IDT

IDT79RC32334 and IDT79RC32332
Integrated Communications
Processors

(Y Revision)

RISCore™ 32300 Family

User Reference Manual

June 2002

2975 Stender Way, Santa Clara, California 95054
Telephone: (800) 345-7015 « TWX: 910-338-2070 « FAX: (408) 330-1748
Printed in U.S.A.
©2001 Integrated Device Technology, Inc.

www.DataSheetdU.com

GENERAL DISCLAIMER
Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance
and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The
Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

CODE DISCLAIMER

Code examples provided by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of the code examples below is completely
atyour own risk. IDT MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE NONINFRINGEMENT, QUALITY, SAFETY OR SUITABILITY
OF THE CODE, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, OR NON-INFRINGEMENT. FURTHER, IDT MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH, ACCURACY OR COMPLETENESS
OF ANY STATEMENTS, INFORMATION OR MATERIALS CONCERNING CODE EXAMPLES CONTAINED IN ANY IDT PUBLICATION OR PUBLIC DISCLOSURE OR
THAT IS CONTAINED ON ANY IDT INTERNET SITE. IN NO EVENT WILL IDT BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE OR
SPECIAL DAMAGES, HOWEVER THEY MAY ARISE, AND EVEN IF IDT HAS BEEN PREVIOUSLY ADVISED ABOUT THE POSSIBILITY OF SUCH DAMAGES. The code
examples also may be subject to United States export control laws and may be subject to the export or import laws of other countries and it is your responsibility to comply with
any applicable laws or regulations.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to
such intended use is executed between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform,
when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device
or system, or to affect its safety or effectiveness.

The IDT logo, Dualsync, Dualasnyc and ZBT are registered trademarks of Integrated Device Technology, Inc. IDT, QDR, RisController, RISCore, RC3041, RC3051, RC3052, RC3081, RC32134, RC32332,
RC32334, RC32355, RC32364, RC36100, RC4700, RC4640, RC64145, RC4650, RC5000, RC64474, RC64475, SARAM, Smart ZBT, SuperSync, SwitchStar, Terasync, Teraclock, are trademarks of Integrated
Device Technology, Inc.

Powering What's Next and Enabling A Digitally Connected World are service marks of Integrated Device Technology, Inc. Q, QSI, SynchroSwitch and Turboclock are registered trademarks of Quality Semiconduc-
tor, a wholly-owned subsidiary of Integrated Device Technology, Inc.

www.DataSheetdU.com

e
About This Manual

®

Introduction

This user reference manual includes hardware and software information on the RC32334 (Y revision)",
a high performance integrated processor that combines a high performance 32-bit CPU core with system
logic to provide direct connection to boot memory, main memory, 1/0, and PCI. It also includes on-chip
peripherals such as DMA channels, reset circuitry, interrupts, timers, and UARTs.

This is also the user reference manual for the RC32332 (Y revision) integrated processor. The informa-
tion herein generally refers explicitly only to the RC32334 but is applicable to the RC32332 unless noted
otherwise. Differences between the RC32334 and the RC32332 are identified in Appendix G.

Additional Information

Information not included in this manual such as mechanicals, package pin-outs, and electrical character-
istics can be found in the data sheet for this device, which is available from the IDT website (www.idt.com)
as well as through your local IDT sales representative.

Content Summary

Chapter 1, “RC32334 Device Overview,” provides a complete introduction to the performance capabil-
ities of the RC32334. Included in this chapter is a summary of features for the device as well as a system
block diagram and internal register maps.

Chapter 2, “RC32300 CPU Core,” describes the features of the RC32300 CPU core.

Chapter 3, “CPU Instruction Set Overview,” presents a general overview on the three CPU instruc-
tion formats as well as the computational instructions of the MIPS architecture. Instruction set summary
tables are also provided.

Chapter 4, “CPU Pipeline Architecture,” discusses pipeline features as well as interlock and excep-
tion handling of the device’s RISCore™ 32300.

Chapter 5, “Memory Management,” contains a discussion on the virtual-to-physical address transla-
tion technique, TLB management, and operation modes for the RC32334. Register formats and field
description tables are also provided in this chapter.

Chapter 6, “CPU Exception Processing,” defines and describes the various exception types and
handling processes for the RC32334. Also provided in this chapter are the CPO register formats, their field
descriptions, and general exception handling flowcharts.

Chapter 7, “Cache Organization, Operation, and Coherency,” includes a general discussion on the
operation of cache as well as the more specific cache attributes of the RC32334. Flowcharts and various
diagrams are provided to clarify the concepts discussed in this chapter.

Chapter 8, “RC32334 Internal Bus,” presents a general overview of the RC32334’s internal bus that
provides a connection to internal peripherals and controllers.

Chapter 9, “External Local Bus Interface,” presents a general overview of the RC32334’s system bus
that provides an easy connection to main memory and to peripherals.

Chapter 10, “Memory Controller,” provides a functional overview on the CPU core, DMA or PCI bridge
generated transactions. A block diagram, register maps, signal description table, and timing diagrams for
various read and write operations are also included.

