdisp. | 3 2
84-bit memory l11011 101]mod 000 r/ml s-i-b/disp. I 3 3
80-bit mermary l11011 011Lmod 101 r/mL s-i-b/disp.]] 4
STq) [11011 001]11000 ST(i)J 4
FILD = integer Load to ST(0)
168-bit memary E 1011 111 [mod 000 r/ml 8-+Hb/disp. l 14.5(13-18) 2 4
32-bit memory ’ m 011 01 1Imod 000 r/m] 3-i-b/disp. I 11.5(9-12) 2 42-4)
4.6t memary f1i1011 111]mod 101 vm] sibidsp. | | 168(10-18) 3 7.8(2-8)
FBLD = BCD Load to ST(0) [1 1011 111 1mod 100 r/ml 8--b/disp. | 75(70-103) 4 7.7(2-8)
FST = Store Real from ST(0)
32-bit memeny 11011 001[mod 010 r/m[s-i-b/disp. I 7 1
84-bit memxiy [11011 101Imod 010 r/ml s-i-b/disp. | 8 2
sTRH 11011 1o1f11o1o STa)] 3
FSTP = Store Real from ST{0) and Pop
32-bit memary [11011 001Imod 011 r/mI 8-i-b/disp. I 4 1
84-bit memary IHOH 101lmod 011 r/m[s--b/disp. J 8 2
80-bit memory mon o11[mod 111 r/m] s-b/disp.] 6
st [11011 101[11001 stp] 3
FIST = Store integer from ST(0)
16-bit memeory [1 1011 111 [mod 010 r/mT 8-i-b/disp. I 33.4(29-34)
32-bit memory | 11011 011 [mod 010 r/m[3-i-b/disp.] 32.4(28-34)
FISTP = Store Integer from ST(0) and Pop
168-bit memory I1 1011 111 lmod 0t1 rlm[s-i-b/disp. l 33.4(29-34)
32-bit memory rn 011 011 [mod 0t1 r/m[s-i-b/disp.] | 33.4(28-34)
84-bit memory bm 1 111] mod 111 r/m[s-i-b/disp. J 33.4(29-34)
FBSTP = Store BCD from |11011 111|mod 110 f/ml 8--b/disp.] 175{172-176)
ST(0} and Pop
FACH =~ Exchange ST(0) and ST{I) |T1011 001111001 576' 4

COMPARISON INSTRUCTIONS
FCOM = Compars ST(0) with Real

32-bit memory [11011 ooo[mod 010 r/mL s-i-b/disp.] 4 2 1
84-bit mamaory [110‘1 100rmod 010 rlml s-i-b/dlisp. I 4 3 1
STH) [11011 ooofuow s 4 1
FCOMP = Campare ST(0) with Real and Pop

32-bit memory mon ooolmod 011 vm| skb/disp. | 4 2 1
84-b#t memory Ecn 100]mod 011 r/m[sibidep. | 4 3 1
§T() 11011 000111011 ST(I)' 4 1

2376 ' PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D WM 482b17?5 0127535 TOO MEITLD

-
|n J R Intel486™ DX MICROPROCESSOR
v
Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)
Cache Hit oncurrent
Penalty it ecution
INSTRUCTION FORMAT) Avg (Lower | CacheMiss | Avg{Lower | Notes
Range... Range...
Upper Range) Upper Range)
COMPARISON INSTRUCTIONS (Continued)
FCOMPP = Compare ST(0) with [11011 110[1101 1oo1] s 1
ST(1) and Pop Twice
FICOM = Compare ST(0) with integer
16-bit memory b01 1 11 Olnm 010 rlml s-+-b/disp.] 18{16-20) 2 1
32-bit memary [1 1011 01 o[moa 010 r/m[s--b/disp.] 16.5(15-17) 2 1
FICOMP = Compare ST(0) with Integer
16-bit memcry ll1011 1 1olmod 011 r/m[s--b/disp. I 18(16-20) 2 1
32-bit mamcry | 11011 01 o[mod 011 rlmL s-i-b/disp.] 16.5(15-17) 2 1
FTST = Compare ST(0) with 0.0 11011 001[1110 0100] 4 1
FUCOM = Unordered compare hton 101[11100 ST(i)] 4 1
ST(0) with ST())
FUCOMP = Unordered compare I:HOH 101[11101 STGﬂ 4 1
$T(0) with ST{T) and Pop
FUCOMPP = Unorderedcompare (11011 ow[nw 1001] 5 1
ST(0) with ST(l) and Pop Twice
FXAM = Examine ST{0) 11011 oo1[111o 0101] 8
CONSTANTS
FLDZ = Load +0.0 into ST(0) |11o11 oo1[111o 1110] 4
FLD1 = Load + 1.0 into ST(0) |11o11 001[1110 1000] 4
FLDP = Load 7 Into ST(0) |11o11 001[1110 1011] 8 2
FLDL2T = Load logy(10) into ST(0) |non om[n'o 100‘1 8 2
FLDL2E = Load loga(e) into ST(0) |11o11 oo1l111o 1010] 8 2
FLDLG2 = Load logof2) into ST(0) lnon 001[1110 11ooJ 8 2
FLDLN2 = Load loge{2} into ST(0) {11011 oo'{nm 110‘] 8 "2
ARITHMETIC
FADD = Add Real with ST(0)
ST(0)+— ST(0) + 32-bit memory | 11011 00 oLmoa 000 r/mL s-i-b/disp.] 10(8-20) 2 76-17)
ST(0) +— ST(0) + 64-bit memory [11011 1 oo[mod G600 r/m[3i-b/disp. I 10(8-20) 3 7(5-17)
ST(d) « ST(0) + STG) [1 1011 aool 11000 s*r(n] " 10(8-20) 7(5-17)
FADDP = Add real with ST(0) and Inon 110[11000 srml 10(8-20) 7(5-17)
Pop (ST(1) «— ST(0) + ST('
FSUB = Subtract real from ST(0)
ST{0) + ST(0) — 32-bit memory Igo 11 000 [mod 100 r/m] s-i-b/disp. j 10(8-20) 2 75-17)
ST{0) «— ST(0) — 64-bit memory | 11011 100 [mod 100 r/ml s‘i-b/disp“l 10(8-20) 3 7(5-17)
ST(d) «— ST(0) - ST() ﬁ 011 aoo[1 t10d S‘Iﬂ 10(8-20) 7(5-17)
FSUBP = Subtract real from ST(0) [1 1011 11 0[1 1101 srﬂ 10(8-20) 7(5-17)
and Pop (ST{}) «— ST(0) — ST(i))

I PRELIMINARY 2377

INTEL CORP (UP/PRPHL3I) B?E D EB 482b175 0127536 947 ERITL]

L4
Intel486™ DX MICROPROCESSOR Intel »

Table 10.3. intel486™ Microprocessor Floating Point Clock Count Summary {Continued)

Concurrent
Cache Hit
Penalty It Execution
INSTRUCTION FORMAT Avg (Lower | CacheMiss | Avg(Lower | Notes
Range... Range...
Upper Range) Upper Range)
ARITHMETIC (Continued)
FSUBR = Subtract real reversed (Subtract ST(0) from resfl)
ST(0) +— 3:2-bit memary - ST(0) LT! 011 000 [mod 101 t/m [g--b/disp. j 10(8-20) 2 75-17)
ST{(0) +— 84-bit memary — ST(0) L! 1011 100 lmod 101 r/ml s-i-b/disp.] 10(8-20) 3 7(5-17)
ST(d) «- ST{)) — ST{O) 11011 60011 110d ST(:)] 10(8-20) 7{5-17)
FSUBRP = Subtract real reversed [1 1011 11 0[1 1100 ST(o)I 10{8-20) 7(5-17)
and Pop (ST(I) «— ST(l) — ST(0))
FMUL = Muttipty real with ST(0)
ST(0) «— ST(0) X 32-bit memory [11011 Ooolmod 001 r/m[s+-b/disp. I 1" 2 8
ST(0) +— ST(0) X 84-bit memory [\ 1011 1oo[mod 001 r/m[si-b/disp. _] 14 3 1
ST(d) « ST(0) x ST() liﬂ)l 1 d0011 1001 ST(l)l 18 13
FMULP = Multiply ST(0) with ST(1) E1 011 11 0[1 1001 ST(i)l 168 13
and Pop (ST(l) + ST(0) x ST())
FDIV = Divide ST{0) by Real
ST(0) +— ST(D)/32-bit memory m gt1 000 I mod 110 r/m[$--b/disp. I 73 2 70 3
$T(0) «— ST(0)/64-bit memory [1 1011 100] mod 110 r/m[s-i-b/disp.] 7 3 70 3
ST(d) «— ST(0)/ST(H) E1 011 do 0I1 111d ST(i)] 73 70 3
FDIVP = Divide ST(0) by ST and | 11011 110[11111 sm)] 73 70 3
Pop (ST{l) «— ST(0)/ST()))
FOIVR = Divide real reversed (R2al/ST(0))
ST(0) +— 32-bit memory/ST(0) I 11011000 [mod 111 rImT s-Hb/disp. I 73 2 70 3
S§T(0) « B4-bit memory/ST(0) [1 1011 100 [mod 111 r/ml 8-i-b/disp.] 73 3 70 3
ST(d) «— ST/ST(O) [T1 011 do 0] 1111d ST(i)J 73 70 a
FDIVRP = Divide real reversed and LHOH 110111110 ST(i)I 73 70 3
Pop (ST() + ST(I)/ST(0))
FIADD = Add Integer to ST(0)
ST{0) +— ST(0) + 16-bit memory l 11011 11 Olmod 000 rlml 8-i-b/disp.] 24(20-35) 2 ' 7(5-17)
ST{0) «~ ST(0) + 32-bit memory [1 1011 01 Olmod 000 r/ml 8--b/disp.] 22.5(19-32) 2 7(5-17)
FISUB = Subtract Integer from ST(0))
ST(0) «— ST(0) — 16-bit memory l1 1011 1 10[mod 100 r/ml 8--b/disp. J 24(20-35) 2 7{5-17)
ST(0) «~ ST(0) — 32-bit memory [1 1011 01 DTmod 100 r/m[§--b/disp. l 22.5(19-32) 2 7(5-17)
FISUBR = Integer Subtract Reversed
ST(Q) + 16-bit memory — ST(0) IT1 011 110 l mod 101 r/m[8--b/ disp.] 24(20-35) 2 7(5-17)
ST(0) «— 32btmemory — STE |11011 010 mod 101 r/m] sib/dsp. | | 225(19-32) 2 75-17)
FIMUL = Muitiply Integer with ST(0)
ST(0) e~ ST(O) X 16titmemory |11011 110 mod 001 /m] sib/disp. | | 25(23-27) 2 o
ST(0) «— ST(0) x 32-bit memory m 011 010 [mod 001 r/m[s-i-b/disp,] 23.5(22-24) 2 [}
FIDIV = Integer Divide
ST(0) «— ST(0)/18-bit memory ! 11011 11 olmoa 110 r/m[s-Hb/disp.] 87(85-89) 2 70 3
ST(Q) +— ST{0)/32-bit mamory [1 1011 010 | mod 110 r/m[s-i-b/disp.] B85.5(84—B6) 2 70 3

2378 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D WE u4B2b17?5 0127537 843 EEITLI

ln ® intel486™ DX MICROPROCESSOR
Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)
cacno o
Penalty if ecy
INSTRUCTION FORMAT Avg(Lowsr | CacheMiss | Avg(Lower | Notes
Range... Range...
Upper Range) Upper Range)
ARITHMETIC (Continued)
FIDIVR = integer Divide Reversed
ST(0) +— 16-bit memory/ST(0) [1 1011 110[mod 111 r/m[s-i-b/disp.] 87(85-89) 2 0 3
ST(0) +— 32-bit memory/ST(0) [1 1011 01 Ol mod 111 r/m! 8-i-b/ disp. l 85.5(84~-88) 2 70 3
FSQRT = Square Root |11o11 oo1rv111 1010] 85.5(83-87) 70
FSCALE = Scale ST{0) by ST(1) [11011 oo1|11n 1101] 31(30-32) 2
FXTRACT = Extract components [11011 001[1'11 oxoo] 19(16-20) 4(2-4)
of ST(0)
FPREM = Partial Reminder m01 1 001 l 1111 1000] 84(70-138) 2(2-9)
FPREM1 = Partial der (JEEE) Ln 011 oo1[x 111 ou.n] X 94.5(72-187) 5.5(2-18)
FRNDINT = Round ST(0) to integer L1 1011 00 1I1 111 11 00] 29.1(21-30) 7.4(2-8)
FABS = Absolute value of ST(0) [1101' 001[1110 0001] 3
FCHS = Change sign of ST(0) [11011 00111110 0000] 8
TRANSCENDENTAL
FCOS = Cosine of ST(0) an 001]1111 1111] 241(193-279) 2 6,7
FPTAN = Partial tangent of ST{0) [11011 oin[nn ooml 244(200-273) 70 87
FPATAN = Partial arctangent l1 1011 001 [1 111 001 1J 289(218-303) 52-17) [}
FSIN = Sine of ST(0) I11011 001[1111 1110] 241(193-279) 2 8,7
FSINCOS = Sine and cosine of ST(0) |1101 1 001[1 111 101 1] ot 201(243-320) 2 8,7
F2xM1 = 2870 — 4 [11011 oosfs111 oood] 242(140-278) 2 6
FYL2X = ST(1) x loga(ST(0)) Fwon 001[1 111 0001] 311(196-329) 13 8
FYL2XP1 = ST(1) X log2(ST(0) + 1.0) IT1 011 001 [1 111 1001] 313(171-326) 13 8
PROCESSOR CONTROL
FINIT = Initiallze FPU IT‘IDFI 011[1110 0011] 17 4
FSTSW AX = Store status word l11011 111[1110 0000] 3 S
into AX
FSTSW = Store status word [!\011 10|lmod 111 r/ml $-i-b/ disp.] 3 S
into memory
FLDCW = Load control word [11011 001][mod 101 wvm| s+vaisp. | 4 2
FSTCW = Store control word [1 1011 001 [mod 111 r/m[8--b/ disp. I 3 5
FCLEX = Clear exceptions |11011 011[1110 oo1o] 7 4
L)
FSTENV = Store environment | 11011 001 I mod 110 r/m[$-i-b/disp.]
Real and Virtual modes 16-bit Address 67 4
Real and Virtual modes 32-bit Address 67 4
Protected mode 16-bit Address 56 4
Protected mode 32-bit Address 56 4
FLDENV = Load anvironment Iﬂ 011 001 lmod 100 r/m| s-ib/disp.
Real and Virtual modes 16-bit Address a4 2
Fisal and Virtual modes 32-bit Address a“ 2
Protected mode 16-bit Address a 2
Protected mode 32-bit Address 34 2

PRELIMINARY 2.379

INTEL CORP (UP/PRPHLS) LPE D EM 482L17?5 0127538 71T MAITLL

L3
Intel486™ DX MICROPROCESSOR Intel ®
Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)
Cache Hit Concurrent
Penalty it Execution
INSTRUCTION FORMAT Avg(Lower | CacheMiss | Avg(Lowsr | Notes
Upper Range) Upper Range)
PROCESSOR CONTROL (Continued)
FSAVE = Save state [11611 101 mod 110 wm| sibrosp. |
Real and Virtual modes 16-bit Address 184 4
Real and Virtual modes 32-bit Address 1854 ‘.
Protected mode 16-bit Address 143 .
Protected mode 32-bit Addrass 143 A
FRSTOR = Restore state [11011 101]mod 100 vm] st/ |
Real and Virtual modes 16-bit Address 131 2
Real and Virtual modes 32-bit Address 131 27
Protected mode 18-bit Address 120
Protected mode 32-bit Address 120 27
FINCSTP = Increment Stack Pointer (11011 om[nn o1n] 3
Fnecs‘rp=nomm.msueumnm[no11 001[1111 o11o] 3
FFREE = Free ST()) Lnon 101[11000 ST(i)] 3
FNOP = No operations [non oo1[11o| oooo] 3
WAIT = Watt it FPU ready
{Minimum/Maximum) 13
NOTES:

1. it operand is O clock counts = 27.
2. It operand is O clock counts = 28,
3. If CW.PC indicataes 24 bit precision then subtract 38 clocks.
If CW.PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction add 17 clocks.
5. If there is a numeric srror pending from a previous instruction add 18 clocks.
8. The INT pin is polled several times while this instruction is executing to assure short interrupt latency.
7. f ABS(operand) is greater than /4 then add n clocks. Where n = (operand/(w/4)).

2-380 PRELIMINARY

INTEL CORP (UP/PRPHLS)

intel.

10.2 Instruction Encoding

10.2.1 OVERVIEW

All instruction encodings are subsets of the general
instruction format shown in Figure 10.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m”
byte and “scaled index’ byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain
encodings of the mod r/m byte indicate a second

L7E D HH 4826175 0127539 b5b ENITL)

Iintel486™ DX MICROPROCESSOR

addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. if a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 10.1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
seives. Table 10.4 is a complete list of all fields ap-
pearing in the Intel486 Microprocessor instruction
set. Further ahead, following Table 10.4, are de-
tailed tables for each field.

[TTTTT7TT{T 7771777 mod TTTe/m| ssindexbase |d32| 16| 8| none data32 | 16| 8 | none
L OJ OJL76sv:i.’eOJL'r'ssv:!ZOJL e :)
opcode “modr/m" “s-i-b” address immediate
(one or two bytes) N byte byte P displacement data
(T represents an v {4, 2, 1 bytes (4, 2, 1 bytes
opcode bit.) register and address or none) or none)
mode specifier
Figure 10.1. General Instruction Format
Table 10.4. Flelds within Intel486™ Microprocessor Instructions
Fleld Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1
d Specifies Direction of Data Operation 1
s Specifies if an immediate Data Field Must be Sign-Extended 1
reg General Register Spscifier 3
mod r/m Address Mode Spacifier (Effective Address can be a General Register) 2 for mod;
3forr/m
ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register '3
sreg2 Segment Register Specifier for CS, S8, DS, ES 2
sregd Segment Register Specifier for CS, S8, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted
or a Condition Negated 4
NOTE:
Tables 10.1-10.3 show ancoding of individual instructions.
2-381

I PRELIMINARY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

10.2.2 32-BIT EXTENSIONS OF THE
INSTRUCTION SET

With the Intel486 Microprocessor, the 8086/80186/
80286 instruction set is extended in two orthogonal
directions: 32-bit forms of all 16-bit instructions are
added to support the 32-bit data types, and 32-bit
addressing modes are made available for all instruc-
tions referencing memory. This orthogonal instruc-
tion set extension is accomplished having a Default
{D) bit in the code segment descriptor, and by hav-
ing 2 prefixes to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the In-
tel486 Microprocessor when operating in those
modes (for 16-bit defauit sizes compatible with the
8086/80186/80286),

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value “opposite”
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32-bit extensions are available in all Intel486
Microprocessor modes, including the Real Address
Mods or the Virtual 8086 Mode. in these modes the
default is always 16 bits, so prefixes are needed to
specify 32-bit operands or addresses. For instruc-
tions with more than one prefix, the order of prefixes
is unimportant.

Unless specified otherwise, instructions with 8-bit

and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

2-382

intgl.

Within the instruction are several fields indicating
register selaction, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

10.2.3 ENCODING OF INTEGER
INSTRUCTION FIELDS

10.2.3.1 Encoding of Operand Length (w) Fleld

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

G?E D EE 4382b175 0127540 378 EEITLI

Operand Size Operand Size
w Fleld During 16-Bit During 32-Bit
Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

10.2.3.2 Encoding of the General
Register (reg) Fleld

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the “mod r/m" byte, or as the r/m

field of the “mod r/m" byte.

Encoding of reg Field When w Fleld
is not Present in Instruction

Register Selected | Register Selected
reg Field| During 16-Bit During 32-Bit
Data Operations | Data Operations
000 “AX EAX
001 CcX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
110 Si ESI
i Dt EDI

PRELIMINARY |

FRRAI LRSI

INTEL CORP (UP/PRPHLS)

intal.