1 For information on an earlier user manual that covers the Z revision, contact your IDT sales representative.

79RC32334/332 User Reference Manual i

(Jiiae 4, 2002

About This Manual Content Summary

Chapter 11, “Synchronous DRAM Controller,” contains a discussion on the operations and support
provided by the RC32334’s 32-bit SDRAM controller. Timing diagrams are provided to illustrate the different
read and write transactions.

Notes

Chapter 12, “PCl Interface Controller,” contains descriptions of the PCI host/satellite modes and
master/target operations supported in the RC32334. Register maps and register field definitions are
included.

Chapter 13, “DMA Controllers,” includes descriptions on the four general purpose DMA channels and
the transfer operations supported. Byte swapping between big- and little-endian is also discussed and
includes examples.

Chapter 14, “Expansion Interrupt Controller,” provides a functional and operational overview on this
controller. This chapter includes a block diagram, signal definitions and register mapping tables for each of
the 14 groups supported.

Chapter 15, “Programmable 1/0 (P10) Controller,” provides the signal descriptions, register mapping
and programming information on the software programmable options of the RC32334’s 15 peripheral pins.

Chapter 16, “Timer Controller,” provides a user overview on the functions of the RC32334’s nine on-
chip timers. A block diagram, signal definitions and register maps are included.

Chapter 17, “UART Controller,” describes the operation of the two 16550 compatible UARTSs available
on the RC32334. Register maps and descriptions are included.

Chapter 18, “Serial Peripheral Interface,” describes the properties and operations of this interface to
low-cost serial peripherals.

Chapter 19, “Clocking, Reset, and Initialization,” provides a description of the clock signals that are
used on the RC32334 processor and includes a discussion on the basic system clocks and system timing
parameters. This chapter also provides a brief explanation on the power reduction modes for this device
and a description of the RC32334 initialization and reset registers.

Chapter 20, “JTAG Boundary Scan,” introduces the standard JTAG interface used for board-level
debugging. A description on the Test Access Port (TAP) interface and TAP controller state assignments is
also included.

Chapter 21, “EJTAG (In-circuit Emulator) Interface,” describes the Debug Support Unit (DSU). It
covers the debug instructions added to the MIPS Il ISA instruction set as well as support functions and
registers for debugging.

Appendix A, “RC32300 CPU Core Enhancements to MIPS Il ISA,” discusses in detail architectural
enhancements to the MIPS Il ISA.

Appendix B, “Opcode Map,” provides an opcode map.

Appendix C, “The Timing of Cache Operations,” provides a table for primary data cache operations
and a table for primary instruction cache operations, as well as caveats about cache operations.

Appendix D, “RC32334/RC32332 Standby Mode Operation,” discusses power reduction, in partic-
ular, the “Wait” instruction and the standby mode that follows this instruction.

Appendix E, “Coprocessor 0 Hazards,” identifies the RC32334 CP0 hazards.

Appendix F, “Integer Multiply Scheduling,” discusses integer multiply performance, defines instruc-
tions, and summarizes integer multiply and divide performance.

Appendix G, “RC32332 Differences,” identifies the differences between the RC32334 and the
RC32332.

79RC32334/332 User Reference Manual i _ June 4. 2002 1.

About This Manual Revision History

Notes Revision History
November 15, 2000: Initial publication.

February 5, 2001: In Chapter 12, separated PCI CPU Memory and 1/O Space 1 Base Register section
into two sections, one dealing with CPU Memory and the other with CPU 1/0, and changed bit description to
reflect CPU /0O Base uses [23:20] instead of [31:28].

February 26, 2001: Changed alternate function for uart_tx[0] from PIO[3] to PIO[1] in Table 1.2 and G.4.
In Chapter 15, clarified that timer_tc_n[0] is not present in the RC32332 and added a reference in the Signal
Definitions section to Tables G.2 and G.3. In Appendix G, added two tables (G.2 and G.3) to highlight the
differences in PIO pin name assignments between the RC32334 and RC32332.

April 2, 2001: Made the following changes in Chapter 18: added system clock formula under Serial
Peripheral Clock Register section; removed “active” from description for bit 2 in table 18.4; changed SPSE
register to SPSR register in Table 18.6; in Master Programming Example, item 1, changed formula in paren-
theses to 3.7 MHz (67/ [(8+1) * 2]); in Master Programming Example, item 2, changed formula in paren-
theses to 3.7 /2 =1.85 MHz.

May 17, 2001: Table 17.6, “Interrupt Identity Register Fields and Descriptions,” has been revised to
show that for bits 3:1 (Current Interrupt field) the value 111 has the same status and priority level as the
value 011. Also, in Table 11.2, under SDRAM Organization column, 2nd category from the bottom, the data
now reads “2 Mb x 16 x 4 banks” instead of “4 Mb x 16 x 4 banks.” Finally, in Table 11.6, for bit 28 (SDRAM
Bank Size field), the value descriptions now omit any reference to 16M-bit and 64M-bit. These references
were confusing because the RC32334 and RC32332 devices also support 128M-bit SDRAMs.

July 26, 2001: In Chapter 10, the bit address for mem_addr{25:2] was changed from 40000 to 3C00000
in Figures 10.6 through 10.30.

June 4, 2002: Made the following changes based on the introduction of Y silicon: Chapter 8, Internal
Bus—changes in bit 7 description in Table 8.12, changes in Table 8.13. Chapter 11, SDRAM Controller—
added more SDRAM address multiplexing and control registers (SDRAM Secondary Control), changes to
Tables 11.1 and 11.2, changes in SDRAM Initialization section. Chapter 12, PCI Interface—added CPU to
PClI and PCI to CPU mapping diagrams, new Memory/IO Space Base register and PCI Memory/IO Base
Address registers, Target FIFOs are 16 words deep, added PCI Target Control Register and New Feature
sections, added additional fields in PCI Arbitration Register (Table 12.15), added 2 new base address regis-
ters, revised Tables 12.1, 12.7, and 12.12, changed Reset for System Identification Number from 00h to
01h (Table 12.24). Chapter 13, DMA Controllers—added New Feature Configuration register, added
SDRAM to PCI Arbitration Algorithm field, and revised function description for interrupt_n[3] and n[4] pins in
Table 13.3. PIO chapter—added New Feature Register. Clocking, Reset and Initialization chapter—revised
description in first row of Table 19.1.

79RC32334/332 User Reference Manual iii _ June 4. 2002 1.

About This Manual Revision History

Notes

79RC32334/332 User Reference Manual iv - dune 4. 2002 .

Table of Contents

®
Notes About This Manual

INEFOAUCHION ..t en et er e s [

CONENE SUMMAIY ...ttt [

TS o 1] o S ii

1 RC32334 Device
Overview

FOTBWOI.ttt ne st 1-1

INEFOAUCHION .. 1-1

BIOCK DIBGIAMviieieicte ettt 1-1
Documentation Conventions and Definitions ..o, 1-1
SigNal TEMMINOIOGYcvcvveiecteiciciri sttt 1-2

LISE Of FEALUIES ...ttt 1-3

System BIOCK DIAGramcccieuiiiieriiiesce ettt 1-4

SYSLEM OVEIVIEW ...t 1-4

Pin Description Table — RC32334 ...ttt 1-6

Pin Description Table — RC32332 ...t 1-13

Logic Diagram — RC32334 ..ottt 1-19

Logic Diagram — RC32332.........coerieiieieieeisieieiee st 1-20

Typical RC32334 MeMOIY MaPccviieiiiiiieisietess et 1-21

RC32334 Internal Register Map Addresses and

DEFINIIONS ...ttt 1-21
BIU CONtrol REGISIETS.....c..cvveeiieieircieieiseie e 1-21
Base Address and Base Mask REJISIErSccvvrrerieereennssssseeeecs s 1-22
Memory Control REGISETS.........c..cucveiceeiicic ettt 1-23
DRAM Memory Controller REGISErScvverrevrieieirieeisse e 1-23
Expansion INterrupt REGISIErSov e 1-23
Programmable /0 REGISIErS........c..cvveuiirieirerierererse e 1-25
Timer CoONtroller REGISErScoiieierieierisesc e 1-25
UART CONErOl REGISIEISvucvcvicecieicieietc sttt 1-26
Serial Peripheral Interface REGISErS.........c.cccvviiveiiciesiceee s 1-27
DMA CONErol REGISTETS.......vuvuieeeieviieiieireieietesteset sttt 1-27
PClI Interface Control REGISIErS.........coiviiriiirrierrie e 1-29

2 RC32300 CPU Core

INEFOAUCHION ..t 2-1

Performance OVEIVIEWc.cveeiieiririierseis et ssss et sns st ssseens 2-1

RC32300 CPU COre FEAIUIEScvvriveieieeriieietssisse ettt ettt snsns 2-1

RC32300 CPU OVEIVIEWocviriviieiiteiieisetes ettt sa st sb st ss st b snse s 2-2
CPU REJISIEIS......ceeeieiiretse ettt ettt 2-2
CONFIGUIATION 1...cvoe bbb 2-3