L7E D NN 4826175 0127541 204 EEITL]

Intel486™ DX MICROPROCESSOR

Encoding of reg Field When w Field 3-Bit sreg3 Field
is Present In Instruction Bit Segment W
Register Specitied by reg Fieid sreq3 Field Register
During 16-Bit Data Operations: 9 Selected
reg Function of w Field 000 ES
= - 001 cs
(whenw = 0) (whenw = 1) 010 ss
000 AL AX o011 DS
001 CL CX - 100 i FS
010 DL DX 101 GS
on BL BX 110 do not use
:g? é: g: 111 do not use
110 DH Sl
111 BH DI 10.2.3.4 Encoding of Address Mode
Except for special instructions, such as PUSH or §
Register Specified by reg Fleld POP, where the addressing mode is pre-determined,
During 32-Bit Data Operations the addressing mode for the current instruction is
specified by addressing bytes following the primary
reg Function of w Fleld opcode. The primary addressing byte is the “mod
(whenw = 0) (whenw = 1) r_/m" byte, ang a second pyte of addressing informa-
tion, the “s-i-b” (scale-index-base) byte, can be
000 AL EAX specified.
001 CL ECX
010 DL EDX The s-i-b byte (scale-index-base byte) is specified
011 BL EBX when using 32-bit addressing mode and the “mod
100 AH ESP t/m” byte has r/m = 100 and mod = 00, 01 or 10.
101 CH EBP When _the sib byte is present, the 32-bit addressing
110 OH ES! frinc::’ie is a function of the mod, ss, index, and base
11 BH EDI eles.

10.2.3.3 Encoding of the Segment
Register (sreg) Field

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the Intel486 Microprocessor FS
and GS segment registers to be specified.

2-Bit sreg2 Field

Segment
2-8it
sreg2 Fleld 2:1?:::2
" ES
01 cs
10 8S
1 0S

I PRELIMINARY

The primary addressing byte, the “mod r/m" byte,
also contains three bits (shown as TTT in Figure
10.1) sometimes used as an extension of the pri-
mary opcode. The three bits, however, may also be
used as a register field (reg).

When calcuiating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
tective address. When 16-bit addressing is used, the
“mod r/m” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m” byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-

codings of all 16-bit addressing modes and 32-bit
addressing modes.

2-383

INTEL CORP {UP/PRPHLS} L?E D W 4a82LL75 0127542 140 WE ITL

a
Intel486™ DX MICROPROCESSOR _ |n'l'e| .

Encoding of 16-bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[BX + Sl] 10 000 DS:[BX + Sl +d16]
00 001 Ds:{BX+Di] 10 001 DS:[BX + DI+ di6}]
00010 SS:(BP+Si] 10010 SS:[BP+SI+d16]
00 011 ss:(BP+Di] 10011 SS:[BP + DI+ d16]
00 100 Ds:[sl] 10 100 DS:[S!+d16}
00101 DS:[DI} 10 101 DS:[Dt+d16]
00 110 DS:d16 10110 Ss:[BP+d18]
00111 DS:[8X] 10111 DS:[BX +d16]
01000 DS:[BX + Si+d8] 11 000 register—see below
01001 DS:[BX + Di+ d8] 11 001 register—see below
01010 SS:[BP + SI+ds) 11010 register—see below
01011 SS:[BP + Di+d8] 11011 register——see below
01100 DS:[St+d8} 11100 register—see below
01101 DS:[Di +d8] 11101 registar—ses below
01 110 S$S:{BP+d8} 11110 register—see below
01111 DS:(BX+d8s] 11111 register—see below
Register Specified by r/m Register Specified by r/m
During 16-Bit Data Operations During 32-Bit Data Operations
mod r/m Function of w Fleid mod r/m Function of w Field
{(whenw=0) (whenw =1) (whenw=0) (whenw =1)
11 000 AL AX 11 000 AL EAX
11001 CcL CcX 11001 CcL ECX
11010 DL DX 11010 DL : EDX
11011 BL BX 11011 BL EBX
11100 AH SP 11 100 AH ESP
11101 CH BP 11 101 CH EBP
11110 DH st 11 110 DH ESI
11111 BH DI 11111 BH EDI
2384 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?E P W 4482bL75 0127543 047 WMITLL

]
Inu ® Intel486™ DX MICROPROCESSOR

Encoding of 32-bit Address Mode with “mod r/m” byte (no “‘s-i-b” byte present):

modr/m Etfective Address mod r/m Effective Address
00 000 DS:[EAX] 10 000 DS:[EAX +d32]
00 001 DS:[ECX} 10001 DS:[ECX +d32]
00010 DS:[EDX] 10010 DS:[EDX+d32]
00 011 DS:[EBX] 10011 Ds:[EBX +d32]
00100 s-i-b is present ' 10100 s-i-b is present
00101 DS:d32 10101 S$S:[EBP +d32]
00110 Ds:[ESi] 10110 DS:[ESI+d32]
00 111 OS:[EDI] 10 111 DS:[EDI+d32} -
01000 DS:{EAX +d8] 11 000 register—seo below
01001 DS:{ECX +d8]) 11 001 register-—see below
01010 DS:{EDX + d8} 11010 " register—see below
01011 DS:[EBX+d8] 11011 register—see below
01100 s-i-b is present 11100 register—see below
01101 SS:[EBP +d8] 11 101 register—see below
01110 DS:[ES! +d8} 11110 register—see below
01111 DS:[EDI +d8} 1111 register—see below
Register Specified by reg orr/m Register Specified by reg or r/m
during 16-Bit Data Operations: during 32-Bit Data Operations:
mod r/m Function of w field mod r/m Function of w field
(when w=0) {whenw=1) |- (when w=0) (whenw=1)
11000 AL AX 11 000 AL EAX
11001 CL CX 11 001 CL ECX
11010 DL DX 11010 DL EDX
11011 BL BX 11011 BL EBX
11100 AH SP 11100 AH - ESP
11101 CH BP 11 101 CH EBP
11110 DH Si 11110 DH ESI
11111 BH (o]} 11111 BH EDI

| PRELIMINARY 2.385

INTEL CORP (UP/PRPHLS) E7E D MR 482bL17?5 0127544 T13 EEMITLI

-
Intel486™ DX MICROPROCESSOR Inu
. ‘ ®
Encoding of 32-bit Address Mode (“mod r/m” byte and “s-l-b” byte present):
mod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index))] 00 x1
00 001 DS:[ECX + (scaled index)} 01 x2
00010 DS:[EDX + (scaled index)} 10 x4
00011 DS:[EBX+ (scaled index)] 11 x8
00 100 SS:[ESP + (scaled index)]
00101 DS:[d32 + (scaled index))
00110 | DS:[ESI+ (scaled index)] index Index Register
00111 DS:[EDI + (scaled index)] 000 EAX
' 001 ECX
01000 DS:[EAX + (scaled index) + d8]} 010 EDX
01001 DS:[ECX + (scaled index) + d8] 011 EBX
01010 DS:[EDX + (scaled index) + ds} 100 no index reg' .
01011 DS:[EBX + (scaled index) + d8) 101 EBP
01100 SS:[ESP + (scaled index) + d8) 110 ESi
01 101 SS:[EBP + (scaled index) + d8) 111 EDI
01110 DS:[ESI + (scaled index) + d8}
ot111 DS:[EDI + (scaled index) + d8] **IMPORTANT NOTE:
When index field is 100, indicating “no index register,” then
toue | osteaxsctssiam ol | B IST AN, e
10 001 DS:[ECX + (scaled index) + d32]
10010 DS:[EDX + (scaled index) + d32]
10011 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32}
10 110 DS:[ES| + (scaled index) + d32]
10111 DS:[ED! + (scaled index) + d32]
NOTE:
Mod field in “mod /m” byte; ss, index, base fields in
“s-i-b" byte.

2-386 PRELIMINARY |

INTEL CORP (UP/PRPHLS) L7E D HEE 4826175 0127545 95T EMMITLYL

-
|nte| o Intel486™ DX MICROPROCESSOR
10.2.3.5 Encoding of Operation :
Directlor? @ Flpel g Mnemonic Condition ttin
0 Overflow 0000
In many two-operand instructions the d field is pres- NO No Overflow 0001
ent to indicate which operand is considered the B/NAE Below/Not Above or Equal 0010
source and which is the destination. NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
d Direction of Operation NE/NZ Not Equal/Not Zero 0104
0 Register/Memory < Register BE/NA Below or Equal/Not Above 0110
“reg” Field Indicates Source Operand; NBE/A Not Below or Equal/Above 0111
“mod r/m” or “mod ss index base” Indicates S Sign) 1000
Destination Operand ;‘/Sp EOt Sign 1001
- " E arity/Parity Even 1010
1 | Register <--Register/Memory NP/PO Nottgarity/Parity Odd 1011
“reg F'e'f’, Ind‘l‘cates Dgstmatlon C,),pera'nd; L/NGE Less Than/Not Greater or Equal | 1100
mod r/m” or “mod ss index base” Indicates NL/GE Not Less Than/Greater or Equal | 1101
Source Operand LE/NG | Less Than or Equal/Greater Than | 1110
NLE/G Not Less or Equal/Greater Than | 1111

10.2.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with im- 10.2.3.8 Encoding of Control or Debug
mediate data fields. The s field has an effect only if or Test Register (eee) Fleld
the size of the immediate data is 8 bits and is being

placed in a 16-bit or 32-bit destination. For the loading and storing of the Control, Debug

and Test registers.

Effecton Effect on When Interpreted as Control Register Field
s Immediate immediate
eee Cod Reg N
Data8 Data 16|32 Code g Tame
000 CRO
0 None None 010 CR2
£ 011 CR3
1 Sign-Extend Data8 to Fill None :
16-Bit or 32-Bit Destination Do not use any other encoding

' When Interpreted as Debug Register Fleld

10.2.3.7 Encoding of Conditional eee Code Reg Name
Test (tttn) Fieid 000 DRO
For the conditional instructions (conditional jumps 001 DR1
and set on condition), tttn is encoded with n indicat- 010 DR2
ing to use the condition (n=0) or its negation (n= 1), 011 DR3
and ttt giving the condition to test. 110 DR6
11 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
011 TR3
100 TR4
101 TR5
110 TRé
111 TR7

Do not use any other encoding

I PRELIMINARY 2-387

INTEL CORP (UP/PRPHLS) E7E D IR 482b1l7?5 012754L 895 EMITLYL

Intel4d86™ DX MICROPROCESSOR i ntel »
Instruction Optional
First Byte Second Byte Fields

1 11011 OPA 1 mod 1 OFB r/m s-i-b disp
2 11011 MF OPA mod OPB r/m s-i-b disp
3 11011 P OPA 1 1 orPB ST()
4 11011 0 1 1 1 1 oP
5 11011 1 1 1 1 oP
' 15-11 10 9 8 7 6 5 43210

10.2.4 ENCODING OF FLOATING POINT d = Destination ’

INSTRUCTION FIELDS 0—Destination is ST(0)

1—Destination is ST(j)
Instructions for the FPU assume one of the five
forms shown in the following table. In all cases, in- R XOR d
structions are at least two bytes long and begin with R XOR d
the bit pattern 11011B.

0—Destination (op) Source
1—Source (op) Destination

[l

ST()) = Register stack element /

OP = Instruction opcode, possible split into two 000 = Stack top
fields OPA and OPB ' 001 = Second stack element
: .
MF = Memory Format .
00—32-bit real U]
01—32-bit integer 111 = Eighth stack element
10—64-bit real
11—16-bit integer mod (Mode field) and r/m (Register/Memory specifi-
or) have the same interpretation as the correspond-
P = Pop ing fields of the integer instructions.
0—Do not pop stack
1—Pop stack after operation s-i-b (Scale Index Base) byte and disp (displace-
ment) are optionally present in instructions that have
mod and r/m fields. Their presence depends on the
values of mod and r/m, as for integer instructions.
2-388 PRELIMINARY I

INTEL CORP

intel.

11.0 DIFFERENCES BETWEEN THE

Intel486T™ MICROPROCESSOR
AND THE 386
MICROPROCESSOR PLUS THE
387 MATH COPROCESSOR
EXTENSION -

The differences between the intel486 Microproces-
sor and the 386 Microprocessor are due to perform-
ance enhancements. The differences between the
microprocessors are listed below.

1.

2.

Instruction clock counts have been reduced to
achieve higher performance. See Saction 10.

The Intel486 Microprocessor bus is significantly
faster than the 386 Microprocessor bus. Differ-
ences include a 1X clock, parity support, burst
cycles, cacheable cycles, cache invalidate cycles
and 8-bit bus support. The Hardware Interface
and Bus Operation Sections (Sections 6 and 7) of
the data sheet should be carefully read to under-
stand the Intel4B86 Microprocessor bus function-
ality.

. To support the on-chip cache new bits have been

added to contral register 0 (CD and NW) (Section
2.1.2.1), new pins have been added to the bus
(Section 6) and new bus cycle types have been
added (Section 7). The on-chip cache needs to
be enabled after reset by clearing the CD and
NW bit in CRO.

. The complete 387 math coprocessor instruction

set and register set have been added. No 1/0
cycles are performed during Floating Point in-
structions. The instruction and data pointers are
set to 0 after FINIT/FSAVE. Interrupt 9 can no
longer occur, interrupt 13 occurs instead.

. The Intel486 Microprocessor supports new float-

ing point error reporting modes to guarantee
DOS compatibility. These new modes required a
new bit in control register 0 (NE) (Section 2.1.2.1)
and new pins (FERR+# and IGNNE#) (Section
6.2.13 and 7.2.14),

. In some cases FERR # is asserted when the next

floating point instruction is encountered and in
other cases it is asserted before the next floating
point instruction is encountered, depending upon

PRELIMINARY

(UP/PRPHLS)

10.

11,

12.

13.

14.

B?E D WE 482LL7?5 0127547 722 EEITL]

intel486™ DX MICROPROCESSOR

the execution state the instruction causing ex-
ception (see Sections 6.2.13 and 7.2.14). For
both of these cases, the 387 Math Coprocessor
asserts ERROR# when the error occurs and
does not wait for the next floating point instruc-
tion to be encountered.

. Six new instructions have been added:

Byte Swap (BSWAP)
Exchange-and-Add (XADD)

Compare and Exchange (CMPXCHG)
Invalidate Data Cache {INVD)

Write-back and Invalidate
{(WBINVD)

Invalidate TLB Entry (INVLPG)

Data , Cache

. There are two new bits defined in control regis-

ter 3, the page table entries and page directory '
entries (PCD and PWT) (Section 4.5.2.5).

. A new page protection feature has been added.

This feature required a new bit in control register
0 (WP) (Section 2.1.2.1 and 4.5.3).

A new Alignment Check feature has been add-
ed. This feature required a new bit in the flags
register (AC) (Section 2.1.1.3) and a new bit in
control register 0 (AM) (Section 2.1.2.1).

The replacement algorithm for the translation
lookaside buffer has been changed from a ran-
dom algorithm to a pseudo least recently used
algorithm like that used by the on-chip cache.
See Section 5 5 for a description of the algo-
rithm.

Three new testability registers, TR3, TR4 and
TRS, have been added for testing the on-chip
cache. TLB testability has been enhanced. See
Section 8.

The prefetch queue has been increased from 16
bytes to 32 bytes. A jump always needs to exe-
cute after modifying code to guarantee correct
execution of the new instruction.

After reset, the ID in the upper byte of the DX
register is 04. The contents of the base regis-
ters including the floating point registers may be
different after reset.

2-389

INTEL CORP {UP/PRPHLS}

Intel486™ DX MICROPROCESSOR

12.0 OVERDRIVE PROCESSOR
SOCKET

Inclusion of the OverDrive Processor Socket in sys-
tems based on Intel486 DX Microprocessors pro-
vides the end-user with an easy and cost-effective
way to increase system performance. The paradigm
of simply installing an additional component into an
empty OverDrive Processor Socket to achieve en-
hanced system performance is familiar to the mil-
lions of end-users and dealers who have purchased
Intel Math CoProcessor upgrades to boost system
floating point performance. The OverDrive Proces-
sor provides an overall performance increase for
systems based on Intel486 DX Microprocessors.

As a new system architectural featurs, the provision
of the OverDrive Processor Socket as a means for
PC users to take advantage of the ever more rapid
advances in software and hardware technology will
help to maintain the competitiveness of X86 PC-
compatible systems over other architectures into the
future. .

The majority of upgrade installations which take ad-
vantage of the OverDrive Processor Socket will be
performed by end-users and resellers. Therefore, it
is important that the design be “end-user easy”, and
that the amount of training and technical expertise
required to install the OverDrive Processor be mini-
mized. Upgrade installation instructions should be
clearly described in the system user's manual. In ad-
dition, by making installation simple and foolproof,
PC manufacturers can reduce the risk of system
damage, warranty claims and service calls. Feed-
back from Intel's Math CoProcessor customers high-
lights three main characteristics of end-user easy
designs: accessible OverDrive Processor Socket lo-
cation, clear indication of component orientation,
and minimization of insertion force.

OverDrive Processor Socket Location: The Over-
Drive Processor Socket for Intel486 DX and intel486
SX Microprocessor based systems is an empty
socket which can be located on either the mother-
board or modular CPU card. The OverDrive Proces-
sor Socket should be easily accessible for instalia-
tion and readily visible when the PC case is re-
moved. The OverDrive Processor Socket should not
be located in a position that requires removal of any
other hardware (such as hard disk drives) in order to
install the OverDrive Processor. Since Math CoProc-
essor sockets are typically found near the CPU
socket on the motherboard, similarly locating the
OverDrive Processor Socket near the CPU further
adds to the ease of installation.

2-390

L?E D

intel.

Component Orientation: The most common mis-
take made by end-users and resellers when install-
ing Math CoProcessor upgrades is incorrect orienta-
tion of the chip. This can result in irreversible dam-
age to the chip and/or the PC. To solve this prob-
lem, Intel has designed the OverDrive Processor
with a2 169 pin Pin Grid Array (PGA) pinout, with the
169th pin as a non-electrical “key pin” used to en-
sure proper orientation of the OverDrive Processor
by the PC user. The OverDrive Processor Socket
should, therefore, be a 169 pin PGA socket compati-
ble with the OverDrive Processor pinout.() In addi-
tion, the location of the key pin should be clearly
marked on the motherboard or CPU card, for exam-
ple by silk screening.

Insertion Force: The third major concern.voiced by
end-users refers to how much pressure should be
axerted on the chip and PC board for proper installa-
tion without damage. This becomes even more of a
concern with the larger 169 pin components which
require up to 150 pounds of pressure for insertion
into a standard screw machine socket. This level of
pressure can easily result in cracked traces and
stress to solder joints. To minimize the risk of sys-
tem damage, it is recommended that a Zero Inser-
tion Force (ZIF) socket be used for the OverDrive
Processor Socket. Designing with a ZIF socket elimi-
nates the need to design in additional structural sup-
port to prevent flexing of the PC board during instal-
lation, and results in improved end-user and reseller
product satisfaction due to easy ‘“‘drop-in” installa-
tion.

12.1 OverDrive Processor Overview

The Intel OverDrive Processor is essentially an en- |
hanced Intel486 Microprocessor. There are three
functional differences between the Intel OverDrive
Processor and Intel486 Microprocessors. First, the
Intel OverDrive Processor has an internal clock dou-
bling circuit which decreases the time required to
execute instructions. Second, the intel OverDrive
Processor does not support the JTAG boundary
scan test feature (available with the PQFP version of
the Intel486 DX Microprocessor). Third, the Intel
OverDrive Processor has a different CPU revision
identification than the Intel486 DX CPU. These three
differences are described in the following sections
according to how they effect the CPU functionality.

12.1.1 HARDWARE INTERFACE

The Intel OverDrive Processor bus has been de-
signed to be identical with the Intel486 Microproces-
sor bus. Although the externai clock is internally
doubled and data and instructions are manipulated
in the CPU core at twice the external frequency, the
external bus is functionally identical with the Intel486
CPU.

PRELIMINARY I

M 432L17?5 0127548 LL9 W ITLL

INTEL CORP (UP/PRPHLS)

intgl.

The four boundary scan test signals (TCK, Test
clock; TMS, Test Mods select; TDI, Test Data Input;
TDO, Test Data Qutput), defined for the PQFP Intel
486 SX CPU, are not specified for the Intel Over-
Drive Processor.

The UP # (Upgrade Present) signal, which is defined
as an input for the PQFP Intel486 CPU, is an output
signal on the Intel OverDrive Processor. The UP#
pin on the Intel OverDrive Processor provides a logi-
cal low output signal which can be used to enable
logic to recognize and configure the system for the
Intel OverDrive Processor.

The DX register always contains the component
identifier at the conclusion of RESET. The intel
OverDrive Processor has a different revision identifi-
er in the DL register than the Intel486 DX Microproc-
essor. When the OverDrive Processor is instalied in
a system the component identifier is supplied by the
OverDrive Processor, rather than the original CPU.
The stepping identification portion of the component
identification will change with different revisions of
the OverDrive Processor. The designer should only
assume that the component identification for the
OverDrive Processor will be 043xH, where ‘X’ is the
stepping identifier.

12.1.2 TESTABILITY

As detailed in Section 13.1.1, the Intel OverDrive
Processor does not support the JTAG boundary
scan testability feature.

12.1.3 INSTRUCTION SET SUMMARY

The Intel OverDrive Processor supports all Intel486
extensions to the 8086/80186/80286 instruction
set. In general, instructions will execute faster on the
Intel OverDrive Processor than the Inteld86 Micro-
processor. Specifically, an instruction that only uses
memory from the on-chip cache executes at the full
core clock rate while all bus accesses execute at the
bus clock rate. To calculate the elapsed time of an
instruction, the number of clock counts for that in-
struction must be muitiplied by the clock period for
the system. The instruction set clock count summary
tables from Section 10.0 can be used for the Over-
Drive Processor witth the following modifications:

— Clock counts for a cache hit: This value repre-
sents the number of internal CPU core clocks for
an instruction that requires no external bus ac-
cesses or the base core clocks for an instruction
requiring external bus accesses.

— Penalty clock counts for a cache miss: This value
represents the worst-case approximation of the
additional number of external clock counts that
are required for an instruction which must access

I PRELIMINARY

G7E D WM 482b175 0127549 5T5 ERITLY

Iintel486™ DX MICROPROCESSOR

the external bus for data (a cache miss). This num-
ber must be muitiplied by 2 to convert it to an equal
number of internal CPU core clock counts and add-
ed to the base core clocks to compute the total
number of core clocks for this instruction.

The actua! number of core clocks for an instruction
with a cache miss may be less than the base clock
counts (from the cache hit column) plus the penalty
clock counts (2 times the cache miss column num-
ber). The clock counts in the cache miss penalty
column can be a cumulative value of external bus
clocks (for data reads) and internal clocks for manip-
ulating the data which has been loaded from the ex-
ternal bus. The number of clocks which are related
to external bus accesses are correctly represented
in terms of internal core clocks by multiplying by two.
However, the clock counts related to internal data
manipulation should not be multiplied by two. There-
fore the total number of CPU core clock counts for
an instruction with a cache miss represents a worst-
case approximation.

To caiculate the execution time for an OverDrive
Processor instruction, multiply the total CPU core
clock counts by the core clock period. For example,
in a 26 MHz system the core clock period is 50 ns
(1/50 MH2). .

Additionally, the assumptions specified below
should be understood in order to estimate instruc-
tion exscution time.

A cache miss will force the OverDrive Processor to
run an external bus cycle. The Intel486 DX micro-
processor 32-bit burst bus is defined as r—b—w.

Where:

r = The number of bus clocks in the first cycle of a
burst read or the number of clocks per data
cycle is a non-burst read.

b = The number of bus clocks for the second and
subsequent cycles in a burst read.

w = The number of bus clocks for a write.

The fastest bus the OverDrive Processor can sup-
port is 2—1—2 assuming 0 wait states. The clock
counts in the cache miss penalty column assume a
2-—-1-2 bus. For slower busses add r—2 clocks to
the cache miss penalty for the first dword accessed.
Other factors also affect instruction clock counts.

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes at
all times. Else add bus clocks to reads until the
bus is available

2. Accesses are aligned. Add three core clocks to
each misaligned access.

2-391

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

3. Cache fills complete before subsequent accesses
to the same line. If a read misses the cache dur-
ing a cache fill due to a previous read or prefetch,
the read must wait for the cache fill to complete. If
a read or write accessses a cache line still being
filled, it must wait for the fill to complete.

. If an effective address is calculated, the base reg-
ister is not the distination register of the preceding
instruction. If the base register is the destination
register of the preceding instruction add 1 to the
core clock counts shown. Back-to-back PUSH
and POP instructions are not affected by this rule.

5. An effective address calculation uses one base

register and does not use an index register..

However, if the effective address calculation
uses an index register. 1 core clock may be add-
ed to the clock shown.

. The target of a jump is in the cache. If not, add r
clocks for accessing the destination instruction
of a jump. If the destination instruction is not
completely contained in the first dword read, add
a maximum of 3b bus clocks. If the destination
instruction is not completely contained in the first
16 byte burst, add a maximum of another r+3b
bus clocks.

. If no write buffer delay, w bus clocks are added
only in the case in which all write buffers are full.

2-392

8.

10.

11.

12,

L7E D WE 482bL17?5 0127550 217 WEITLY

]

intgl.
Displacement and immediate not used together.
If displacement and immediate used together, 1

core clock may be added to the core clock count
shown.

No invalidate cycles. Add a delay of 1 bus clock
for each invalidate cycle if the invalidate cycle
contends for the internal cache/external bus
when the OverDrive Processor needs to use it.

Page translation hits in TLB. A TLB miss will add
13, 21 or 28 bus clocks + 1 possible core clock
to the instruction depending on whether tha Ac-
cessed and/or Dirty bit in neither, cne or both of
the page entries needs to be set in memory. This
assumes that neither page entry is in the data
cache and a page fault does not occur on the
address translation.

No exceptions are detected during instruction
execution. Refer to interrupt core Clock Counts
Table for extra clocks if an interrupt is detectad.

Instructions that read multiple consecutive data
items (i.e., task switch, POPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. if not, an extra cache line fill -
may be necessary which may add up to (r+ 3b)
bus clocks to the cache miss penalty.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

12.2 Intel OverDrive™ Processor
Circuit Design

Figure 12.1 shows the interface circuit for the
Intel486 DX CPU and the OverDrive Processor sock-
et. This circuit allows Inteld86 DX CPU-based sys-
tems to be upgraded with the OverDrive Processor.

12.2.1 UPGRADE CIRCUIT FOR PGA INTEL486
DX BASED SYSTEMS

The Inte! OverDrive Processor Socket Circuit for In-
tel486 DX CPU based systems allows the Intel486
DX CPU complete control of the system when the
Intel OverDrive Processor Socket is unpopulated.
The HLDA signa! from the Intel OverDrive Processor
Socket should be tied low through a resistor whils
the UP# and FERR# signals from the Intel Over-
Drive Processor Socket should be tied high through
a resistor to insure that the Intel486 DX CPU func-
tions correctly when an Intel OverDrive Processor
Socket component is not installed.

When the Intel OverDrive Processor is installed, the
Upgrade Present output, UP# pin, causes the
FLUSH# and BOFF # signals to be driven active to
the Intel486 DX CPU. When the Intel486 DX CPU

intel486™ DX MICROPROCESSOR

samples FLUSH # active during reset, the Intel486
DX CPU enters tri-state output test mode after reset,
which causes the Intel486 DX CPU to float all of its
output signals. To float most of the Intel486 DX
CPU’s output pins before the end of reset, BOFF #
is also driven active to the intel486 DX CPU. BOFF #
immediately causes all output signals to float except
PCHK #, BREQ, HLDA and FERR #,

il addition to floating the Intel486 DX CPU’s outputs,
the Intel486 DX CPU's HLDA and FERR# signals
must be gated to prevent potential bus contention
with the Intel OverDrive Processor's HLDA and
FERR# signals during reset. During reset the In-
tel486 DX CPU may not recognize HOLD active be-
cause BOFF# is driven active to the Intel486 DX
CPU by the Intet OverDrive Processor. If the Intel486
DX CPU does not recognize HOLD active, it will not

drive HLDA active. However, the Intel OverDrive %

Processor will recognize HOLD active and drive
HLDA. By gating the HLDA signals from the Intel486
DX CPU and Intel OverDrive Processor Socket, bus
contention is avoided if HOLD is driven active during
reset. Because the state of FERR# is undefined
during reset, bus contention is also avoided by gat-
ing FERR #.

B ck

CTRL

ADDR

DATA

DATA ADDR CTRL

ig

HLDA

DATA ADDR CTRL

—P cLK HLDA

OVERDRIVE™ yp#
PROCESSOR

BOFF#

IGNNE# FERR# HOLD

—
FLusHe D_—_"—:D——C FLUSH# R
Intel PGA
—
[
o~

D> cLx HLDA

1486 ™M DX
HOFF#

IGNNE# FERR# HOLD

T 71 -

I?I

I HOLD

]

A
Vv
o
AAA
vy
o
AA
VWY
£

Do

FERR#®

IGNNE# Vec BOFF# FLUSH#

240440-96

Figure 12.1. Intel OverDrive™ Socket Circuit Diagram for PGA Intel486™ DX CPU Based Systems

I PRELIMINARY

2-393

L7E D EB 482b6175 0127551 153 EMITL)

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

12.3 Socket Layout

B7E D W 4826175 0127552 09T EITL)Y

-

intel.
Table 12.1. OverDrive Processor, 169-Pin, PGA
Package Dimensions with Heat Sink Attached

This section discusses three aspects for the Over-
Drive Processor Socket: size, upgradability, and ven- Dimension (inches) | Minimum | Maximum
dors. A. Heat Sink Width 1.520 1.550

B. PGA Package 1.735 1.765
12.3.1 PHYSICAL DIMENSIONS Width
The OverDrive Processor Socket for Intel486 DX mi- C. Heat Sink Edge 0.065 0.155
croprocessor-based systems is equivalent to a stan- Gap
dard 169-lead PGA package. D. Heat Sink Height 0.212 0.260
The OverDrive Processor will be provided with a E. Adhesive 0.008 0.012
heat sink attached (see Figure 12-2), to dissipate Thickness
heat. F. Package Height 0.140 0.180
The maximum and minimum dimensions of the from Stand-Offs
OverDrive Processor package with the heat sink are G. Total Height from 0.360 0.452
shown in Table 12-1. Stand-Offs to Top

of Heat Sink
B
_.I ¢ |e—
f A o
OVERDRIVE PROCESSOR
OMNI~DIRECTIONAL HEAT SINK D 6
ADHESIVE i
Pram——
UPGRADE PROCESSOR, 169 PIN, PGA PACKAGE I f
| I 1 | l
240440-98

Figure 12.2. Intel OverDrive™ Processor, 169-Pin, PGA Package with Heat Sink Attached

2-394

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D W 4826175 0127553 Teb EEITLY

»
Intel . Intel486™ DX MICROPROCESSOR

SEATING
D PLANE : .
D‘ S.l—» f— AS_’ [
_ L L
250000000 OOOCOOO|]
i‘ (ONONCRORCNONORONOROROJOJOROXOXCKO)] f
10XON - NORORONORCRORORONONO RO - JOXO] o
(ONONO] (OXONO]
(ONONO] @6 SEATING
ATIN
[CXOXO] — _ O OXO) PLANE
OROXC) 0e® @B (ALL PINS)
O e / \ @O0 1
@6 (ONONON I
@00 ©ee ¥
PIN C3 @06 [ONOXOC) SWAGGED
Neoo N S @ee N
@ @ @e®
ORCYOXO] [OJORC!
(ONON © JORONONONONONONOROROROK - JOXO)
ONONONONONCRONONONORORORONONOAOKC)
L@@@@@@@@@@@@@@@@
2.29 SWAGGED ——X A
T.52 NEF- PIN Ay bar
45° CHAMFER (4 PL) st
(INDEX CORNER)
240440-99
Family: Ceramic Pin Grid Array Package
Symbol Millimeters inches
Min Max Notes Min Max Notes
A 3.56 457 0.140 0.180
Ay 0.64 1.14 SOLIDLID 0.025 0.045 SOLID LID
Az 28 3.5 SOLID LID 0.110 0.140 SOLID LID
Ag 1.14 1.40 0.045 0.055
B - 0.43 0.51 0.017 0.020
D 44,07 44.83 1.735 1.765
Dy 40.51 40,77 1.595 1.605
84 2.29 279 0.090 0.110
L 254 3.30 0.100 0.130
169 169
S4q 1.52 [2.54 0.060 [0.100
ISSUE WS REVX 7/15/88

Figure 12.3. Intel OverDrive™ Processor, 169-Lead Ceramic PGA Package Dimensions

l PRELIMINARY ' 2.395

INTEL CORP (UP/PRPHLS) E7E D EM 442b1l75 0127554 Sk WEITLY

Inteld86™ DX MICROPROCESSOR intel ®
Table 12.2. Intel OverDrlve™ Processor Ceramic PGA Package Dimension Symbols
Ls'y“"f;;r Description of Dimensions
A Distance from seating plane to highest point of body
A4 Distance between seating plane and base plane (lid)
Ay Distance from base plane to highest point of body
Aj Distance from seating plane to bottom of body
B Diameter of terminal lead pin
D Largest overall package dimension of length
D4 - Abody length dimension, outer lead center to outer lead center
©1 Linear spacing between true lead position centerlines
L Distance from seating plane to end of lead
$4 Other body dimensicn, outer lead center to edge of body

NOTES:

1. Controlling dimension: mitlimeter.

2. Dimension “e4" ("e”) is non-cumulative.

3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions “B”, “B¢" and "C" are nominal.

5. Details of Pin 1 identifier are optional.

0.030 —»| }e—
0.120 X 45° le— 0.970 0.283 12X 0.060 £0.010 l
JUuoOooooogagqg cumy e
0goonooDoPpoQq f 5 | o
Er‘nﬁnnnnn:}g{ - Qi’
a hog
UE hod 1100-H14—\
8083-T5 ag aqg
oqg g oq 0.970 [5]0.004] 1.540
ag ifake
A gg ;gg A 2X 0.080 t0.00Gl [2x 0.040 REF
8 boorooooatag 11X 0.060 £0.008 .
ch:gnuunu_u_q_D;__] 0.285 } I g ?
aanAaaooaOonaonrn 1
] |— 12x 0.083 { t
13X 0.060 0.157 £0.010 — -
1536 e 0.079 REF
0.250
0.015 £0.010
0.222
LAAsARannnn {
}
SECTION A=A
240440-A0

Dimensions are in inches

Figure 12.4. Intel OverDrive™ Processor Heat Sink Dimensions

239 | PRELIMINARY |

INTEL CORP (UP/PRPHLS) G7E D N 482b175 0127555

-
Inte| , Intel486™ DX MICROPROCESSOR

12.3.2 “END USER EASY” UPGRADABILITY

PC buyers value easy and safe upgrade installation. PC manufacturers can make the Intel OverDrive Proces-
sor installation in the Intel OverDrive Processor Socket simple and foolproof for the end user and reseller by
implementing the suggestions listed in Table 12-3.

Table 12.3. Socket and Layout Considerations

“End User Easy”

Feature Implementation

Visible OverDrive Processor Socket | The Intel OverDrive Processor Socket should be easily visible when
the PC’s cover is removed. Label the Intel OverDrive Processor Socket
and the location of pin 1 by silk screening this information on the PC

board.
Accessible Overdrive Processor Make the Intel OverDrive Processor Socket easily accessible to the
Socket end user (i.e., do not place the Intel OverDrive Processor Socket under

a disk drive). If a Low Insertion Force (LIF) or screw machine socket is
used, position the Intel OverDrive Processor Socket on the PC board
such that there is ample clearance around the socket.

Foolproof Chip Orientation Intel packages all Intel OverDrive Processors in a 169-pin, PGA
package. The 169th pin is calied the “key" pin and insures that the
Intel OverDrive Processor fits into a 169-pin socket in only the correct
orientation. Supplying a 169-pin socket as the Intel OverDrive
Processor Socket eliminates the possibility of end users or ressllers
damaging the PC board or Intel OverDrive Processor by powering up
the system with the Intel OverDrive Processor incorrectly oriented.

Zero Insertion Force The high pin count of the Intel OverDrive Processor makes the
Upgrade Socket insertion force required for installation in a screw machine PGA socket
excessive for end users or resellers. Even most Low Insertion Force
(LIF) sockets often require more than 60 Ibs. of insertion force. A Zero
Insertion Force (ZIF) socket insures that the chip insertion force does
not damage the PC board. If the ZIF socket has a handle, be sure to
allow enough clearance for the socket handle. if a LIF or screw
machine socket is used, additional PC board support is recommended.

“Plug and Play” Jumper or switch changes should not be needed to slectrically ~
configure the system for the Intel OverDrive Processor.

Thorough Documentation Describe the Intel OverDrive Processor’s installation procedurs in the
PC's User's Manual.

I PRELIMINARY 2397

6T9 ERITLY

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

12.3.3 ZIF and LIF SOCKET VENDORS

The following lists provide examples of sockets
which can be used as the Intel OverDrive Socket for
Intel486 DX CPU based systems.

NOTE: :
This is not a comprehensive list. Intel has not test-
ed the sockets listed below and cannot guarantee
that these sockets will meet every PC manufactur-
er's specific requirements.

Zero Insertion Force Upgrade Sockets and
Vendors:

1. AMP Inc.
P.O. Box 3608
Harrisburg, PA 17105-3608
Tel: (800) 522-6752
Part Number: 55287-3
Contact: Rick Simonic, New Product Manager
(717) 561-6143

2. Aries Electronics
P.O. Box 130
Frenchtown, NJ 08825
Tel: (908) 996-6841
Part Number: 169-PRS17012-10
Contact: Frank Folmsbes, Marketing Manager
(908) 996-6841

3. JAE
599 N. Mathilda Ave., Suite 8
Sunnyvale, CA 94086
Tel: (408) 733-0493
Part Number: PCPS-169-002
Contact: Bob Gerleman, Western Sales Manager
(408) 733-0493

4. Thomas and Betts
200 Executive Center Drive
P.O. Box 24901
Greenville, SC 29616-2401
Tel: (803) 676-2900
Part Number: PGA169A17-S-1AC
Contact: Scott Roland,
Product Marketing Manager
(803) 676-2910

5. Yamaichi Electronics
1420 Koll Circle, Suite B
San Jose, CA 95112
Tel: (408) 452-0797
Part Number: NP111-16911-G4
Contact: Jim Bennett, Sales Manager
(408) 452-0797

2-398

B7E D HH 4862b1l7?5 0L27556 735

intgl.

Low Insertion Force Sockets and Vendors:

1. AMP Inc.
P.O. Box 3608
Harrisburg, PA 17105-3608
Tel: (800) 522-6752
Part Number:
(Premium Base Material) 55589-5
{Standard Base Material) 916227-3

2. Thomas and Betts
200 Executive Center Drive
P.O. Box 24901
Greenville, SC 29616-2401
Tel: {803) 676-2900
Part Number: LPG168A17-S-1AC

12.4 Thermal Management

The OverDrive Processor Socket must be designed
to dissipate the heat generated by the OverDrive
Processor. In the following Sections the airflow re-
quired over the OverDrive Processor Socket is cal-
culated for a hypothetical system design.