CPO CONSIAEIALIONSce.eeeceeececeeireieee sttt et se et sea et e e 2-4

79RC32334/332 User Reference Manual v Wrﬁ a Lha

Table of Contents

Notes Memory Management Unit (MMU) ..o 2-4
On-chip Instruction and Data CaChes...........ccc.veueiiieiiicicece e 2-4
Power REAUCHON MOAEcocviciecreees e 2-4
Standby Mode Operationc..cuceieriiicriee e 2-4
3 CPU Instruction Set
Overview
41T 1 T 1o] 3 O OT TP T 3-1
CPU INStrUCHON FOMMALSvoveerceciicestie sttt 3-1
Load and Store INStrUCHONS (I-YPE)vurereiceirerceee et 3-2
Scheduling @ Load Delay SIOt........coieierrirriesesnee s 3-2
DEFINING ACCESS TYPESvuviviiecreiere ettt 3-2
Computational Instructions (R-type and -tyPe) ..o 3-3
Operations With 32-bit OPErandscceureerurrrrerinrier e 3-3
Cycle Timing for Multiply and Divide INStrUCtIONS...........cooeuirieirinere e, 3-3
Jump & Branch Instructions (J-type and R-tYPe)ccvuririiririniniseeiseseesese s 33
Overview of JUMP INSTUCHIONSoc.rurecercie e 3-3
Overview of Branch INSLrUCHONScoviruriricrrcer e 3-4
Special INStUCHONS (R-LYPE)......cviveereiriiieieiier et ena b 3-4
EXCEPHON INSHIUCHONS. ...ttt 34
Coprocessor INSUCHONS (I-YPE)......cvvrivereiceiics ettt 3-4
Summary of CPU Supported INStruction SEtscccorrrrncereereeee e 3-4
4 CPU Pipeline Architecture
INEFOAUCHION ... bbb 4-1
CPU PIPEIINE STAZES ...ttt 4-1
11 - Instruction Fetch, Phase ONe ... ssenes 4-2
2| - Instruction Fetch, Phase TWO.........ccciiiiiceee e 4-2
1R - Register Fetch, Phase ONE ... ssees 4-2
2R - Register Fetch, Phase TWOcccveiiirienineeneiee e 4-2
1A - EXECULION, PRASE ONE.......veveeeeeececeececeee ettt s 4-2
2A - EXECULION, PRASE TWOcucuviveeeeee ettt 4-2
1D - Data Fetch, Phase One ... s 4-2
2D - Data Fetch, Phase TWOcoiurieirrieircee e 4-3
W - Write Back, Phase ONEcviiiririinence st snes 4-3
2W - Write Back, Phase TWO.......c.ccrurrieeeirecieneees et e 4-3
BranCh DEIAY ...t 4-3
0= - TP 4-4
Interlock and EXception Handlingccveieeensiiiccceissss e 4-4
EXCEPHON CONAIIONSvucvviieicice et 4-5
SHAll CONAIIONS ... 4-5
SHIP CONAILIONSvvvriie ettt ettt bbbt bbb 4-6
5 Memory Management
INEFOAUCHION ... bbb 5-1
Virtual-to-Physical Address TransIation ... 51
TLB MaNAGEMENT ...ttt e e 5-2
79RC32334/332 User Reference Manual vi

e Datasheetaieom

Table of Contents

Notes MMU RegiSter DESCTPHONSc.vvevreireieiree ittt 5-3
INAEX REGISIET (0)...v.vvvvevvcreeeiieeieiee ettt 5-3
RANAOM REGISIET (1) ..vvveiieeiiicreiieer ettt 54
EntryLo0 (2), and EntryLo1 (3) REGISLETS.........euiurieririirirrierieeeeiesee e 54
CONEXt REGISTET (4) ..v-veeeeeeieeee ettt ettt 55
PageMask REGISIEN (D) ...vururerurerereieirireieirereirire ettt 5-6
WIred REQGISIEN (B) ...v.vvevevrieeeeireieieiscieiseieis ettt 5-6
Bad Virtual Address Register (BadVAAAr) (8)cccovvevivereiriiiesccees e 57
EntryHi REGISIEr (10)....viviiieeiiccsees s 5-8

Kernel/User Operating Modes and AdAreSSingc.cuveeeerierneinierneinieesee e, 5-8
YT 1 0T L= 5-8
KEIMEI MOGE ...ttt et 5-9

6 CPU Exception Processing

131 T [0 0T3O 6-1

Exception Processing REGISIEIScvviviiiiicccrrsrr e 6-1
COoUNE REGISIET (9) ..vuvvvrieireiiirieiers ettt 6-2
ComMPAre REGISIEN (11) ... cuereeeeereeeeire ettt ettt 6-3
SHAtUS REGISET (12) ..ottt 6-3
Status Register Modes and ACCESS STAtESccvieerireirrieercer e 6-5
CaUSE REGISIET (13) 1u.vvieeviiiiciri ittt ettt 6-5
Exception Program Counter (EPC) RegiSter (14)ccoveveivecnrieiseceseeseess e 6-7
Processor Revision Identifier (PRIA) ReGIStEr (15)coevrierirerinireinieineisie e 6-7
CoNfig REGISIET (16) ..-vuveeeereeceeereeeeire ettt ettt 6-8
[Watch REGISLEr (18) ...ttt 6-9
DWatCh REGISIEr (19) ...t 6-9
Debug Exception Program Counter (DebugEPC) Register (23)ccoevveviveerrrenennen, 6-10
DEDUG REGISIEN (24) ...ttt e 6-10
Error Checking and Correcting (ECC) RegiSter (26)........ccovveereinieireinieneinieieisieieens 6-10
Cache Error (CacheErr) REGIStEr (27).....vcurvreererereeeerireiere e 6-10
TagLO REQGISIEN (28).....ee ettt 6-11
Error Exception Program Counter (Error EPC) Register (30)cvvvvveeerireerneenireeeenn, 6-12