12.4.1 THERMAL CALCULATIONS FOR
HYPOTHETICAL SYSTEM

The maximum temperature specification for the
OverDrive Processor is 85°C (with heat sink at-
tached). Therefore, the temperature of the heat sink
surface (Tg) cannot exceed 85°C under the worst
case specified operating conditions for the system.
The variables which affect the heat sink temperature
include ambient temperature inside the system box
(Ta). Vce. and lce. An equation for the approximate
OverDrive Processor temperature (Ts) is:

Tg = Tp + Power * 0ga where Power = Veg * loc
In the above equation, the variables under worst
case conditions are specified as follows:

Tg: Specified as B5°C for the OverDrive Processor
(Ses Figure 12-5).

Ta: Specified by the PC manufacturer for the
worst case system operating conditions.

Vee: Specified for the OverDrive Processor as 5V.

lcc: Specified for the OverDrive Processor and re-
lated to clock frequency.

Osa: 0sa = 04a — s
0,4 and 8 g are specified in Table 13-4.

PRELIMINARY I

BITLL

INTEL

CORP (UP/PRPHLS)

L?E D WE 4826175 0127557 b7l WEITLL

Intel486™ DX MICROPROCESSOR

Thermacouple

Name Plats /
m H.u‘ Si“k

Adhesive

%

/7, —

[——~— PGA Package

240440-A1

Figure 12.5. Heat Sink Measurement (0.005" Dia. Thermocouple) on the Center of Heat Sink with a 90°
Angle Adhesive Bond Through a Hole Drilled Through the Center of the Name Plate.

The OverDrive Processor for Intel486 DX CPU-
based systems will be provided with a heat sink. The
8,5 and 94 values for the OverDrive Processor with
a heat sink are shown in Table 12-4. The maximum
Ta values for the 256 MHz and 33 MHz OverDrive
Processor are shown in Table 12.5. The maximum
Ta values shown in Table 12-5 were calculated us-
ing Tg = 85°C, Vg = 5V, the maximum lgg values,
and the 8,4 and 8,5 values shown in Table 12-4,

Table 12.4. Thermal Resistance
("C/W) 8y and 0,

OverDrive 8ys Airflow (ft/min, LFM)

with Heat Sink| 2 s°c/w| 0* | 200! 400|600] 800

84a CC/W) 14.0110.0{75|6.2|5.7

NOTE:

*The thermal resistance from the junction to ambient (8,A)
in static air is actually a linear function of power dissipation.
The value shown in the table (14.0 °C/W) represents the
worst case expected value.

Table 12.5. Maximum T, for 25 MHz and
33 MHz OverDrive Processor

OverDrive Linear Alrflow (ft/min)
Processor
with Heat | ¢
CLK
sink | Mty | © | 200 400 | 600 | 800
Ta 25 |30{ 49 | 61| 67 | 70
¢C) 33 |16} 40 | 55 | 63 | 66

I PRELIMINARY

12.4.2 HEAT SINKS

The OverDrive Processor is shipped with a heat sink 3
attached. Because of the heat sink, it is vital that 2

vertical clearance is provided for the OverDrive I

Processor Socket. The height of the package and
the heat sink is shown in Table 12-1 in Section
12.2.1.

12.5 BIOS and Software

The following should be considered when designing
the Upgrade Socket for a Intel486 DX2 microproces-
sor-based system.

12.5.1 INTEL OVERDRIVE PROCESSOR
DETECTION

The component identifier and stepping/revision
identifier for the Intel OverDrive Processor is read-
able in the DH and DL registers respectively, inme-
diately after RESET, where

DH = 15h

DL = 30h-3Fh

2-399

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

As it is difficult to differentiate betwee the Intel486
DX CPU and the Intel OverDrive Processor in soft-
ware, it is recommended that the BIOS save the
contents of the DX register, immediately after RE-
SET, so that this information can be used later, if
required, to identify an intel OverDrive Processor in
the system.

12.5.2 TIMING DEPENDENT LOOPS

The Intel OverDrive Processor executes instructions

at twice the frequency of the input clock. Thus soft-
ware (or instuction based) timing loops will execute
faster on the Intel OverDrive Processor than on the
Intel486 DX or Intel486 SX CPU (at the same input
clock frequency). Instructions such as NOP, LOOP,
and jMP $ + 2, have been used by BiOS to imple-
ment timing loops that are required, for example, to
enforce recovery time between consecutive access-

2-400

G7E D WE 4826175 0127558 508 EEITLYL

intel.

es for I/0 devices. These instruction based, timing
loop implementations may require modification for
systems intended to be upgradable with the intel
OverDrive Processor.

In order to avoid any incompatibitities, it is recom-
mended that timing requirements be iimplemented in
hardware rather than in software. This provides
transparency and also does not require any change
in BIOS or 1/0O device drivers in the future when
moving to higher processor clock speeds. As an ex-
ample, a timing routine may be implemented as fol-
lows: The software performs a dummy 1/0O instruc-
tion to an unused 1/0 port. The hardware for the bus
controller logic recognizes this 1/0 instruction and
delays the termination of the |/O cycle to the CPU
by keeping RDY # or BRDY # deasserted for the ap-
propriate amount of time.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D HEE 4826175 0127559 444 EEITLL

=
i ntel . Intel486T™ DX MICROPROCESSOR
12.6 OverDrive Processor Socket Pinout
A B C D E F 6 H 4 K L M N P Q R s
1 ﬁzo 019 D1t 09 Yss oP1 Vss Vss Vee Vss Vss Vss Dz o0 A31 28 az27 |
o O 0O 0O 0O 0 0 0o 0o o o
2 022 021 018 013 VYec D8 V¢ D3 DS Yee 06 Yoo D1 A29 Vss a25 a26 | 2
¢ O 0O 0O O O O ©°
3 NC Yss clx D17 D10 D15 D12 DPZ DI§ D14 D7 Dé DPO A30 A17 Vec A23 | 3
O 0 0O 0O 0 0O 0O O 0O 0O 0O o©
4] p23 V¥ss Vo KEY At Vss Nc | 4
o} o O O
5] op3 Vss Veo A21 A8 A4 | 5§
o)
6| 024 o025 27 Aa24 Vee VYss | 6
o
7 Yss Yec D26 A22 A5 a2 17
o O O
81 o299 o031 D28 a20 Vec Vss | 8
O
g| vs v o3 Intel OVERDRIVE™ PROCESSOR as Yoo Vs |9
0 O o PIN SIDE VIEW ' o o o
10 NC NG NC A3 Ve Yss [10
o O o
11] Yss Yo NC A9 Voo Vss |11
o O O O
12 NC NC NC A5 A1l Vss | 12
©c O O O O
1 3 FERR# NC NC A7 AS A10 1 3
o O O O O O
14| w e A2 Vee Vss |14
O O © o O O
15 | 'GNNE¥ NMi FLUSH® A20M® HOLO KEN® NC BRDY® BE2# BEO¥ FPWT D/C* LOCK# HLDA BREQ A3 A6 | 15
O 0O 0 0O 0O 0O 0O 0O O 0O 0 0 0 0o 0o o0 o
16 | 'R NC RESET Bsa» VYoo Rov# Voo Yo BE1® Yoo Voo Ve M/I0® Yoo PLOCK® BLAST® A4 16
© 0 0 O 0O O ¢ 0O 0 0 0 0 0 o 0o o0 o
17 | AOD eapse Bsiew BOFF» Yss BE3® Vss Yss PCD Yss VYss Vss W/R# VYss PCHK# NG aos# | {7
© 0 o 0 0o 0O O 0 0 0 0 0 6 0o o o o
A B C D E F G H JU K L M N P Q R S
240440-A2

Figure 12.6 Intel OverDrive™ Processor Socket Pinout for Inteld86™ DX CPU System (Pin Side View)

I PRELIMINARY 2-401

INTEL CORP (UP/PRPHLS) G7E D WM 482L175 0127560 lbb EEITLY

a
Intel486™ DX MICROPROCESSOR |nte| .

S R @ P N M L K J H G F E D C B A

L1 A27 428 A3t Do D2 VYss Vss Vss Vec Vss Yss DRt Vss 09 D11 D19 Dz(\ 1
o O O o O O O 0O 0O O 0O 0 0o o0 ©

2| 426 a25 Vss a29 Dt VYoo 06 Yoo 05 03 Vo D8 Vee 013 D18 02t 022 | 2
O © 0 o 0o 0O 0 0O 0o 0o 0o 0o 0o o o

3| A23 VYec a7 a0 DPO D4 07 D14 D16 DP2 D12 D15 DIO D17 Kk Yss NG | 3
O 0O O 0O 0O 0 0O 0 0 0o 0o o o o O

4 NG Yss at9 KEY Vec Vss D23 | 4
o 0 O @]

51 a4 a1z a2t Ve Vss op3s | §
o O)

6 Vss VYoo A24 027 025 D24 | §
o O O o O O

71 212 ms a2 026 Vec Vss | 7
o O o O

81 Vss Voo a20 D28 031 029 | 8
o O O o O

9] VYss Vee ats Intel OVERDRIVE™ PROCESSOR 030 Vec Vss | g
© 090 TOP SIDE VIEW ° © o

10] VYss Veo a3 e n N [10
c O o O O

11 Yss Yoo a9 N Yo Yss |11
o O 1 © o o

12 Yss A1l A5 NC NC NC 12
o O O O O O

13 a10 AB A7 NC NC FERR¥# 1 13
o O O o O O

14 Yss Voo A2 ’ NC UP® NC 14
O O O o O O

15 A6 A3 BREQ HLDA LOCK¥ D/C# FPWT BEO# BE2® BRDY®# NC KEN® HOLD A20Mx FLUSH® Nui IGNNEx] 15
O O 0O O 0O 0O 0O 0O 0O 0 0O o0 0o o o o

16 A4 Base mocke Voo M/io% Voo Vee Voo BE1® Voo Yoo ROYW Yoo BS8® RESET NC INTR | 16
o 0 0 0 0O 0O 0O 0 0 0O 0 0O 0o 0o 0o o o

17 | aose Nc pcHke Vss w/R® Vss Vs Vss PeD Vs Vss BES#® Vss BOFF BSIE® EADSH AHOLD 17
o 0 0O 0O 0O 0 0O 0O 0 0 0o 0O 0 0o 0o 0 ©°
S R @ P N M L K J H G F E D C B A

240440-A3

Figure 12.7. Intel OverDrive™ Processor Socket Pinout for Inteld86™ DX CPU System (Top Side View)

2-402 PRELIMINARY I

INTEL CORP (UP/PRPHLS) LG?E D EE 482bl7?5 0127561 OT2 MAITLYL

[] .
|nte| . intel486™ DX MICROPROCESSOR

Table 12.6. Pin Cross Reference by Pin Name

Address Data . Control N/C Vee Vss
Ao Q14 Do P1 A20M # D15 A10 B7 A7
Ag R15 Dy N2 ADS# . S17 A12 B9 A9
Ay 816 D2 N1 AHOLD A7 Al4 B11 AN
Ag Qi2 D3 H2 BEO# K15 B12 Cc4 B3
Ag S15 D4 M3 BEt# J16 B13 C5 B4
Az Q13 Ds J2 BE2+# J15 c10 E2 B5
Ag R13 D¢ L2 BE3# F17 C13 E16 E1
Ag Qi Dy L3 BLAST # R16 G15 G2 E17
Ao $13 Dg F2 BOFF # D17 R17 G16 G1
Aqq R12 Dg D1 BROY # H15 S4 H16 G17
Ayz S7 Do E3 BREQ# Q15 A3 J1 H1
A3 Q10 Dy C1 BS8 # D16 B10 K2 H17
Aqg S5 D12 G3 BS16+# C17 B16 K16 K1
Ajs R7 D43 D2 CLK - C3 C11 L16 K17
Ag Q9 D44 K3 D/C# M15 ci2 M2 L1
A7 Qs Dss F3 DPO N3 C14 M16 L17
Aqg R5 Dis J3 DP1 F1 P16 M1
Aqg Q4 D47 D3 DP2 H3 R3 M17
Asg Q8 Dig c2 DP3 A5 R6 P17
Ay Q5 Dqg B1 EADS # B17 R8 Q2
Ag2 Q7 Dzo Al FERR # A13 R9 R4
Aza S3 D24 B2 FLUSH # Ci15 R10 S6
Aza Q6 D3z A2 HLDA P15 A1 S8
Ass R2 Dss A4 HOLD E15 R14 S9
Agg s2 Dz4 A6 IGNNE # A15 S10
A7 S1 Dss B86 INTR A16 S11
Azg R1 Dgs c7 KEN # F15 S12
Asg P2 Do7 Ccé LOCK# N15 S14
Azo P3 Dsg cs8 M/NO# N16
Azq Qi D29 A8 NMI B15

Dap Cc9 PCD J17

Day B8 PCHK # Q17
PWT L15
PLOCK# Q16
RDY # F16
RESET C16
UP# B14
W/R# N17
KEY D4

I PRELIMINARY 2-403

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

L7E D HE 482b175 01275k2 T39 EEITLY

intal.

Table 12-7. Intel OverDrive™ Processor Socket Pin Description

Symbol | Type l

Name and Function

Intel486 DX2 CPU INTERFACE

UP# 0 The Upgrade Fresent pin is used to signal the Intei486 DX microprocessor to float its
outputs and get-off the bus. It is active low and is never floated. UP # is driven low at
power-up and remains active for the entire duration of the Upgrade Processor
operation.

KEY PIN

KEY The Key pin is an electrically non-functional pin which is used to ensure correct

orientation for 169-pin upgrade products.

12.7 D.C./A.C. Specifications

The electrical specifications in this section represent
the electrical interface of the Upgrade Processor for
- a Inteld486 DX microprocessor-based system. The

OverDrive Processor is compatible to the maximum
ratings and A.C. Specifications of the Intel486 DX
Microprocessor. Table 12-8 provides the D.C. Oper-
ating Conditions for the OverDrive Processor.

Table 12-8. Intet OverDrive™ Processor Socket D.C. Parametric Values(1)

Symbol Parameter Min Max Unit Notes
ViL Input Low Voltage -0.3 +0.8 v
ViR input High Voltage 20 Vee + 0.3 Vv
VoL Output Low Voltage 0.45 v {Note 2)
VoH Output High Voltage 24 v (Note 3)
Icc Power Supply Current
CLK = 25 MHz 950 mA {Note 4)
CLK = 33 MHz 1200
Iy input Leakage Current 15 pA {Note 5)
hH Input Leakage Current 200 uA (Note 6)
e Input Leakage Current -400 nA (Note 7)
o Output Leakage Current 115 pA
CiN Input Capacitance 13 pF Fc = 1 MHz(®)
Co 170 or Output Capacitance 17 pF Fc = 1 MHz(®
Colk CLK Capacitance 15 pF Fc = 1 MHz(®)
NOTES:

-

2. This parameter is measured at:

— Address, Data, BEn 4.0 mA

— Definition, Control 50 mA
3. This parameter is measured at:

— Address, Data, BEn —1.0mA

— Definition, Control —0.9mA

4. Typical supply current:
775 mA @ CLK = 25 MHz
975 mA @ CLK = 33 MHz

PNP O

2-404

. Functional operating range: Vo = 5V; Tg = 0°C to +85°C.

2.4V.

This parameter is for inputs without pultups or pulldowns and 0 < Vi < Ve
This parameter is for inputs with pulldowns and V) =
This parametaer is for inputs with pullups and V) = 0.45V.
Not 100% tested.

PRELIMINARY l

INTEL CORP (UP/PRPHLS)

intel.

13.0 ELECTRICAL DATA

The following sections describe recommended elec-
trical connections for the Intel4d86 Microprocessor,
and its elsctrical specifications.

13.1 Power and Grounding

13.1.1 POWER CONNECTIONS

The InteldB6 Microprocessor is implemented in
CHMOS 1V technology and has modest power re-
quirements. However, its high clock frequency out-
put buffers can cause power surges as multiple out-
put buffers drive new signal levels simultaneously.
For clean on-chip power distribution at high frequen-
¢y, 24 Vo and 28 Vgg pins feed the Intel486 Micro-
Processor.

Power and ground connections must be made to all
external Vgc and GND pins of the Intel486 Micro-
processor. On the circuit board, all Vo pins must be
connected on a Vg plane. All Vgg pins must be
likewise connected on a GND plane.

13.1.2 POWER DECOUPLING
RECOMMENDATIONS

Libera decoupling capacitance should be placed
near the Intel486 Microprocessor. The Intel486 Mi-
croprocessor driving its 32-bit parallel address and
data busses at high frequencies can cause transient
power surges, particularly when driving large capaci-
tive loads.

I PRELIMINARY

G7E D WM 482bL?5 0127563 975 EEITLL

Intel486™ DX MICROPROCESSOR

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per-
formance. Inductance can be reduced by shortening
circuit board traces between the Intel486 Microproc-
essor and decoupling capacitors as much as possi-
ble. Capacitors specifically for PGA packages are
also commercially available.

13.1.3 OTHER CONNECTION
RECOMMENDATIONS

N.C. pins should always remain unconnected.

For reliable operation, always connect unused in-
puts to an appropriate signal level. Active LOW in-
puts should be connected to Vg through a pullup
resistor. Pullups in the range of 20 KQ are recom-
mended. Active HIGH inputs should be connected to
GND.

13.2 Maximum Ratings

Table 13.1 is a stress rating only, and functional op-
eration at the maximums is not guaranteed. Function
operating conditions are given in 13.3 D.C. Specifi-
cations and 13.4 A.C. Specifications.

Extended exposure to the Maximum Ratings may af-
fect device reliability. Furthermore, although the
Intel486 Microprocessor contains protective circuitry
to resist damage from static electric discharge, al-
ways take precautions to avoid high static voltages
or electric fields.

2-405

INTEL CORP (UP/PRPHLS) G7E D NN 482bL175 0127564 801 WMITLL

-
Intel486™ DX MICROPROCESSOR |nte| ,

Table 13.1. Absolute Maximum Ratings Voitage on Any Pin with
Respectto Ground ~05to Vg + 0.5V
Case Temperature under Bias ... —65°Cto +110°C gypply Voitage with
Storage Temperature -65°Cto +150°C RespecttoVggcvvenn... —0.5Vto +6.5V

13.3 D.C. Specifications
Functional Operating Range: Vo = 5V £5%; Tcase = 0°C to +85°C

Table 13.2. Intel486™ DX Microprocessor DC Parametric Values (for PGA Package)

Symbol Parameter Min Max Unit Notes
ViL Input Low Voltage -03 +0.8 v
V4 Input High Voltage 20 Vee 0.3 Vv
Voo Output Low Voltage 0.45 " (Note 1)
VoH Output High Voltage 24 v (Note 2)
lec Power Supply Current (50 MHz) 1000‘5% mA (Note 3)
Power Supply Current (33 MHz) - 900
Power Supply Current (25 MHz) A
I Input Leakage Current XQP % 15 pA {Note 4)
m input Leakage Current § " T@%O pA {Note 5)
e Input Leakage Current 2\ N3 P A° —400 pA (Note 6)
o Output Leakage Current n@‘v oy, S5S 15 HA
Cin Input Capacitance s A, VQ N
(25MHzand 33 MHz) % 4 20 PF | Fc=1MHz(Note7)
(50 MHz2) &, I 13 pF Fc = 1 MHz (Note 7)
Co 170 or Output Capacit v
(25 MHz and 33 MHz 20 pF Fc = 1 MHz (Note 7)
(50 MH2) 17 pF Fc = 1 MHz (Note 7)
Ceik CLK Capacitance
(25 MHz and 33 MHz 20 pF Fc = 1 MHz (Note 7)
(50 MHz2) 15 pF Fc = 1 MHz (Note 7)
NOTES: '

1. This parameter is measured at:

Address, Data, BEn 4.0 mA

Definition, Control 5.0 mA
2. This parameter i3 measured at:

Addrass, Data, BEn ~1.0mA

Definition, Control —~0.9 mA
3. Typical supply current:

550 mA @ 25 MHz

700 mA @ 33 MHz

800 mA @ 50 MHz
4. This parameter is for inputs without internal pullups or pulldowns and 0 < Viy < Ve,
5. This parameter is for inputs with internal pulldowns and Vjy = 2.4V.
8. This parameter is for inputs with internal pullups and V) = 0.45V.
7. Not 100% tested.

2-408 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

13.4 AC. Specifications

The A.C. specifications, given in Table 13.3, consist
of output delays, input setup requirements and input
hold requirements. All A.C. specifications are rela-
tive to the rising edge of the CLK signal.

A.C. specifications measurement is defined by Fig-
ures 13.1-13.7. All timings are referenced to 1.5V
unless otherwise specified. Inputs must be driven to
the voltage levels indicated by Figure 13.3 when

I PRELIMINARY

L7E D WM 4326175 01275kL5 ?u8 EEITLL

intel486™ DX MICROPROCESSOR

A.C. specifications are measured. Intel486 Micro-
processor output delays are specified with minimum
and maximum limits, measured as shown, The mini-
mum intel486 Microprocessor delay times are hold
times provided to external circuitry. Intel486 Micro-
processor input setup and hold times are spacified
as minimums, defining the smallest acceptable sam-
pling window. Within the sampling window, a syn-
chronous input signal must be stable for correct
Intel486 Microprocessor operation.

2-407

INTEL CORP (UP/PRPHLS) L?7E D WM 482bl?5 0127?5bb LAY EEITLI

-
intel486™ DX MICROPROCESSOR : Intel @

Table 13.3. 256 MHz Intel486™ Microprocessor A.C. Characteristics (PGA)
Voo = 5V 1£5%; Tcage = 0°C to +85°C; C = 50 pF unless otharwise specified

Symbol Parameter Min | Max { Unit Figure Notes
Frequency 8 25 MHz 1X CLK to Intel486

ty CLK Period 40 125 ns 13.1

t1a CLK Period Stability) 0.1% A Adjacent Clocks

tz CLK High Time 14 ns 13.1 at 2v(1)

13 CLK Low Time 14 ns 131 at0.8v(1)

ty CLK Fall Time 4 ns 13.1 (2v — 0.8V)(D

ts CLK Rise Time 4 ns 13. 0.8V — 2v)(H

1 A2-A31, PWT, PCD, BEO-3#, &fg
M/10#,D/C#, W/R#, ADS#, ”%‘

LOCK#, FERR#, BREQ, HLDA
Valid Delay

ty A2-A31, PWT, PCD, BEO-3#,
M/1IO# D/C#, W/R#, ADS#,
LOCK # Float Delay

13.6 (Note 1)

ts PCHK # Valid Delay 134

tga BLAST#, PLOCK # Valid Delay®, 13.5

tg BLAST #, PLOCK # Float Delay 136 (Note 1)

tyg D0-D31, DPO-3 Write Data Valid 13.5
Delay LR

ty D0-D31, DPO=3 White Data F 136 | (Note1)
Delay

t12 EADS # Setup Time 8 ns 13.2

t13 EADS# Hold Time ‘@ B, 3 ns 13.2

t1a KEN#, BS164, BS8 # Setup Time 8 ns 13.2

tis KEN#, BS16#, BS8 # Hold Time 3 ns 13.2

tig RDY #, BROY # Setup Time 8 ns 13.3

t47 RDY #, BRDY # Hold Time a ns 13.3

tis HOLD, AHOLD, BOFF # Setup Time | 10 ns 13.2

t1o HOLD, AHOLD, BOFF # Hold Time 3 ns 13.2

120 RESET, FLUSH #, A20M #, NMI, 10 ns 13.2
INTR, IGNNE # Setup Time

toq RESET, FLUSH #, A20M #, NMI, a ns 13.2
INTR, IGNNE # Hold Time

to2 DO-D31, DP0-3, A4-A31 Read 5 ns | 13.2,13.3
Setup Time

to3 DO0-D31, DPO-3, A4-A31 Read 3 ns | 13.2,13.3
Hold Time

NOTE:

1. Not 100% tested. Guarantsed by design characterization.

2-408 PRELIMINARY I

INTEL CORP (UP/PRPHLS) b7E D EE 432175 0127567 510 EEMITLL

. ‘
Intel o Intel486™ DX MICROPROCESSOR

Table 13.4. 33 MHz Inteld86T4 Microprocessor A.C. Characteristics (PGA)
Vee = 5V £5%; Tcase = 0°C to +85°C; Ci = 50 pF unless otherwise specified

Symbol Parameter Min | Max | Unit Figure Notes
Frequency 8 33 MHz 1X CLK to Intel486
t CLK Period 30 | 125 ns 13.1 ‘
ta CLK Period Stability 0.1% A Adjacent Clocks
t2 CLK High Time 11 ns 13.1 at2vm
13 CLK Low Time 11 ns 13.1 at0.8v(1)
ty CLK Fall Time 3 ns 13.1 2V — 0.8V){"
ts CLK Rise Time 3 ns 13. 0.8V — 2Vv){1)
tg A2-A31, PWT, PCD, BEO-3 #, 3 16 1 ns %s’
M/IO#,D/C#, W/R#, ADS#,
LOCK#, FERR #, BREQ, HLDA
Valiid Delay
t7 A2-A31, PWT, PCD, BEO-3#, sr87 136 | (Note1)
M/IO#,D/C#, W/R#, ADS#, k
LOCK # Float Delay
ts PCHK# Valid Delay : 134
e BLAST#, PLOCK # Valid Delayy* 13.5
t9 BLAST#, PLOCK# Froq{fgg@; 136 | (Note 1)
to DO-D31, DPO-3 wdf;rgﬁ.?{vmid ns 135
Delay &
t41 D0-D31, DPG=3 Wiite Data I ns 13.6 {Note 1)
Delay . A
ti2 EADS # Setup Time- 5 ns 13.2
t1a EADS# Hold Time 3 ns | 132
ta KEN#, BS16#,BS8# Setup Time | 5 ns 13.2
s KEN#, BS16#, BS8# Hold Time 3 ns 13.2
tie RDY #, BRDY # Setup Time 5 ns 133
t47 RDY #, BRDY # Hold Time 3 ns 13.3
tys HOLD, AHOLD, Setup Time 6 ns 13.2
t18a BOFF # Setup Time 8 ns 13.2
tg | HOLD, AHOLD, BOFF # Hold Time 3 ns 13.2
tao RESET, FLUSH #, A20M #, NMI, 5 ns 13.2
INTR, IGNNE # Setup Time
toq RESET, FLUSH#, A20M #, NMI, 3 ns 13.2
INTR, IGNNE # Hold Time
to2 D0-D31, DPO-3, A4-A31 Read 5 ns | 132,133
Setup Time
t2g DO-D31, DP0-3, A4-A31 Read 3 ns | 132,133
Hold Time
NOTE:
1. Not 100% tested. Guaranteed by design characterization.
I PRELIMINARY 2-409

INTEL CORP (UP/PRPHLS) 67E D EB 482L175 0127568 457 ERITLI

]
Intel486™ DX MICROPROCESSOR |nte| R

Table 13.5. 50 MHz Intel486™ Microprocessor A.C. Specifications
Vee = 5V £5%; Tcase = 0°C to +85°C; C = Sea Note 2

Symbol Parameter Min | Max | Unit Figure Notés
Frequency 16 50 | MHz 1X CLK tointel486
t4 CLK Period 20 | 625 | ns 13.1
tia CLK Period Stability 0.1% Adjacent Clocks
tp CLK High Time 7 ns 13.1 at2v(n
t3 CLK Low Time 7 ns 13.1 at0.8v(1)
ta CLK Fali Time 2 ns 13.4 (2.0v-0.8V)(D
ts CLK Rise Time 2 ns 13@0.8%2.%(1)
ts A2-A31, PWT, PCD, BEO-3#, M/IO#, rs
D/C#, W/R#, ADS#, LOCK #,
FERR #, BREQ, HLDA Valid Delay
1 A2-A31, PWT, PCD, BED-3#, M/IO#, 136 | (Note 1)
D/C#, W/F #, ADS#, LOCK#,
FERR #, BREQ Float Delay
tg PCHK # Valid Delay g 1Y 13.4
taa BLAST #, PLOCK # Valid Dela 135
tg BLAST #, PLOCK # Float Delay ns 136 (Note 1)
tio D0-D31, DPO-3 Write Datl yalid De% h o ns 135
t1q DO-D31, DPO-3 Write Data Float Dela 718 | ns | 136 | (Note1)
ty2 EADS # Setup Time, : ns 13.2
3 EADS# Hold Time) 2 ns 132
t1a KEN#, BS16#, BS8 # S&typ Timk 5 ns 13.2
ts KEN #, BS16#, BS8 £ Hold Tingd 2 ns 13.2
e RDY #, BRDY # Sgtup Time 5 ns | 133
Y7 RDY #, BEDY # Hold Time 2 ns 133
tig HOLD, AHQLB Setup Time 5 ns 13.2
t18a BOFF # Setup Time 5 ns 13.2
tig HOLD, AHOLD, BOFF # Hold Time 2 ns 13.2
t20 RESET, FLUSH#, A20M#,NM|,INTR, | 5 ns 13.2
IGNNE # Setup Tims
toq RESET, FLUSH#, A20M#, NMI, INTR, | 2 ns 13.2
IGNNE # Hold Time ,
too DO-D31, DPO-3, A4-A31 Read Data 4 ns | 13.2,13.3
Setup Time :
ta3 D0-D31, DP0-3, A4-A31 Read Data | 2 ns | 13.2,13.3
Hold Time
NOTES:

1. Not 100% tested. Guaranteed by design characterization.

2. Specifications assume C_ = 0 pF. 170 Buffer model must be used to determine delays due to loading (trace and compo-
nent). First Order 1/Q bufter models for the Intel486 CPU are available. Contact intel for the latest release.

3. All timings are referenced at 1.5V (as illustrated in the listed figures) unless otherwise noted.

2.410 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?E D WM u4Bd2L1l75 0127569 393 EEITL]

Intel o intel486™ DX MICROPROCESSOR

Table 13.6. 50 MHz Intel486™™ Microprocessor A.C. Characteristics for Boundary Scan Test Signals
Vee = 5V 1£5%,; Tcage = 0°C to +85°C; C = 50 pF. All Inputs and Outputs are TTL Level

Symbol Parameter Min Max Unit Figure Notes
t24 TCK Frequency 25 MHz 1x Clock
tos TCK Period 40 - ns (Note 2)
toe TCK High Time 10 ns @ 2.0V
o7 TCK Low Time 10 ns @0.8v
trg TCK Rise Time 4 ns (Note 1)
tog TCK Fall Time 4 ns {Note 1)
t30 TDI, TMS Setup Time 8 ns 13.7 (Note 3)
ta1 TDI, TMS Hold Time 7 ns 13.7 (Note 3)
t32 TDO Valid Delay 3 25 ns 13.7 (Note 3)
t33 TDO Float Delay TBD ns
t34 All Qutputs (Non-Taest) Valid Delay 3 25 ns 13.7 (Note 3)
tas All Outputs (Non-Test) Float Delay 36 ns 13.7 {Notes 3, 5)
t3g All Inputs (Non-Test) Setup Time 8 ns 13.7 (Note 3)
t37 All Inputs (Non-Test) Hold Time 7 ns 13.7 {Note 3)
NOTES:
;.e:;?/Fall times are measured between 0.8V and 2.0V, Rise/Fall times can be relaxed by 1 ns per 10 ns increase in TCK

2. TCK period 2 CLK period.

3. Parameter measured from TCK. :

4. Boundary Scan A.C. Specifications in the above table are target values. They have not been characterized, Therefore
they are subject to change.

5. Not 100% tested. Guaranteed by design characterization.

| PRELIMINARY 2411

INTEL CORP (UP/PRPHLS) LPE D EHE 482bL75 0127570 005 EEITLI

L]
Intel486T™ DX MICROPROCESSOR "‘]tel .

1 t 1

240440-45

Figure 13.1. CLK Waveforms

CLK [J __’(\ £ \ WL \ *_
B
EADS# [NN §
O
ok P [K R
BOFF#, A:gtg. [&\\\ (§
RESET, FLUSH¥, e
AZOM#;N!%;J'N:&; I: NN §
-
ooy [WK N
Figure 13.2. Input Setup and Hold Timing
ch[_;I(_\,l\,(\+\+‘
‘
ROY#, BRDY# [AN §—1.5v
DP%O-;)(:? [w k§§—1.5v

Figure 13.3. Input Setup and Hold Timing

2.412 PRELIMINARY I

INTEL CORP (UP/PRPHLS) G7E D EH 442L175 0127571 T4l EEITLY

Intel486™ DX MICROPROCESSOR

intel.

Ta . Tx Tx T
e [N\
BROY#, ROY# [m\ N
DO-D31 1
DPO~DP3 [DN VALID \
MIN
MAX
PCHK#
o [N van_ AW
240440-82
Figure 13.4. PCHK # Valid Delay Timing
Tx Tx ™ Tx
cLK [
A2-A31, PWT, PCD, s —
BEO-3#, M/10, y “N‘
D/C#, W/R#, ADS#, [VALID n VALID n+ 1%
LOCK#, FERR#, BREQ,
HLDA o
MIN MAX
po-D31, DPO-3, \
(WRITE) VALID n S VALID n+1
& MIN MAX
BLAST#, PLOCK# [VALID n VALID n+1
24044083
Figure 13.5. Output Valid Delay Timing
Tx > Tx Tx
CLK [
A2-A31, PWT, PCD,
BEO-3#, M/10%,
D/C#, W/R#, ADSH, [
LOCK#, FERR#, BREQ,
HLDA
D0O-031, DPO-3,
{WRITE)
BLAST#, PLOCK# [
240440-84

I PRELIMINARY

Figure 13.6. Maximum Float Detay Timing

2-413

INTEL CORP (UP/PRPHLS) L?E D HEHE 482L175 0127572 988 MNITLL

2
Intel486™ DX MICROPROCESSOR |nte| o

TeK —-1’_-__/

DI, TMS

TDO

o {35 —]

Output
Signals

Input
Signals

240440-91

Figure 13.7. Test Signal Timing Diagram

13.4.1 TYPICAL OUTPUT VALID DELAY VERSUS LOAD CAPACITANCE UNDER WORST CASE
CONDITIONS FOR THE 25 MHz AND 33 MHz Intel486 CPU

4 *L:&

nom+6

:
RS

TYPICAL OUTPUT DELAY (ns)
T
) N

iz,

n
o%25 50 75 100 125 150

oy Cy. (picofarads)
NOTE: 240440-75

This graph will not be linear outside of the C; range shown.
nom=nominal value given in A.C. Characteristics table.

2414 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D WM 4426175 0127573 814 EEITLL

a2
|nte| , Intel486™™ DX MICROPROCESSOR

13.4.2 TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE
CONDITIONS FOR A HIGH TO LOW TRANSITION ON THE 50 MHz Intel486 CPU

LR ol R LR R R L L R R R
’ L il it e R R I R I N I I I N Rt I I
!-;— -- -
. b o L L T R LR TR A
E
RO e E bbb bbb E bbbl 7 oCCE ALl
-]
P TP
-]
13
§ 4 B R L N LT ¥ L I N L L LR T N
3 Smccccscsssncsnccsnnanscacns gifecccsridccncdcscsrscc s rncccsseRseeruvsEENcsancEnEN
R R il i R R R LR R R R R R R R
e rccace g cercvucccnsconrsnaassrnatenscsennnaaacasaarsenasscsanmanononns
o 4 + * } $ } -
0 25 50 75 100 125 150
Capacitive Loading (pF)
240440-92

13.4.3 TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE
CONDITIONS FOR A LOW TO HIGH TRANSITION ON THE 50 MHz Intel486 CPU

Sepeecacoanncaccnanecessastenassennnanatnnaar afcacaanacccncaananacnsannnn

Loading Delay (ns)
N
wn

Capacitive Loading {pF)

240440-93

I PRELIMINARY 2-415

INTEL CORP (UP/PRPHLSI)

intel486™ DX MICROPROCESSOR

13.4.4 TYPICAL OUTPUT RISE TIME VERSUS
LOAD CAPACITANCE UNDER WORST-
CASE CONDITIONS

7 p
3 ¢ 4 o
] ok
I 5 @’%‘ a‘;"}!
S *’V/&s;' Qf*«:*
2 e ke
§ e ad
w % - }xl«'
& 1 -
; Y4
-~
‘%lS 50 75 100 125 150
5} €, (picotarads)
NOTE: 240440-76

This graph will not be linear outside of the C range
shown.

13.5 Designing for ICD-486
(Advance Information)

The ICD-486 (In-Circuit Debugger) is a hardware as-
sisted debugger for the Inteld486 CPY. To use the
ICD-486, the Intel486 CPU component must be re-
maoved from its socket replaced with the ICD-486
module. Because of the high operating frequency of
Intel486 CPU systems, there is no buffering of sig-
nals between the Intel486 CPU in the ICD-486 and
the target system. A direct result of the non-buffered
interconnect is that the ICD-486 shares the address
and data bus of the target system. In order for the
ICD-486 to function properly (without the Optional
Isolation Board installed), the design of the target
system must meet the following restrictions:

1. The bus controller must only enable data trans-
ceivers onto the data bus during valid read cycles
of the Intel486 CPU, other local devices, or other
bus masters.

2. Before another bus master drives the local proc-
assor address bus, the other bus master must
gain access to the address bus through the use
of HOLD-HLDA, AHOLD, or BOFF #.

In addition to the above restrictions, the ICD-486 has
several electrical and mechanical characteristics
that should be taken into consideration when de-
signing the Intel486 CPU system.

Capacitive Loading: [CD-486 adds up to 30 pF to the

CLK signal, and up to 20 pF to each of the other
Intel486 CPU signals.

2-416

G?E D BN 482bL1l7?5 0L27574 750 MEITLY

]
intel.
OC Loading: ICD-486 adds +15 pA loading to the

CLK and data bus signals and +5 pA loading to the
address and control signals. ‘

Power Requirements: For noise immunity and
CMOS latch-up protection the ICD-486 is powered
by the target system through the power and ground
pins of the Intel486 CPU socket. The circuitry on the
ICD-486 draws up to 1.3A excluding the !ntel486
CPU icc. .

No Connects: Pins specified as N.C. in the Intel486
CPU pin description must be left unconnected. Con-
nection of any of these pins to power, ground, or any
other signal may cause the processor or the ICD-
486 to malfunction.

Intel486 CPU Location and Orientation: The 1CD-486
may require lateral clearance. Figure 13.4 shows the
clearance requirements of the ICD-486.

Optional Isoiation Board (01B)

Due to its unbuffered design, the ICD-486 is suscep-
tible to errors on the target system’s bus. The OIB
installs between the ICD-486 and Inteld86 CPU
socket in the target system and allows the ICD-486
to function in systems with faults (i.e., shorted sig-
nals). After electrical verification the OIB may be re-
moved. The O1B has the following electrical and me-
chanical characteristics:

Buffer Characteristics: The OIB buffers the address
and data busses as well as the byte enables, ADS #,
W/R#, M/IO#, BLAST#, and HLDA. The buffers
are advanced CMOS devices and have the following
DC drive specifications: lon = —15 mA, g, =
64 mA. The propagation delay of each buffer is 5 ns
max driving a 50 pF load. To guarantes proper oper-
ation with the OIB, the clock period should be in-
creased by the round trip buffer delay (10 ns) unless
the target system design already has enough timing
margin.

Unbuffered Signals: Signals not listed above as buff-
ered are passed through the OIB and will have addi-
tional capacitive loading due to the connectors and
circuit board of up to 10 pF.

Power Requirements: The OIB is also powered by
the target system through the Inteld86 CPU socket
and requires 0.5A in addition to the ICD-486 and In-
tel486 CPU requirements.