ProceSSOr EXCEPLIONSc.vvivieiecictcietsss ettt 6-12
EXCEPHON TYPES ..ottt 6-12
General EXCEPION PrOCESS........covuiieireerireicnesie sttt ss s sssssnnnes 6-13
Priority Of EXCEPLONS ..ottt 6-13
Exception Vector LOCALIONSccocvvieieeesris e 6-13
RESEE EXCEPLION ...ttt 6-14
DEDUG EXCEPLION ...ttt 6-15
SOft RESEE EXCEPLON......ceeeece ittt 6-15
Nonmaskable Interrupt (NMI) EXCEPHONcvevierirririrersece e 6-16
Address Error EXCEPLON ..o 6-16

TLB EXCEPHONS.vviiitectctete ettt bbb bbbttt b bbb 6-17
TLB REill EXCEPHONveeee ettt et 6-17
TLB INValid EXCEPHONcvuiveerieerciieieiciee st 6-18
TLB Modified EXCEPLONc.vuivirieciierceice s 6-18
Cache ErrOr EXCEPLONc.vcveiiceeisice ettt sttt 6-18
BUS Error EXCEPLON ...t 6-19
Integer OVerflow EXCEPLONc.cvcveviirccece et 6-19
TrAP EXCEPLON ...ttt et 6-20

79RC32334/332 User Reference Manual vii

www NataGheetdleo

Table of Contents

Notes System Call EXCEPLON ...t 6-20
Breakpoint EXCEPLIONc.cviveeeei e 6-20
Reserved Instruction EXCEPLioNccocevriiiiiiccees s 6-21
Coprocessor Unusable EXCEPHONcccciiiiisiieiecccee e 6-21
INEEITUPE EXCEPLON ...ttt 6-21
DWaLCh EXCEPHON ...ttt 6-22
IWaECh EXCEPHON ...ttt 6-22
Exception Handling and Servicing FIOWCharSccccoveevicevicccsce e 6-22

7 Cache Organization,
Operation, and Coherency

41T 1 T 1o] 3 O OT TP T 7-1
Cache Operation OVEIVIEW ..ottt 7-1
RC32334 Cache DESCIPLONcceveviiiiiccccte sttt 7-2
RC32334 Cache AHDULESceerecieerieee et 7-2
Cache Organization and ACCESSIDIIILYcerriviiiieiies e 7-2
Organization of the Primary Instruction Cache (I-Cache)..........ccovveevieeviciiccriie, 7-2
Organization of the Primary Data Cache (D-Cache)..........cccoevevieinenieneiniienense e 7-3
Accessing the Primary CaCheS........coeerceses st 7-5
Primary Cache STAteS.........cccuiiviriieiicicicc ettt bbb 7-6
Primary Cache Satescuov i 7-6
Cache LiNE OWNEISNIDcucveiiicieieicii ettt s sttt na e 7-6
Cache WHIE POICYcevveeeiieireieee ettt 7-7
SHEOTE BUFFET ...t 7-7
Cache Replacement POLCY.........cccueueiieieiieiicc ettt 7-7
Cache INIHAIZATION. ...t 7-8
CaChE LOCKING ..v.vevviectie ettt sttt ns e 7-8
When 10 use Cache LOCKINGcvviveveueieiiiiiiicccie e 7-8
Example: Data Cache LOCKINGcc i 7-8
Example: Instruction Cache LOCKINGc.eeieruieriiiriiieirisencses e 7-9

8 RC32334 Internal Bus

INEFOAUCHION ... n e 8-1
List of Features for RC32300 CPU BUS..........ccviirririenrienne s 8-1
BIOCK DIAQIamcvveveiiii ettt 8-1
FUNCHONAI OVEIVIBW ...ttt ettt ettt bbbttt 8-2
AQArESS MOTUIE.........ceeeee bbb 8-2

AdAreSS INCIEMENTET ..ottt ne s 8-2

AQArESS MUX ...ttt 8-2

AdAreSS DECOUE.........c.cvoviiiiiiictcee ettt bbb bbb 8-3
Data MOGUIE ..o bbb n e 8-3
CPU Read/Write OPErations...........couevriieriurireieireieeeiseieeeiseie et es s sessssessessssens 8-3
DMA Read/Write OPEIAtONSc.cc.cuevieireiiicieieeecieecie ettt bbb 8-4

ATDIFALION ...ttt st 8-4
MEMOTY POIt SIZINGvvvcveiicre ettt bbb bbb 8-4
Bus Turnaround (BTA) REGISEN.........c.iuriireerteeee e 8-4
WatChAOG TIMET ...ttt sttt s s 8-5

79RC32334/332 User Reference Manual viii _ June 4. 2002 1.