OIB Clearance Requirements: The OIB requires an

extra 0.55" of vertical cldarance in the target system
above the Inteld86 CPU socket.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) G7E P EB 482b175 0127575 bL97 EEITLY

a2
Inu ® Intel486™ DX MICROPROCESSOR
g
1
s -o- ~N
: L
=
a

6.5

w
-
@
3
2

.
a

Serial CABLE

Figure 13.4a. ICD-486 Probe Dimensions

I PRELIMINARY 2.417

INTEL CORP (UP/PRPHLS) b7E D EH 4826175 012757k 523 EMITLY

Inteld86™ DX MICROPROCESSOR |n

€

24044042

240440-41

..6"

10" MAX
0
4.0

3
fe——&]

—={0.4%=—

Logk: Anolyzer Interfoce (LAL) /

6.5"

ICD Probe with OIB Instailed
w
1CD Probe with LAl Installed
t

Seriol CABLE
Seriol CABLE

Figure 13.4b. ICD-486 Probe Dimensions

2418 PRELIMINARY I

L7E D WH 4826175 0127577 ULT EEITLL

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

intal.

6L-0¥PO¥e
#Npop oeees0sy

paligisu) 10 ‘MIIA 3PIS
suojsuawi(A|Guassy JNPON 108889014

8.-0vr0Pe

24

MIA PIS
suojsusw)q Alquassy ajNPop J0§8320.d

j.&.?lt

vz

sjnpowt
208990044

e A Y

LL-0tv0pe

WSLL

Mmaja dog
suojsuawi(A|quiassy a[NPO 1085a201d

nnnnnn

SUOISUSWI] PILOY INPOWN 1088220.1d

Figure 13.4¢c. ICD-486 Probe Dimensions

2-419

I PRELIMINARY

INTEL CORP (UP/PRPHLS) GYE D WM 482bL175 0127578 3Th EEITLY

. -
Iintel486™ DX MICROPROCESSOR Inbl o

14.0 MECHANICAL DATA

SEATING__
o | PLANE
D1 —e A e
s,-—L Ag—e [+
. l L
°R'E~F55 ONORONORORCRONONORORONCNCORORORONO)
I [OXORONORORORONORORORORONONORONORC] f
(0RO - JOXORORORONORCRORONORORRONG) o
Fleee ®®
(OJORO] (OXONO!
®@®6 — cYoC) FNe
@0 ©ee ‘ 8 (ALL PIN;’
®©6 / \ ®@®6
@O @O 6D
®@®0 @O0 T
PIN C3 (ONORC) [ORCNO] SWAGGED
Nooo N S @0 e obN
CNORO) @®e
ool ®@e6
I0JOA © FORORORCNORORORORONOROX > RONO)
(OXOXORORONONORCRONOROCRONORORONOXOC)
I |000000000000000a0@] | |
_z; REF swmc:og A
1.52 = PIN BASE 27
45° CHAMFER (4 PL) PLANE
(INDEX CORNER)
240440-49
Family: Ceramic Pin Grid Array Package
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 3.56 457 0.140 | 0.180
Ay 0.64 114 | SOLIDLID | 0.025 | 0.045 | SOLIDLID
Az 28 35 | soLDLD | 0.110 | 0.140 | SOLIDLID
As 1.14 1.40 : 0.045 | 0.055
B 0.43 0.51 0.017 | 0.020 .
D 4407 | 44.83 1735 | 1.765
D, 4051 | 40.77 1.595 | 1.605
e 2.29 279 | o080 | 0.110
L 2.54 3.30 0.100 | 0.130
168 168
Sy 152 2.54 0.060 [0.100
ISSUE | IWS REVX 7/15/88
Figure 14.1. 168 Lead Ceramic PGA Package Dimensions v

2-420 PRELIMINARY I

INTEL CORP (UP/PRPHLS) L7E D EW 4826175 0127579 232 MEITLL

L]
Intel o Intel486™ DX MICROPROCESSOR

Table 14.1 Ceramic PGA Package Dimension Symbois

Lsey""?;;' Description of Dimensions
A Distance from seating plane to highest point of body
Aq Distance between seating plane and base plane (lid)
Az Distance from base plane to highest point of body
Ag Distance from seating plane to bottom of body
B Diamieter of terminal lead pin
D Largest overall package dimension of length
Dy A body length dimension, outer lead center to outer lead center
ey Linear spacing between true lead position centerlines
L Distance from seating plane to end of lead
Sy Other body dimension, outer lead center to edge of body

NOTES:

1. Controlling dimension: millimeter.

2. Dimension “g¢" {"‘@"") is non-cumulative.

3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions “B”, “By" and “C" are nominal.

5. Details of Pin 1 identiﬁer are optional.

where Ty, Ta, T¢ = Junction, Ambient and Case
Temperature respectively. 8¢, 8,4 = Junction-to-
Case and Junction-to-Ambient Thermal Resistancs,
respectively.

14.1 Package Thermal Specifications

The Intel486 Microprocessor is specified for opera-
tion when Tg (the case temperature) is within the
range of 0°C~85°C. T¢ may be measured in any en-
vironment to determine whether the Intel486 micro-
processor is within specified operating range. The
case temperature should be measured at the center
of the top surface opposite the pins.

P = Maximum Power Consumption

The values for 8,4 and 8¢ are given in Table 14.2
for the 1.75 sq. in., 168-pin, ceramic PGA.

The ambient temperature (T4) is guaranteed as long
as Tc is not violated. The ambient temperature can
be calcutated from 6,c and 8, from the following
equations.

Ty=Tc+P*o,c
TA=Ty—~P*84a
Te=Ta+ P*loja - 6yl

Table 14.3 shows the Tx allowable (without exceed-
ing T¢) at various airflows and operating frequencies

(ferk)-

Note that T, is greatly improved by attaching “fins”
or a “heat sink” to the package. P (the maximum
power consumption) is calculated by using the maxi-
mum |lgc at 5V as tabulated in the DC Characteris-
tics of Section 13.

Table 14.2.a. Thermal Resistance ("C/W) 6,c and 8,4, for the 25 MHz and 33 MHz intel486 CPU

844 vs Airflow—ft/min (m/sec)
byc 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
Without Heat Sink 1.5 17 145 125 11.0 10.0 9.5
With Heat Sink* 2.0 13 8.0 6.0 5.0 4.5 4.25
*0.350” high unidiractional heat sink (Al alloy 6063, 40 mit fin width, 155 mil
center-to-center fin spacing).
2-421

l PRELIMINARY

INTEL CORP (UP/PRPHLS) b?E D WM 4826175 0127580 TS54 EEITLI

L]
Intel486™ DX MICROPROCESSOR lntel o

Table 14.2.b. Thermal Resistance ("C/W) 0,¢ and 84 for the 50 MHz Intel486 CPU

8,a vs Alrflow—{t/min (m/sec)
fic 0 200 400 600 800 1000
{0) (1.01) (2.03) (3.04) (4.06) (5.07)
Without Heat Sink 15 16.5 14.0 120 10.5 9.5 9.0
With Heat Sink* 20 12.0 7.0 50 4.0 3.5 3.25
*0.350" high unidirectional heat sink (Al 6063-T5, 40 mii fin width, 155 mil center to center fin spacing).
Heat Sink Dimensions
0.040" —-| I-— -——{0.1 15" I-— [——— 0.290" —-' |
i 0.060"
__] —
0.350"
|
0.100"
~ f
1.83"
240440-81

Table 14.3. Maximum Ty at Various Airflows In°C

Airflow-ft/min (m/sec)
fork 0 200 400 600 800 1000
(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07)
Ta with Heat Sink 250 47 64 71 75 76 77
333 36 58 67 72 74 75
50 35 60 70 75 775 78.75
Ta without Heat Sink 25.0 N 40 47 52 55 57 -
33.3 15 27 36 42 47 49
50 10 225 325 40 45 47.5

2422 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intal.
15.0 LOW POWER Intel486™ DX

MICROPROCESSOR

s Lower Power Dissipation
~— Dynamic Frequency Scalability
— lgc(max) Reduced to 150 mA at 2 MHz
- Improved V¢ Rating (£ 10%)

* 168-Lead Pin Grid Array Package for Intel486 DX
Microprocessor

® High Performance Design
— 25 MHz Operation for Intel486™ DX
— 64 MByte/Sec Burst Bus
-— CHMOS IV Process Technology

— Dynamic Bus Sizing for 8-, 16- and 32-Bit Bus-
es

This section describes the Low Power Intei486 DX
microprocessor.

The Low Power Intei486 Microprocessor meets to-
day's need for high performance portables. The
combination of special features like dynamic fre-
quency scaling, lower minimum frequency, improved
Ve operation and high integration contribute signifi-
cantly to lower power dissipation and meet the
needs of portable computing.

The Low Power capability is achieved by operating
the Inteld86 Microprocessor in the 2X mode. The
frequency can be varied dynamically between maxi-
mum to minimum as needed. The frequency change
does not affect contents of the registers and data
integrity is maintained. Power dissipation is reduced
significantly at 2 MHz where Igc is only 150 mA
compared to 600 mA at 20 MHz. Low power ver-
sions are offered for both the Intel486 SX and the
Intel486 DX Microprocessors.

The Low Power Intel486 Microprocessor is 100-per-
cent compatible with all versions of the Intel386™
Microprocessor family, assuring compatibility with
the more than $50 billion software base of MS-DOS,
Windows, OS/2 and UNIX/System operating system
applications. The Low Power intel486 Microproces-
sor integrates the same RISC-technology, one clock
per instruction integer core, on-chip cache, and
memory management unit as the standard Intel486
Microprocessor.

Note that the Intel OverDrive™ Processor doss not

work in systems based on the Low Power Intel486
CPU.

I PRELIMINARY

E?E D EB 482b175 0127581 990 EMITLY

Intel486™ DX MICROPROCESSOR

The following section on the Low Power Intel 486
DX Microprocessor contains information specific to
the Low Power device only. All data not defined are
located in the appropriate sections of this data sheet
unless specified otherwise.

15.1

The Low Power Intel486 Microprocessor brings In-
tel486 technology and performance to the portable
computer market. The low power capability is
achieved by a frequency scalability feature during
normal operation. The operating frequency can be
brought down dynamically resulting in lower power
supply current (Igc). This results in minima! power
dissipation which ensures a longer battery life.

Introduction

The Low Power Inteld486 Microprocessor integrates
the same RISC-technology, one clock per instruc-
tion integer core, on-chip cache, and memory man-
agement unit as the standard Intel486 Microproces-
sor.

The Low Power Inteld86 Microprocessor has the fol-
lowing special features:

* Frequency Scalability—This is achieved by op-
orating the Intel486 Microprocessor in the 2X
clock mode. The frequency can be varied dynam-
ically from maximum back to minimum or vice
versa. The frequency change does not affect the
register content of the CPU, thus data integrity is
maintained.

¢ Lower Minimum Frequency—The Low Power
intel486 Microprocessor can be operated at a
minimum frequency of 2 MHz, at which Igg(max)
is only 150 mA, compared to an Igg(max) of 600
mA at 20 MHz operation. The power dissipation is
thus drastically reduced ensuring a longer battery
life.

¢ Improved Ve Operation—The Low Power In-
tel486 Microprocessor has an improved V¢ rat-
ing of £10%. Again this feature makes it ex-
tremely attractive to portable battery powered ap-
plications.

The above three features ensure power savings for
portable computer systems resulting in prolonged
battery life.

Besides the above special features, the Low Power

Intel486 Microprocessor has an identical feature set

to the standard Intel486 CPU. This includes:

* Binary Compatibility—The Low Power Intel486
CPU is binary compatible with the 80886, 8088,
80186, 80286, Inteld86 SX, Intel386 DX, Intel486
SX and Intel486 DX CPUs.

2-423

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Full 32-Bit Integer Processor—The Low Power
Inteld86 CPU performs a complete set of arith-
metic and logical operations on 8-, 16-, and 32-bit
data types using a full-width ALU and eight gener-
al-purpose registers.

Separate 32-Bit Address and Data Paths—
Four gigabytes of physical memory can be ad-
dressed directly.

Single-Cycle Execution—Many instructions ex-
ecute in a single clock cycle.

On-Chip Floating Point Unit—The 32-, 64-, and
80-bit formats specified in IEEE standard 754 are
supported. The unit is binary compatible with the
8087, 80287, Intel387™™, Intel387 SX, and In-
teld877™™ Math Coprocessors and the Intel486™
CPU.

On-Chip Memory Management Unit—Address-
management and memory-space protection
mechanisms maintain the integrity of memory.
This is necessary in multitasking and virtual-mem-
ory environments, like those implemented by the
UNIX and OS/2 operating systems. Both memory
segmentation and paging are supported.

On-Chip Cache with Cache Consistency Sup-
port—Tha internal write-through cache can hold
8 KBytes of data or instructions. Cache hits are
as fast as road accesses to a processor register.
Bus activity is tracked to detect alterations in the
memory which internal cache represents. The in-
ternal cache can be invalidated or flushed, so
that an external cache controller can maintain
cache consistency in multi-processor environ-
ments.

External Cache Control—Write-back and flush
controls over an external cache are provided so
that the processor can maintain cache consisten-
cy in multi-processor environments.

Instruction Pipelining—The fetching, decoding,
execution and address translation of instructions
are overlaped within the Low Power Intel486 Mi-
croprocessor. This results in a continuous execu-
tion rate of one clock cycle per instruction, for
most instructions.

2-424

G7E D W 4426175 0127582 427 MEMITLL

-
intal.
» Burst Cycles—Burst transfers allow a new dou-
bleword to be read from memory each clock cy-

cle. With this capability the internal cache and in-
struction prefetch buffer can be filled very rapidly.

® Write Buffers—The processor contains write
buffers to enhance the performance of consecu-
tive writes to memory. The Low Power Intel486
CPU can continue operations internally after a
write, without waiting for the write to be executed
on the external bus.

* Bus Backoff—If another bus master needs con-
trol of the bus during a Low Power Intel486 Mi-
croprocessor initiated bus cycle, the Low Power
Intel486 Microprocessor will float its bus signals,
then restart its cycle when the bus becomes
available again.

¢ [nstruction Restart—~Programs can continue ex-
ecution following an exception generated by an
unsuccessful attempt to access memory. This
feature is important for supporting demand-paged
virtual memory applications.

¢ Dynamic Bus Slzing—External controllers can
dynamically alter the effective width of the data
bus. Bus widths of 8, 16 or 32 bits can be used.

The Low Power Intel386 DX Microprocessor pinout
follows the same dsfinition as the Intel486 DX Micro-
processor given in Section 1.0 except for those list-

ed in Table 15.1.
Table 15.1
1486 DX Low Power 1486 DX Pin#

Microprocessor Microprocessor

CLK CLK2 Cc3

NC CLKSEL A3()
NOTE:
1. This pin is TCK on the 50 MHz Intel486 DX Microproces-
sof.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

15.2 Pinout

LE?E D EH 482k175 0127583 763 EEITLI

Intel486™ DX MICROPROCESSOR

S R @Q P N M L K J H 6 F E D C B A
! AC2>7 © A?l © :?z © vO © vO °© 2 ° vo © n?u N u(zjo\ !
A28 00 Vss > Vgg O vgg S5 ppr S5 g 019
2 o o0 © o0 0o 0 0O 0 0 0 o o o o o o0 o 2
A26 Ves D1 06 D5 Yee Voo LYE: D22
A25 A29 Vee Vee D3 08 D13 D21
3 6 o0 O 0O O 0o o 0O o 0o ©o o0 o0 0o o©o 0 3
A23 Al7 DPO D7 016 D12 D10 cLk2 CLKSEL
Vee A30 D4 Dia DP2 S 017 Vs
4 O O O o 0O © 4
NC Al9 Vee D23
Vss Vss
5 o 0O © o O 0 5
Al4 A21 Voo DP3
A18 Vss
6 o o ©° O O 0 8
Vss A24 D27 024
Vee D25
7 o o o0 o O 0 7
A12 A22 D26 Vos
A1S Vee
8 o 0O Q - o O © 8
Vss 20 LOW POWER b2s . 029
cc
9 o O o 168-PIN PGA PINOUT o o o |9
Vss A16 D30 Ves
Vee Intel486T™ DX CPU Vee
10 o] ¢] 0 o} e} O 10
sy, A1 TOP SIDE VIEW N o NC
11 o O Ac>9 r% o vo 11
Vss = ss
Vee Yee
12 o O o o] o 0 12
Vsg A5 NC NC
A1 NC
13 o O o0 o O 0 13
Al0 A7 NC NC
A8 NC
14 o o o o o 14
Vs A2 FERR# NC
Vee NC
15 o 0O © O 0 O O 0 O o O 0 O o 15
A6 BREQ LOCK#* BE2# NC HOLD FLUSH# IGNNE#
A3 HLDA D/C# BEO# BROY # KEN# A20M* NMI
16 o 0O 0 O O O 0 0O o 0 o0 o©° o} Q 16
Ad PLOCK # M/10# cc BE1# Vee Vee RESET INTR
BLAST# VCC Vee Yee VCC RDY# BS8#
17 o 0 O © o 0 0 0O O 0o 0o o o o 0 17
ADS# PCHK# W/R# Vss PCD Vss Vss BS16# AHOLD
c ss Yss Vss Ves BE3# BOFF# EADS#*
S R ¢ P N M L K U H G F E D C B A
240440-A5
Figure 15.1. Low Power Intel4867M DX CPU Pinout (Top Side View)
~
2-425

I PRELIMINARY

INTEL CORP {UP/PRPHLS} &?7E D R 482bL175 0127584 LTT WA ITL]

Intel486™ DX MICROPROCESSOR

A B C D E F G H J K L M N P Q R S
! n(z>o ° o?: ° vO © vO © Vo °© 2 ° l% °© ? © A% !
Ad1
D19 09 %5 pp1 S v %€ vgg S wgg Do Az8
2 o 0O 0o o0 o0 o0 0o 0 0o 0 o o0 o o o o0 o© 2
D22 D18 Vee Vee 05 06 bY Vs A28
D2t D13 D8 D3 Vee Vee A29 A28
3 o 0O 0O O o o0 0 0o 06 0 0o 0o O o 0 o © 3
CLKSEL CLK2 010 D12 D16 07 0PO A17 A23
Vs 017 oP2 D14 D4 A30 Vec
4 0 O O o O Q 4
023 Yee Al9 NC
Yss Vss
5 o 0O O o O O 5
DP3 Voo A21 Al4
Vss A18
6 o O O o o © 6
D24 D27 AZ4 Vgs
D25 Vee
7 o o0 © o o © 7
Vss D26 A22 A2
Yee A1S
8 o O O o O O 8
029 . D28 LOW POWER A20 Vs
cc
89l o ©° % 168-PIN PGA PINOUT O © Q0 9
ss ss
v, | ™ v,
cc ntel486™ DX CPU cc
10 o O ©O o 0 O 10
NN PIN SIDE VIEW ATS Vs
[
11 o o 0 o O o] 11
Vss NC A3 Vg
cc cC
12 o O] o o o 12
NC NC A5 Vss
NC Al
13 o O (] o o O 13
NC NC A7 A10
NC A8
14 0O O O o o0 © 14
NC FERR# A2 Ves
NC Yee
15 o o _ 0O 0o ©° O o0 0O 0 0o o 0 o0 0 0 O 15
IGNNE® FLUSH# HOLD c BE2# PWT LOCK# BREQ A6
NMI AZOM# KEN® BROY# gEO# D/C# HLDA A3
16 o O O ©o 0 0O 0O 0o ©O© 0 0o ©0 0 0 © 16
INTR RESET Voo Vee BET# Vee M/l0# PLOCK# A4
NC BSen ROY# Vee Vee Yeo Veo BLAST#
17 0O O O 0o 0 '0 O O O O 0O 9 0 0 0 O 17
AHOLD 8S16# Vss Vo PCD Vs w/R# PCHK# ADS#
EADS# BOFF # BE3# Vs Vss Vs Vss NC
A B C b E F 6 H J K L M N P Q R s
240440-A6
Figure 15.2. Low Power Intel486™ DX CPU Pinout (Pin Side View)
2-426

PRELIMINARY I

INTEL CORP (UP/PRPHLS) B?E D HEE 482b1L75 0127585 53b WMITLY

-
Intel o Intel486™ DX MICROPROCESSOR

15.3 Pin Cross Reference (Intel486™ DX CPU)

Address Data Control N/C Vee Vss
Ap Qi4 Dg P1 A20M # D15 At10 B7 A7
A3 R15 Dy N2 ADS# S17 A12 B9 A9
Ay S§16 D, N1 AHOLD Al7 A13 B11 Al
As Q12 Ds H2 BEO# K15 At4 C4 B3
Ag S§15 D4 M3 BE1# J16 B10 C5 B4
Az Q13 Ds NF BE2# J15 B12 E2 B5
Ag R13 Ds L2 BE3# F17 B13 E16 E1
Ag Q11 Dy L3 BLAST# R16 B14 G2 E17
Ao §13 Dg F2 BOFF # D17 B16 G16 G1
Aqq R12 Dg D1 BRDY # H15 c10 H186 G17
Aq2 S7 Dio E3 BREQ Q15 Ci11 N H1
Aq3 Q10 D14 C1 BSB8 # D16 C12 K2 H17
Aqy S5 D42 G3 BS16+#+ c17 C13 K16 K1
Aqs R7 D3 D2 CLK2 C3 G15 L16 K17
As Q9 Dig K3 CLKSEL A3 R17 M2 L1
Agz Q3 Dis F3 D/C# M15 S4 M16 L17
Aqgg R5 D1 J3 DPO N3 P16 M1
Aqg Q4 - Dy7 D3 DP1 F1 R3 M17
Azo Qs Dqs c2 DP2 H3 R6 P17
Az Qs Dyo B1 DP3 A5 R8 Q2
Agg Q7 D2 Al EADS# B17 R9 R4
Az3 S3 D4 B2 FERR# Ci14 R10 S6
Aps Q6 D22 A2 FLUSH # C15 R11 S8
Azs R2 D23 A4 HLDA P15 R14 S8
Azg 82 Daa A6 HOLD E15 S10
Azy S1 Dos B6 IGNNE # A15 S11
Agg Rt Dgg c7 INTR Al6 §12
Azg P2 Doy cé KEN # F15 S14
Asp P3 Dog Cc8 LOCK # N15
Asq (0]} Dazg A8 M/IO# N16
Dao Cc9 NMI B15
D3y B8 PCD J17
PCHK # Q7
PWT L15
PLOCK # Q16
RDY # F16
RESET Ci6
W/R# N17

15.4 Pin Description

All pin descriptions for the Low Power Intel486 DX Microprocessor follow the same definition as the Intel486
DX Microprocessor with the exception of those listed in Table 15.2,

Table 15.2
Symbol | Type Name and Function

CLK2 i CLK2 provides the fundamental timing for the Low Power Intet486 DX Microprocessor.
This is twice the internal frequency of the CPU.

CLKSEL I Clock Select pin selects the 2X mode required for the Low Power Intel486 CPU. A well
defined pulse on this pin establishes the phase relationship of the 2X clock. With the
exception of a pulse during cold reset, this pin should be driven low at all times and must
be free of spikes or glitches.

l PRELIMINARY ‘ 2-427

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

OUTPUT PINS

Table 15.3. lists all the output pins, indicating their
active level, and when they are floated.

Table 15.3. Output Pins

Name Active When Floated
Level
BREQ HIGH
HLDA HIGH
BEO# -BE3# LOW Bus Hold
PWT, PCD HIGH Bus Hold
W/R#, D/C#, | HIGH/LOW Bus Hold
M/IO#
LOCK # LOW Bus Hold
PLOCK# LOW Bus Hold
ADS # LOW Bus Hold
BLAST # LOW Bus Hold
PCHK # LOW
FERR# LOwW
A2-A3 HIGH Bus,
Address Hold
INPUT PINS

Table 15.4 lists all input pins, indicating their active
level, and whether they are synchronous or asyn-
chronous inputs.

Table 15.4. Input Pins

Active Synchronous/

Name Level Asynchronous
CLK2
CLKSEL
RESET HIGH Asynchronous
HOLD HIGH Synchronous
AHOLD HIGH Synchronous
EADS # LOW Synchronous
BOFF# LOW Synchronous
FLUSH# LOW Asynchronous
A20M # LOW Asynchronous
BS16#, BS8# LOW Synchronous
KEN # LOW Synchronous
ROY # LOW Synchronous
BRODY # LOW Synchronous
INTR HIGH Asynchronous
NMI - HIGH Asynchronous
IGNNE # LOW Asynchronous

INPUT/OUTPUT PINS

Table 15.5 lists all the input/output pins, indicating
their active level and when thay are floated.

2-428

L7E P WM 4826175 012758k 472 EMITLIL

intgl.

Table 15.5. Input/Output Pins

Name Active When Floated
Level
DO-D31 HIGH Bus Hold
DPO-DP3 HIGH Bus Hold
Ad-A31 HIGH Bus, Address Hold
Table 15.6. Test Pins
Input or Sampled/
Name Output Driven On
TCK Input N/A
TOI Input Rising Edge of TCK
TDO Output’ Falling Edge of TCK
T™MS Input Rising Edge of TCK
Table 15.7. Component and Revision ID (PGA)
1486 SX Microprocessor
Low Power Comfgnent Rew;l;lon
Stepping Name
Do 04 04
NOTE:

Table 15.7 shows the Component 1D number and Revision
1D number for the D-0 stepping of the Inteld86 DX Micro-
processor. When an Intel OverDrive Processor is instalied
in the system, the Component |D and Revision ID is provid-
ed by the OverDrive Processor and not the Intel486 DX Mi-
croprocessor. The Component 1D and Revision 10 read by
the BIOS/software may change when a Performance Up-
grade Component, such as the Intel OverDrive Processor,
is installed in an Intel486 DX Microprocessor based sys-
tem.

15.5 Signal Description

With the exception of CLK2 and CLKSEL, all signals
follow the same definition as the Intel486 Microproc-
essor. The A.C. timing parameters for all of these
signals are given in Table 15.11.

CLOCK (CLK2)

CLK2 provides the fundamental timing for the Low
Power Intel486 Microprocessor. It is divided by two
internally to generate the internal processor clock
used for instruction execution. The internal clock is
comprised of two phases, “phase one” and “phase
two”. Each CLK2 period is a phase of the internal
clock. Figure 15.3 illustrates the relationship. If de-
sired, the phase of the internal processor clock can
be synchronized to a known phase by ensuring the
pulse on the CLKSEL pin meets the applicable tim-
ings during cold boot (power-up reset).

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intal.

L7E D EE 482bL75 0127587 309 EEITLI

Intel486™ DX MICROPROCESSOR

INTERNAL

CLK2 PERIOD

INTERNAL
intel486™cPU CLK
(half the fraq.

of CLK2) =]

PROCESSOR CLOCK PERIOD

CLK2 PERIOD
®2

S avaw aWay £\
S

NN e N

INTERNAL
PROCESSOR CLOCK PERIQD

CLK2 PERIOD CLK2 PERIOD

240440-A7

Figure 15.3. CLK2 Signal and Internal Processor Clock

All set-up, hold, float-delay and valid delay timings
are referenced to the phase one of the clock.

The internal processor clock (CLK) is similar to the
clock signal of the standard Intel486 Microproces-
sor. All I/0 signals get sampled on the rising edge of
this signal, i.e. the rising edge of phase one. Thus it
is important to synchronize the external circuitry with
the phase one of CLK2.

CLKSEL

Clock Select pin selects the 2X mode required for
the Low Power Intel486 DX CPU. This pin should be
driven fow after power-up and during the entire opar-
ation of the CPU. However, a well defined pulse is
required on CLKSEL pin during cold boot (power-up

l PRELIMINARY

reset) to establish the phase relationship of the 2X
clock. The reset pulse width during cold reset should
be at least 1 ms. As shown in Figure 15.4, the pulse
on CLKSEL should be asserted by the end of reset
(approximately 0.9 ms after driving reset active) and
at least 30 CLK2 periods before the falling edge of
reset.

Figure 15.5 shows the detailed timing definition of
this pulse. The pulse on CLKSEL pin is only required
during power-up reset. During all other times includ-
ing warm resets the CLKSEL pin should be driven
low and must be free of spikes or glitches, After the
power-up reset, the system must track the phase of
CLK2 at all times including during warm resets so
that the input/output signals can be sampled at the
appropriate clock edge. The phase relationship is
described in the next ssction.

2-429

INTEL CORP (UP/PRPHLS) G7E D EE 4826175 0127588 2us -ITL]:

[
Intel486™ DX MICROPROCESSOR |n‘te| .

cuxe _JI—_}/__]F"\ £\ £\

L6
PR3

RESET ;

| - at least 0.9ms—'——*'

CLKSEL

240440-A8
Refer to Figure 15-5 for exact timings of the CLKSEL pulse.
Figure 15.4. CLKSEL Pulse with Reference to the Reset Pulse Width
el ord2 ¢lord2 ¢lorp2 ¢l or¢2 2 o 2 1 $2 1

CIC O I I [I 6

|

INTERNAL I
50(UNDEFINED

Inte1486™ CPU CLK / 5

3a
RESET —I
T 1= [

—d T2 fa— T5
e L]
[T 4 -]

CLKSEL

L6
3"

T1=T2=T3=2ns (MIN) T4=8ns (MIN) T5=30 CLK2 periods (min)
240440-A8

Figure 15.5. CLKSEL Timing Definition during Power-Up Reset

2-430 PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intel.

15.6 Architecture Overview

The Low Power Intel486 DX Microprocessor is archi-
tecturally similar to the Intel4d86 CPU. Thus all bus
cycles follow the same definition The difference lies
in the fact that the Low Power Intel486 CPU works
with an external 2X clock input (CLK2). As shown in
Figure 16-3, each of the internal processor clock
(CLK) cycle is two CLK2 cycles wide. Thus a 25 MHz
Low Power Intel486 DX Microprocessor needs a
50 MHz clock input.

CLK2 provides the fundamental timing for the Low
Power Intel486 CPU. It is divided by two internally to
generate the internal processor clock (CLK) used for
instruction execution. The internal clock is com-
prised of two phases, “phase one” and ‘“phase
two”. Each CLK2 period is a phase of the internal
clock. All Low Power Intel486 Microprocessor inputs
are sampled at the rising edge of phase 1. Each bus
cycle is comprised of at least two bus states, T1 and
T2. Each bus state in turn consists of two CLK2 cy-
cles phase 1 and phase 2 of the bus state. The bus
state diagram in Section 7.2.13 is valid for the Low
Power Intel486 Microprocessor.

NOTE:

The timing diagrams given in the Intel486 data
sheet can be used for the Low Power Intel486 Mi-
croprocessor. Read “CLK" signal as the internal
clock of the CPU, with “CLK2" (the input clock of
the Low Power Intel486 CPU) being twice the fre-
quency of the internal processor clock as shown in
Figure 15.3.

The following describes how the input signals are
sampled and output signals are referenced with re-
spect to the input clock (CLK2):

INPUT SIGNALS:

The Low Power Intel486 CPU samples all its syn-
chronous input signals (i.e. RDY+#, BRDY#,

l PRELIMINARY

L?E D M 482bL175 0127589 181 EEITLI

Intel486™ DX MICROPROCESSOR

BS8#, BS16#, KEN#, EADS#, BOFF#, HOLD
and AHOLD) at the rising edge of phase 1, as long
as proper setup and hold times relative to that clock
edge are met.

The Low Power Intel486 CPU samples all its asyn-
chronous input signals (i.e. RESET, INTR, NM!,
A20M# FLUSH#, IGNNE#) at every other rising
edge of the system clock (Phase 1), as long as prop-
er setup and hold times relative to that clock edge
are met.

OUTPUT SIGNALS

The A.C. timing specifications for output signals (i.e.
valid and float delay timings) are specified with re-
spect to the rising edge of the Phase 1 of the system
clock. This holds true for all output signals including
ADS# and PCHK#.

15.7 Variable CPU Frequency

The Low Powaer Intel486 Microprocessor allows the
CPU frequency to change dynamicatlly. As shown in
Figures 15.6 and 15.7, the relationship between fre-
quency and power consumption is approximately lin-
ear. Thus lowering the CPU frequency, reduces the
power supply current (Icc) consumed by the CPL.

The following must be satisified to change the CPU

frequency:

1. Frequency can be changed at least 8 clocks after
satisfying t4 (see Figure 15.5). The system can be
started at a lower frequency and after satisfying
the CLKSEL pulse specifications, it can be oper-
ated at the required speed.

2. The change in frequency should satisfy the mini-
mum specification of “CLK2 high time" and
“CLK2 low time"”. That is, at no time should the
clock period go below the specified clock high
and clock low times (see A.C. specifications for
exact values).)

2-431

INTEL CORP (UP/PRPHLS) 67E D EW 4826175 0127590 9T ENITLYL

]
Intel486 ™™ DX MICROPROCESSOR |nte| R
800 g
500 _/L,Z
< 400 =~
E
E 300 / ,/
8 z00 e
100 ——/
[
0 s 10 15 20 25
Frequency (MHz) 24044080
Figure 15.6. Frequency vs Igc(typ) (PGA Version)
700
§00
. 500
i
~ 400
[-%
/
300]
° : /
200 /-Z
100 —
¢ 0
[} 5 10 15 20 25
Frequency (MHz)
240440-B1

Figure 15.7. Frequency vs Igc(typ) (PQFP Version)

2-432 PRELIMINARY |

INTEL CORP (UP/PRPHLS) B7E D EH 4826175 0127591 83T EMITLD

[]
""@ R Intel486™ DX MICROPROCESSOR

15.8 D.C./A.C. Specifications

Table 15.8 provides the absolute maximum ratings. It is a stress rating only and functional operation at the
maximums is not guaranteed. Functional operating conditions are given in Section 15.8.1 D.C. Specifications
and Section 15.8.3 A.C. Specifications.

Table 15.8. Absolute Maximum Ratings

Case Temperature under Bias —65°Cto +110°C
Storage Temperature —65°Cto +150°C
Voitage on Any Pin with Respect to Ground | —0.5V to (Voo +0.5V)
Supply Voltage with Respect to Vgg -0.5Vtio +6.5V

15.8.1 D.C. SPECIFICATIONS

Table 15.9 provides the D.C. operating conditions for the Low Power Intei486 DX Microprocessor.

Functional operating range: Voc = 5V £10%; Tcasg = 0°C to +85°C.

Table 15.9. Low Power intel486 DX Microprocessor D.C. Parametric Values (PGA Version)

Symbol Parameter Min Max Unit Notes

ViL Input Low Voltage -03 +0.8 v

Vin Input High Voltage 2.0 Vee + 0.3 v

VoL Output Low Voltage 0.45 v (Note 1)

VoH Qutput High Voltage 24 v (Note 2)

lcc Power Supply Current 700 mA {Note 3)

CLK2 = 50 MHz

u Input Leakage Current t15 pA {Note 4)

hH Input Leakage Current 200 rA (Note 5)

he Input Leakage Current - 400 1. {Note 6)

ILo Output Leakage Current +15 pA

Cin Input Capacitance 20 pF Fe = 1 MHz()

Co 170 or Output Capacitance 20 pF Fe = 1 MHz(D

Cok CLK Capacitance 20 pF Fe = 1 MHz(D
NOTES:

-

. This parameter is measured at:
Address, Data BEn 4.0 mA
Definition, Control 5.0 mA
2. This parameter is measured at:
Address, Data BEn —1.0 mA
Definition, Control —0.9 mA
Typical supply current
lcc = 550 mA @CLK2 = 50 MHz
This parameter is for inputs without pullups or pulldowns and 0 < Vjy < Vee.
This parameter is for inputs with pulldowns and V| = 2.4V,
This parameter is for inputs with pullups and V. = 0.45V.
Not 100% tested.

@

N G» A

I PRELIMINARY 2-433

INTEL CORP (UP/PRPHLS) L7E D B 4826175 0127592 7?7 EMITLL

a
Intel486™ DX MICROPROCESSOR ln@ o

15.8.2 POWER SUPPLY CURRENT vs FREQUENCY

Following is the power consumption of the Low Power Intel486 Microprocessor installed in a low power system
for different frequencies.

Table 15.10. Power Supply Current (Icc) Values over Frequencies of Operation (PGA Version)

CLK2 Frequency Operating Frequency lce(max) lceiyp)
(MH2) (MHz2) (mA) (mA)
4 2 150 100
16 8 325 235
32 16 525 400
40 20 600 475
50 25 700 550

15.8.3 A.C. SPECIFICATIONS

The following table provides the A.C. specifications for the Lov& Power Intel486 DX Microprocessor, It consists
of output delays, input setup requirements and input hold requirements. All A.C. specifications are relative to
the rising edge of the phase 1 of the input system clock (CLK2), unless otherwise specified.

Table 15.11. Low Power Intel486 DX—25 MHz Microprocessor A.C. Characteristics
Vee = 5V £10%; Tease = 0°C to +85°C; C|. = 50 pF(@) unless otherwise specified

Symbol Parameter Min | Max | Unit { Figure Notes
Frequency 2 25 | MHz Half of CLK2 Frequency

ty CLK2 Period 20 | 250 | ns 15.8

tz CLK2 High Time 7 ns 158 | Atav

t3 CLK2 Low Time 7 ns 15.8 | Ato.8v

ta CLK2 Fall Time 2 ns 158 | 2Vto 0.8V

ts CLK2 Rise Time 2 ns 158 | 0.8Vtoav

ts A2-A31, PWT, PCD, BEO-3#, 3 22 ns 15.9

M/IO#,D/C# W/R#, ADS#, LOCK#,
FERR#, BREQ, HLDA Valid Delay

ty A2-A31, PWT, PCD, BEO-3 #, 30 ns 15.9 | After Clock Edge(V
M/IO#,D/C# W/R#, ADS#,
LOCK # Float Detay

ts PCHK # Valid Delay 3 27 ns 15.9
tga BLAST #, PLOCK # Valid Delay 3 27 ns | 15.10

2-434 . PRELIMINARY I

INTEL CORP (UP/PRPHLS) LYE D EE 4326175 0127593 b0O2 EMITLL

. ,
|nte| . Intel486™ DX MICROPROCESSOR

Table 15.11. Low Power Intel486 DX—25 MHz Microprocessor A.C. Characteristics (Continued)
Vee = 5V £10%; Tcase = 0°C to +85°C; C = 50 pF(2) unless-otherwise specified

Symbol Parameter Min | Max | Unit | Figure Notes
tg BLAST#, PLOCK # 30 ns 15.9 After Clock Edge(")
Float Delay
t10 D0-D31, DPO-3 Write Data 3 22 ns 15.9
Valid Detay
t14 DO-D31, DP0-3 Write Data 30 ns 15.9 After Clock Edgel)
Float Defay
t12 EADS# Setup Time 9 ns 15.10
t1a EADS # Hold Time 4 ns 15.10
t14 KEN#,6KBS16#, BS8# 9 ns 15.10
Setup Time
t15 KEN#,BS16#, BS8# 4 ns 15.10
Hold Time
tig RDY #, BRDY # Setup Time 9 | ns 15.10
t17 RDY #, BRDY # Hold Time 4 ns 1510
t1g HOLD, AHOLD, BOFF # 11 ns 15.10
Setup Time
tig HOLD, AHOLD, BOFF # 4 ns 15.10
Hold Time
t20 RESET, FLUSH #, A20M#, NMI, 1 ns 15.10
INTR, IGNNE # Setup Time .
t21 RESET, FLUSH#, A20M #, NMI, 4 ns 15.10
INTR, IGNNE # Hold Time
ta2 D0-D31, DP0O-3, Ad4-A31 6 ns 15.10
Read Setup Time)
t23 DO-D31, DPO-3, A4-A31 4 ns 15.10
Read Hold Time
CLKSEL See Figures 15.4 and 15.5 for details on this signal.
Figure 15.5 shows minimum timings required for the
proper operation of the CPU. The puise on CLKSEL can
be of any length as long as the minimums are satisfied
and the transitions from low to high occurs at the clock
edge shown.