Table of Contents

Notes BUS TimMe-OUL COUNTETSucvieiieieiree e 8-5
BUS EITON TIMEIS ..ottt 8-5
RegiSter DESCIIPHONS.vueeeeeieercieietee ettt 8-5
Interface CoNntrol REGISIETScueuiieerice e 8-6

CPU Port-Width Control Register: Virtual Address OXFFFF_E200cccooevevneininnnnn. 8-6
CPU Bus Turnaround (BTA) Control Register: Virtual Address OxFFFF_E204.................. 8-8
CPU Bus Error Address Register (Read Only): Virtual Address OxFFFF_E208 8-9
BTA CONrol REGISIEN.........cviveiiecreiceri ettt 8-9
Address Latch Timing REGISIEN ..o 8-11
ArDItration REGISETcviviieiiicr s 8-12
BUSEOr CONtrol REGISIETcoevieieireerieirere e 8-12
BUSEITOr Address REJISIEN ..o 8-12
SYSID REGISIET ...ttt bbb 8-14

9 External Local Bus Interface

INEFOAUCHION ...ttt bbb b bt b e 9-1
OPEIALION ..ottt ettt ettt bbb bbbt s bbbttt b ae s e 9-1
Variable Port-Width INterface...........ccovueiiiiieceec et 9-2
DEDUG SIGNAIS ...ttt 9-4

10 Memory Controller

INEFOAUCHION ... bbb 10-1
LISt O FEAIUMES ...ttt 10-1
BIOCK DIAQIAM ...ttt 10-1
FUNCHONAI OVEIVIEW ..ottt 10-2
Memory Controller OPErationccvvceiiierriieee e 10-2
Integrated Processor Generated TranSactionsccccvevvicevicrsiscesiee e 10-2
DMA Controller or PCI Bridge Generated Transactions...........c.ccoueeienenieneninnennnnns 10-2
Chip SEIECES ...t 10-3
Transceiver Control INtErfacecooeerrerce s 10-3
Using 8- or 16-bit BOOt PROMSc.coiuiiiiiieiciciciicee ettt 10-3
Wait-State Generator (WSG)cviriiiriies e 10-4
AdAreSS DECOGINGcecveiecirireeeeisieie ettt 104
Memory Type and Port-Width Size SUPPOT ..o 10-5
POM-WIAEN SIZE ..ottt 10-6
1/O WiIdth SUPPOM.......ceiviieciiceecetee ettt bbb 10-7
Programmable Wait-State GENErator ... s 10-7
External Wait-State BERAVIOTcccvvivrieiniriecre e 10-7
BUS EITON RECOVETY ...ttt 10-8
SIGNAI DESCIIPHONSvviiivcv et s sa s senes 10-8
Register DEfINItIONS..........civeieeriecce e 10-9
Memory MSB Base Address Register for Banks 1:0.........ccocoenivieninnninnenceee 10-10
Memory MSB Bank Mask Registers for Banks 1:0ccocoevenennnnnenencneen, 10-10
Memory Control Register for Banks 5:0cccooevvieieiicsccssee e, 10-11
TIMING DIBGIAMS ..ottt 10-12
79RC32334/332 User Reference Manual ix

v Datasheetaieom

Table of Contents

Notes 11 Synchronous DRAM
Controller
41T 0T o] 3OO 111
FRAMUIES.......cvrte bbb 11-1
SDRAM Enhancements in Y Silicon REVISION..........ccvuivriniiinieinineieineeseiseeee s 11
BIOCK DIBGIAM ..ottt 11-3
FUNCHONEI OVEIVIEW ..ottt ettt sttt 11-3
Base Address DECOING..........cuuriiuriricerrecere et 1-7
Page ROW COMPAIAtOrS............ccureuiureieerneieere ettt nseeseaees 1-7
BUISE SUPPOM ..o 1-7
RAS/CAS AQAreSs MUXooviirieieircese ettt 11-8
REMTESN TIMET ... 11-8
EITOr RECOVEIY ...ttt bbbt bnas 11-8
SDRAM INIAIZAION ...ttt 11-8
RegiSter DEfINITIONS.cvieeiieiiieiesiee sttt 11-9
SDRAM CONErol REGISIETSveveieiiceei sttt 11-10
SDRAM Primary Control REGISIETccvvvveviieiieiieiesscieeers e 11-10
SDRAM Secondary Control REGISETccveveiieveiieieiesee s 11-13
TIMING DIBGIAMS ..ot 11-15
SODIMM ..ottt s s 11-21
SODIMM CoNfIgUIAtIONcuiveiieeiciciest ettt 11-21
SDRAM SODIMM Even Bank Non-Page Word Read............coocvriiniennininieninens 11-21
SDRAM SODIMM Odd Bank Non-Page Word Readcocceniveeiniineinincininens 11-22
SDRAM SODIMM REFIESN ...t eseeseesee et essessnens 11-23
OULPUL_CIK USAGE ..ttt 11-23

12 PCl Interface Controller

INEFOAUCHION ...ttt 12-1
FRAMUIES.......vee s 12-1
PClI Interface Enhancements in Y Silicon REVISION...........ccovveieirienieinienenisneiseseiseeenn, 12-1
FUNCHONAI OVEIVIEWoviieicei ettt 12-3
=T To] Y (=T o] o] o TSP 12-4
RC32334 PCI Bus Target OPerationc.cceueerireueenieenirnieinsssiessssssssssssssssssessssens 12-5
RC32334 PCl Bus Master Operationccocoeueeeueiienieeceeee e 12-6
RC32334 PCI Bus Target OPeration ..o 12-7
PCl Satellite MOGE ...ttt 12-7
PCI Commands SUPPOMEAc.vvrreriieirieeire et ssessses 12-9
PCI Configuration REGIStEr ACCESSceuvirieriiiieieiiieis st 12-10
PCI Polling Error HaNAlNGcccoviveieieieesss et 12-11
PCIINEITUPES ...t 12-11
SIGNAl DEINIIONSovreerce e 12-11
RegiSter DEfINITIONS.evieeireiiieieisesc sttt 12-12
PCI Controller Interrupt Pending Register 11 ..o 12-13
CPU to PCI Mailbox Interrupt Pending RegiSter 12oovvveriveninneneseincenenns 12-13
PCl to CPU Mailbox Interrupt Pending Register 13 ... 12-14
PCI Memory Space [1,2,3] Base REGISEN..........cccuieeiieeiece e 12-14
PCII/O Base REGISIENvvuevieerieieiriieetseete ettt 12-15
New Feature REQISIEN ..o 12-16

79RC32334/332 User Reference Manual X __ June 4. 2002 1.

Table of Contents

Notes PCI Target Control REGISIEN ..o 12-17
PCI Arbitration REJISIETc.veeveiicieieceie et 12-21

PCl to CPU Memory/IO Space [1,2,3,4] Base RegiSterscccovuvevveenricrnnceinnne, 12-22

PCI Configuration Address REGISIENccvviiiiiecieieecssseere e 12-24

PCI Configuration Data REGISEr..........coeriiiiriieeeieee e 12-24
RC32334 PCI Configuration REGISIENSccveveriieieierceseesste e 12-24
Vendor ID REGISIEN........cieerrr ittt 12-25
DEVICE ID REGISIENevvvvcteeseee ettt 12-26

PCl Command REGISEN ...ttt 12-26

PCl Status REJISIEN ...t 12-27
Device Revision Identification REGISter ..o 12-27
Class COAE REGISIETccvirericieiicte ettt 12-28
CACNEIINE SIZE ...t 12-28
Master Latency Timer REQISIENccccceviiiiiiccee e 12-29
HEAET TYPE ..ottt 12-29

Bl T bbbt 12-29

PCI Memory/IO Base Address [1,2,3,4] REGIStErS........c.ocoveuvinieininineineenercnceeinn, 12-30
SUbSYSIEM VENAOT ID ...t 12-32
SUDSYSIEM ID ...ttt 12-32
INterrupt LiNg REGISIEN........vieecccccee et 12-32
INtErrUPt PiN REGISIET ...ttt 12-32
MIN_GNT REGISIETceeiiieieirieieieiee ettt 12-33
G I I =T 1 PSRRI 12-33
TRDY TIMEOUL VAIUE........oeeiircieiriierc e s 12-33

Retry TIMEOUL VAIUEc.cviveieeee et 12-34

13 DMA Controllers

4140 0 T 1o] 3T 13-1
LISt Of FEALUMES ...ttt 13-1
DMA Enhancements in Y SilicOn REVISION..........cueurirurriirerirercerneecre e 13-1
BIOCK DIAQIAM ...ttt 13-3
DIMA OPEIAHONSeeeeieeeeeeere ittt eee st ee e sea e ee et s st et e et en s ee s e e s e 13-3
ENdianness SWapPINg......ccerrrrinirrne ettt 13-4

DMA TranSfer MOGEScuevreuiieiieisiieieiseieie sttt sttt entns 13-4
DMA Transfer OPErationscccceuriiueiriireriieieieeeies st 13-5

Last Partial Word TranSfers. ... 13-7
Transfer RESHHCHONS ..ot 13-7

DMA Arbitration MEOUS.........cueieiicieirciesee et 13-7
DIMA ACCESS ..vvrereeeenieeeseeises et eie bttt sttt bbbt 13-9
SIGNAl DEFINIIONS ..o 13-9
DIMA REAAY ...ttt 13-9

DIMA DONE ...ttt bbbttt 13-10
Internal DMA INtErrupt SIgNalSceuevreiierieieiseeeseeeess ettt 13-11
Restarting DMA Channels............ccurieiireinieeiseeeisse e sessssesenns 13-12
Register Mapping and DeSCrIPHONScvvieerieeirirrreeeeeeeie e 13-12
ConfiQUration REGISIETcueuieieriiei i 13-14
Base Descriptor Address REGISIE..........cvveririirirseeeccese s 13-16
DMA EXAMPIE ...ttt 13-17
CUrrent AJAress REGISIEN ... 13-19

79RC32334/332 User Reference Manual (]

www NataGhestdlleo

Table of Contents

Notes SOUrCE AAAreSS REGISIENv.veeveieirceriee et 13-19
Destination Address REGISIENou. e 13-19
Next Descriptor Address REGISIETcveuriierirreressee et 13-20
SHAIUS REGISIET «...voviei e 13-20
TIMING DIBGrAMS ...eceeeeieiei et 13-22