NOTES:
1. Not 100% tested, guaranteed by design characterization.
2. All timing specifications assume C = 50 pF.

I PRELIMINARY 2435

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR intel
®

F o1 + 2
20vApf —- — — - — /
- e Q.8v
12 '
t5 |~ ——I t4
} 1
240440-B2
Figure 15.8. CLK2 Waveform
} *2 t ot
CLK2
tx ty
INPUTS VALID
tX=t12, t14, t16, t18, 120, t22
ty=t13, t15, t17, t19, t21, 23
. 240440-B3
Figure 15.9. Setup and Hold Timings
t # } 2
cix2 //_\——/1
ty
[tx
QUTPUTS YALID >_—_
tx = t6, 8, t8a, 110
ty=t7, 19, tit
240440-B4

Figure 15.10. Valid and Float Delay Timings

2-436

N

PRELIMINARY I

G?E D EE 4826175 0127594 549 EMITLI

INTEL CORP (UP/PRPHLS)

intgl.
16.0 SUGGESTED SOURCES FOR
intel486™ ACCESSORIES

Following are some suggested sources of accesso-
ries for the Inteld486. They are not an endorsement
of any kind, nor a warranty of the performance of
any of the listed products and/or companies.

Sockets

1. McKenzie Technology
44370 Old Paimspring Blvd.
Fremont, CA 94538

~ Tel: (415) 651-2700

2. E-CAM Technology, Inc.
14455 North Hayden Rd.
Suite 208
Scottsdale, AZ 85260
Tel: (602) 443-1949

3. Augat Inc. (for sockets with decaps)
Interconnection Products Group
33 Perry Ave.
P.O. Box 779
Attieboro, MA 02703
Tel: (508) 222-2202

I PRELIMINARY

L7E D ER 4826175 0127595 485 EMITLL

Intel486™ DX MICROPROCESSOR

Heat Sinks/Fins

1. Thermalloy inc.
2021 West Valley View Lane
Dallas, TX 75381-0839
Tel: (214) 243-4321

2. E G & G Division
60 Audubon Road
Wakefield, MA 01880
Tel: (617) 245-5900

TTL Crystals/Oscillators

1. NFL Frequency Controls, Inc.
357 Beloit Strest
Burlington, Wil 53105
Tel: (414) 763-3591

2. M-Tron
P.O. Box 630
Yankton, SD 57078
Tel: (605) 665-9321

Debugging Tower

1. Emulation Technology
2344 Walsh Ave., Building F
"~ Santa Clara, CA 95051
Tel: (408) 982-0664

2-437

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

17.0 REVISION HISTORY

Revision -006 of the Intel486 DX Microprocessor
Data Book contains many updates and improve-
ments to the original version. A revision summary of
major changes is listed below:

The sections significantly revised since version -001
are:

Section 2.1.2 The polarity and names of the two
cache control bits in Control Regis-
ter 0 (CRO) have been modifisd.
The Cache Enable (CE) and Writes
Transparent (WR) have been re-
named Cache Disable {CD) and Not
Write Through (NW). The value of
CRO after RESET has been
changed to reflect the polarity
change.

Sectlon 6.2.15 The discussion of A20M# has been
clarifed. During the falling edge of
RESET, A20M # should be high, for
proper operation of the CPU.

Section 6.5 The value of CRO after RESET has
been modified.

Section 6.5.1 Figure 6.3, "Pin State during RE-
SET” is added. This Figure is a gen-
eral reference for Reset issties. Pre-
vious Figures 8.1, 8.2, and 8.8 have
been deleted, since Figure 6.3 now
contains Reset information.

Section 7.2.10 A discussion of addresses and byte
enables driven during INTA cycles
has been added.

Sectlon 10.1 Clock counts and opcodes have
been clarified and corrected.

Section 10.1 The opcode slot for CMPXCHG in-
struction has been moved from
OFAG6/A7 to OFB0/B1.

Sectlon 12.2 Table 12.1 has been enhanced. The
‘‘Case Temperature under Bias”
spec was improved. The “Supply
Voltage with Respect to Vgg™ spec
was added.

Sectlon 12.3 Maximum Igc values have been im-
proved to 700 mA at 25 MHz and
900 mA at 33 MHz.

Section 12.3 Typical Icc values have been modi-
fied to 550 mA at 25 MHz and
700 mA at 33 MHz.

Sectlon 123 C\, Cpo, and Cgrk values have
been changed to 20 pF. Testing pa-
rameters and Note 7 were added.

2-438

E7E D

Section 12.4

Section 12,5
Section 13.1

Section 13.1

B 482b175 0127596 311 EEITLI

a

intgl.
The A.C. Specifications have been
improved. Float delays were im-
proved at both 25 MHz and 33
MHz. Note 1 was added to the float

delays. Maximum valid delays were
reduced at 33 MHz.

The ICD section was enhanced.

Thermal resistance Oca values of
the 168-pin ceramic package have
been corrected.

Maximum ambient temperatures
have been corrected to use the
max Icg values.

The sections significantly revised since version -002

are:

Section 2.1.2.1 Spec change for PC and PWT bits.

Table 2.16

Section 3.1

Section 3.5

Section 4.4.6

Section 4.5.4

Section 5.6

Section 5.7

Section 6.2.5

Section 6.2.8

Section 6.2.12

Section 6.2.13

Section 6.2.14

Sectlon 6.2.15

Section 6.3

Section 6.3.1
Section 6.3.2

Value of intel Reserved interrupt
Vector assignment corrected to
'18-31". :
Added CMPCHG, XADD instruc-
tions in the table.

Added explanation about NMI not
able to bring out the processor from
shutdown under certain conditions.

Value of task switching time cor-
rected to 10 ms.

Specification change for PCD and
PWT bits. _
Specification change for PCD and
PWT bits.

Cache flushing procedure ex-
plained, when FLUSH# applied
synchronously or asynchronously.
Specification change for PLOCK
cycle.

Added explanation for warm boot-
up.

Specification change for PCD and
PWT bits.

Explanation added for FERR # be-
havior.
Explanation added of IGNNE # be-
havior.

Explanation added for A20M# be-
havior in protected mode and dur-
ing RESET.

Simplified example for read reor-
dering in write buffers.

Corrected REP QUTS instruction.

Added explanation about cache up-
date on read-modify-write cycle.

PRELIMINARY I

INTEL CORP (UP/PRPHLS)

intgl.

Sectlon 6.5
Section 6.5
Table 6.2
Figure 6.3
Sectlon 7.2.2.3
Section 7.2.3.4

Figure 7.12
Figure 7.13
Figure 7.14

Section 7.2.4.2
Section 7.2.6

Section 7.2.7

Section 7.2.8
Section 7.2.8
Figure 7.22
Figure 7.23
Figure 7.25

Section 7.2.9

Section 7.2.11
Section 7.2.11

Figure 7.30

Section 7.2.14

Section 8.1

Added RESET pulse length require-
ment with or without BIST

Added table for Inteld486 revision
iD.

Corrected CRO value after Reset.
Corrected pin state diagram during
RESET. RESET pulse length
changed to 15 CLKs.

Added explanation to terminate
burst cycle.

Clarified text on changing KEN#
during cache line fill.

Corrected timing diagram to show
A4-A31, W/IO#, D/C#, W/R# do
not change during burst.

Corrected timing diagram to show
A4-A31, M/IO#,D/C#, W/R# do
not change during burst.

Corrected timing diagram to show
Ad-A31, M/10O#, D/C#, W/R# do
not change during burst.

Added cases that follow burst or-
der.

Added explanation for read-modify-
write for un-aligned transfers.
HOLD latency decreased by provid-
ing window in PLOCK cycle (speci-
fication change).

Added explanation about EADS #
timing.

Added the case of invalidation with
BOFF or HOLD.
Change in Timing
BREQ.

Change in Timing
BREQ.

Change in Timing
RDY #/BRDY #.
Added explanation about HOLD
getting recognized during unaligned
writes.

Added status of address and data
busses during special bus cycles.
Added sections on Halt and Shut-
down cycles.

Corrected state diagram by ANDing
BRDY # and BLAST# for the last
transfer of the burst cycle.
Difference in FERR# and ER-
ROR# explained.

Changed Reset width to 15 CLKs.

Diagram for
Diagram for

Diagram for

| PRELIMINARY

L7PE D

B 4826175 0127597 258 MMITL)

Intel486™ DX MICROPROCESSOR

Section 8.4

Table 10.1
Section 11.0

Section 11.0

Section 12.3
Section 12.3

Figure 12.2 &
Figure 12.3

Section 13.1

Section 14.0

Added explanation on tri-state
status.

Corrected value in format.

Added Note 6 on FERR# and
ERROR # difference.

Added TLB replacement algorithm
for 386 DX.

Corrected values in Note 2.

Added “internal” for pullup and
pulldown resistors

Waveforms for input and output sig-
nals have besn re-drawn to show
details about set-up, hold and float
times.

Added details about Ta calculation
from @, and 8,4,

Added new section on suggested
sources of Intel4B6 accessories
like sockets, debugging tower, heat
sinks, etc.

The sections significantly revised since revision -003

are:
Cover Page

Figure 1.3

and Figure 1.4

Pin Cross
Reference
Table

Quick Pin
Reference
Table 1.4
Table 1.5
Section 6.2.9
Section 6.2.12
Section 6.2.16
Table 6.3

Figure 6.4

Figure 7.30

Add 50 MHz information to text and
block diagram.

Added 50 MHz pinout diagrams.

Added column for Test Access Port
pins. ‘

Added Test Access Port pin de-
scriptions.

Added Test Access Port pin sam-
ple/driven data.

Added DO, cAx, and cBx revision 1D
information.

Added description of HOLD recog-
nition during BOFF #.

Added PCD and PWT description
when paging disabled.

Added signal description for Test
Access Port signals.

Added DO, cAx, and ¢Bx revision ID
information.

Added additional details on signal
samping during RESET.

Added HOLD to state transition be-
tween Th and T1b.

Section 8.0, 8.5 Added Boundary Scan to test fea-

Table 12.2
Table 12.3

ture description.
Added 50 MHz D.C. specifications.
Added 50 MHz A.C. specifications.

2-439

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICROPROCESSOR

Added Test signal timing reference

Figure 12.7
diagram.

Figure 12.4.2 Added 50 MHz capacitive load de-
rating curves. .

Table 13.2 Added 50 MHz thermal resistance
values.

Table 13.3 Added 50 MHz ambient tempera-
ture data.

The sections significantly revised since revision -004
are:

Intel OverDrive Processor information/specifications
have been added throughout the document. Section
13.0 contains OverDrive Processor specific informa-
tion.

- Low Power Intel486 DX CPU information/specifica-
tions have been added. Section 15.0 contains Low
Power specific information.

Quick Pin Reference Clarified the description for
KEN #.

Updated component and re-
vision 1.D. information.

More clearly defined A20M #
bit by defining functionality
during 1/0 writes, prefetch-
ing, etc.

Designated that FLUSH#
must be inactive during BIST.

Table 1-5

Section 6.2.15

Figure 6.4

2-440

B?E D M 482b175 0127598 194 EEITLY

n
intel.
Added section for floating

point error handling in AT
compatible systems.

Section 7.2.15

Section 8.1 Clarified A20M#, FLUSH#
and AHOLD functionality dur-
ing BIST.

Section 8.5.7 BSDL is now available through
intel.

Table 10.1 Clarified CBW and CWD. Cor-
rected REP LODS, REP
MOVS and REP STOS.

Table 10.2 Cormrected REP INS and REP
OUTS.

Table 10.3 Corrected FSTP, FUCOMP,
FSUBR, FDIV, FDIVR.

Appendix A Added appendix for CPU Iden-

tification Code.

The sections significantly revised since -005 are:

Figure 1.5 Added PQFP package pinout.
PQFP pin tables Added pin cross reference by
: signal type and complete pin

reference tables.
" Section 6.5 Added clarification for the built
in self test (BIST) during reset.
Section 7.2.9 Added explanation of bus hold
and hold acknowledge proto-

col.

Figure 7.26b Added figure to illustrate

HOLD request acknowledge
during BOFF #.

PRELIMINARY I

INTEL CORP (UP/PRPHLS) L?E D M 482b175 0127599 020 MITLI

L]
lnbl ® ‘ Intel486™ DX MICROPROCESSOR

APPENDIX A
INTEL RECOMMENDED CPU IDENTIFICATION CODE

The CPU identification assembly code will determine for the user which Intel microprocessor and if a Intel Math
CoProcessor is installed in the system. If a 486 microprocessor has been installed, the program will determine
if the CPU is with/without a floating point unit. This code should be executed so the system can be configured
for a particular application, which may depend on the microprocessor and Math CoProcessor installed in the
system.

TITLE CPUID
DOSSEG
.model small

.stack 100h '
.data
fp_status dw ?
id_mess db *This system has a$*
£p_8087 db *and an 8087 Math CoProcessor$*
fp_80287 db *and an 287 Math CoProcessor$®
£p_80387 db "and an 387 Math CoProcessor§®
c8088 db *n8086/8088 microprocessor$"®
c286 dab *n80286 microprocessor$§"”
c386 db *386 microprocessor§"
c486 dab *486 DX microprocesser/487 SX Math
*CoProcessor§"”
c486nfp db "486 SX Microprocesser$§”
period an *.§",13,10
present_86 dw 0
present_286 dw 0
present_386 dw 0
present_486 dw 0

The purpose of this code 15 to allow the user the ability to identify
the processor and coprocesor that 1s currently in the system. The
algorithm of the program 1s to first determine the processor id.

When that is accomplished, the program continues to then identify
whether a coprocessor exists in the system. If a coprocessor or
integrated coprocessor exists, the program will identify the
coprocessor 1d. If one does not exist, the program then terminates.

ws we we wu ws we we ws we

.code
start:
mov ax,@data
mov ds,ax ; set segment register
mov dx,offset id_mess iprint header message
mov ah,%h
int 21h

| PRELIMINARY 2441

INTEL CORP (UP/PRPHLS) GPE D EN 482kL17?5 0127600 k72 EMITLY

a
Intel486™ DX MICROPROCESSOR lntel »

: 8086 check o
H Bits 12-15 are always set on the 8086 processor.
pushf save EFLAGS
pop bx store EFLAGS in BX
mov ax,0fffh clear bits 12-15
and ax,bx in EFLAGS
push ax store new EFLAGS value on stack
popf replace current EFLAGS value
pusht set new EFLAGS
pop ax store new EFLAGS in AX

and ax,0f000h

cmp ax,0f000h

mov dx,offset ¢8086
mov present_86,1

Jeo check_fpu

if bits 12-15 are set, then CPU
is an 8086/8088

store 8086/8088 message

turn on 8086/8088 flag

it CPU is 8086/8088, check for

8087

Wr es we ws v w0 e we ws we wP we ws we

80286 CPU Check
Bits 12~15 are always clear on the 80286 processor.

or bx,0£000h ; try to set bits 12-15

push bx

popf

pushf

pop ax

and ax,0£000h ; if bits 12-15 are cleared, then
mov dx,offset c286 H CPU is an 80286

mov present_86,0 s turn off 8086/8088 flag

mov present_286,1 s turn on 80286 flag

Jz check_fpu ; 1f CPU is 80286, check for 80287

386 CPU check

The AC bit, bit #18, is a new bit introduced in the EFLAGS register
on the 486 DX CPU to generate alignment faults. This bit can be set
on the 486 DX CPU, but not on the 388 CPU,

we we wa we ws we

!
save current stack pointer to
align it
align stack to avoid AC fault

mov bx,Ssp

and sp,not 3

db 66h
pushf ; push original EFLAGS
ab 66h
pop ax ; get original EFLAGS
db 66h

. mov cx,ax + save original EFLAGS
db 66h ; xor EAX,40000h
xor ax,0 ; flip AC bit in EFLAGS
dw 4 s upper 16-bits of xor constant
ab 66h
push ax ; save for EFLAGS
db 66h
popf + copy to EFLAGS

2-442 PRELIMINARY I

In

INTEL CORP (UP/PRPHLS)

tal.

E?E D MWW 4826175 0127601 509 EEITLL

Intel486™ DX MICROPROCESSOR

“s we we

e wn we we we we we ws ws ws we

db 6€éh
pushf

db é6h
pop ax

db ééh
xor ax,cx

mov dx,offset c386

mov present_286,0
mov present_386,1
Je check_fpu

486 DX CPU and 486 DX CPU w/o FPU

mov dx,offset c486nfp

mov present_386,0
mov present.486,1

e e ve we we wr we

push EFLAGS
get new EFLAGS value

it AC bit cannot be changed,
CPU is

store 386 message

turn off 80286 flag

turn on 386 flag

if CPU is 386, now check for
80287/80387

checking

store 486NFP message
turn off 386 flag
turn on 486 flag

Co=-processor checking begins here for the 8086/80286/386 CPUs.

The algorithm is to determine whether or not the floating-point
status and control words can be written to, the correct coprocessor
is then determined depending on the processer id. Coprocessor checks
are first performed for an 8086, 80286 and a 486 DX CPU. If the
coprocessor id is still undetermined, the system must contain a 386
CPU., The 386 CPU may work with either an 80287 or an 80387. The
infinity of the coprocessor must be checked to determine the correct

coprocessor id.

check_fpu:

foinit
mov fp_status,5a5ah

fnstsw fp_status

mov ax,fp_status
cmp al,0
Jne print_one

fnstew fp_status
mov ax,fp.status
and ax,103fth

cmp ax,3fh

jne print_one
cmp present_486,1

je is_486
jmp. not_486

is_486:

mov dx,offset c486
jmp print_one

ws we we we we ws we

ws ws

check for 8087/80287/80387

reset FP status word

initialize temp word to non-zero
value

save FP status word

check FP status word

see if correct status with
written

Jump if not Valid, no NPX
installed

save FP control word

check FP control word

see if selected parts looks 0K
check that ones and zeroces
correctly read

jump if not Valid, no NPX
installed

check if 486 flag 1s on

if so, Jump to print 486 message
else continue with 386 checking

store 486 message

I PRELIMINARY

2-443

INTEL CORP (UP/PRPHLS)

Intel486™ DX MICHOPhOCESSOR

L7E D ME 4826175 0127602 445 EEITLL

intgl.

not_486:
cmp present_386,1 ; check 1f 386 flag is on
Ine print_87_287 s it 386 flag not on, check NPX for
s 8086/8088/80286
mov ah,%h s print out 386 CPU ID first
int 21h
*
H 80287/80387 check for the 386 CPU
’
f£1d1 s must use default control from
;s FNINIT
fldz s form infinity
fdaiv ; 8087/80287 says +inf = inf
f14d st s form negative infinity
fchs s 80387 says +inf <> -inf
fcompp ; see 1f they are the same and
; remove them
fstsw fp_status ; look at status from FCOMPP
mov ax,fp.status
mov dx,offset fp_80287 ; store 80287 message
saht ; See 1f infinities matched
jz restore_EFLAGS s jump if 8087/80287 is present
mov dx,offset fp_80387 ; store 80387 message
restore EFLAGS:
finit s clear any pending fp exception
mov ah,%h s print NPX message ’
int 21h
db é6h
push ex s push ECX
db 66h
pop?f ; restore original EFLAGS register
mov sp,bx s restore original stack pointer
jop exit
print_one:
mov ah,9%h s print cut CPU ID with no NPX
int 21h
jmp exit
print_87_287:
mov ah,%h s print out 8086/8088/80286 first
int 21h
cmp present_86,1 ; 1f 8086/8088 flag is on
mov dx,offset fp_8087 ; store 8087 message
Je print_fpu
mov dx,offset fp_80287 ; else CPU = 80288, store 80287
; message
print_fpu:
mov ah,Sh s print out NPX
int 21h !
Jjap exit
exit:
mov dx,offset period ; print out a period of end message
mov ah,Sh
int 21lh
mov ax,4c00h ; terminate program
int 21h
end start
2-444

PRELIMINARY I