14 Expansion Interrupt
Controller
41T 0T 1o] 3PSO 14-1
FRAMUIES......ovei s 14-1
BIOCK DIBGIAM ..ttt bbb 14-1
OpErational OVEIVIEWccviveviiriieiictsiss ettt ettt bbbt senes 14-2
SIGNAl DEAINIIONS ...t 14-2
Registers and Address Mapping..........coovveeeeuririrninineeeeeesisesss s seseseses 14-3
Interrupt Pending REGISIET ..o 14-6
Interrupt Mask REQISIETc.cvueirrrii e 14-6
Interrupt Clear REGISIEN ...ttt 14-6
ReiSter GrOUDP SEHINGSvveveiieeiiceerce ettt 14-7
Register Group 0 SEHINGSccvvvieice et 14-7
Register Group 1 SEHNGScvviereirirrcs e 14-7
Register Group 2 SEHINGSceevrecereee et 14-7
Register Group 3 SEHNGSvu vt 14-8
Register Group 4 SEHNGSvvvvveerierreer et 14-8
Register Group 5 SEHINGSccveiieice s 14-8
Register Group 6 SEtNGScviiiriirrese e 14-8
Register Group 7 SEtNGScvvirireirirercs s 14-9
Register Group 8 SEHNGScecvreieercee s 14-9
Register Group 9 SEHNGScurvrecer et 14-9
Register Group 10 SEHINGScevrvreeririrreere et 14-9
Register Group 11 SEHHNGSccviviieiceeier e 14-9
Register Group 12 SEHINGSccvevieieiecte ettt 14-10
Register Group 13 SEHINGSccvevieieiicece ettt 14-10
Register Group 14 SEHINGSccurrreerrceerr ettt 14-11
TIMING DIAQIAMS.....cviiiccecietee sttt sttt et b 14-11
RC32334 INtrTUPL FIOW......coiviviieieiecic ettt bbb 14-13
1. INItIAliZe INEEITUPES ..ot 14-13
2. Walt fOr INEEITUDE. ... vt 14-13
3. Software Interrupt Service ROUtINE (ISR).......ccoverviieciriiesscceee s 14-13
Optional Algorithm for Priority INtErrUPLSccccoeeveveiieiiceeece e 14-13
Optional Algorithm for Non-Prioritized INterrupts...........cccevieveieiieieceeece e 14-13
15 Programmable /O (P10)
Controller
INEFOAUCHION ... 15-1
FRATUMES ...ttt et 15-1
OVBIVIBW ...ttt bbb 15-1
BIOCK DIBGIAM ...veiieet bbbt 15-2
79RC32334/332 User Reference Manual xii

v Datasheetaieom

Table of Contents

Notes Performing Initialization Programming..........ccoeerirniesecesesceseeiseessseeeseenees 15-3
SigNAl DEAINIIONSvvveviecee ettt 15-3
Register Mapping and DefinitionS..........ccvoeierrirriensecieseees s 15-5

PIO Data REGISIEr 0c.veevevicecisece ettt 15-5
PlIO Data REGISIEr ..ottt 15-6
PIO Direction REGISLEr 0c.ceiveiiiciiiicecee ettt 15-7
PlO Direction REGISTEr 1 ..o e 15-8
PIO Function Select REgIStEr 0........orirurreirreieeereceereees et 15-9
PIO Function Select REGISIEr 1.......ccvvieerirriersecr e 15-10
New Feature REQISIENcccviccrces e 15-11
TIMING DIBGIAMScvceeeetieicte bbb 15-12

16 Timer Controller

INEFOAUCHION ... 16-1
FRATIUMES ...ttt 16-1
BIOCK DIAQIAMvvveiesi ettt 16-1
OVEIVIBW ...ttt ee et s e e e e e sttt et en st s s e 16-2
SIgNAl DEFINIIONS ...v.vvvvvicve st 16-3
REGIStEr MAPPING. ...ttt bbb 16-3

Timer Control Register DESCIIPHONc..ciieeeirirerceeeeesee s 16-4

TIMEr COUNE REGISIETv.viivvicieiec et 16-5

Timer COmMPAre REGISTETcvurruiirieiriirici ettt 16-5
TIMING DIBGIAMS ..ot bbb 16-6

17 UART Controller

INEFOAUCHION ... 17-1
BIOCK DIBGIAM ..ottt 171
OVBIVIBW ...ttt bbb bbb 17-2
UART OPEIAtION ..ottt ettt 17-3
USEI INEEITUDLS ...ttt 17-3
SIGNAl DEAINIIONS ...t 17-3
UART O&1 REGISIEIS ...ttt 17-4
UART 0 REGISIEIS ..ottt 17-4
UART 1 REGISIEIS ...veeeeeiieieieriie sttt snsesennas 17-4
Receive Buffer Register (RBR)ccouiiiririiriniencsescsescs s sssscens 17-5
Transmit Buffer ReGISter (TBR)..........ccvueuriirieeirieieisseieesse et ssssesesns 17-5
Interrupt Enable Register (IER) ..o 17-5
Divisor Latch Least Register (DLL)cvrerieirierirerenees e 17-6
Divisor Latch Most Register (DLM)covrriinerinercsecs e 17-6
Interrupt Identity REGISLEr (IIR)ocevierieecri et 17-6
Buffer Control Register (BCR)........c.vviriiiiririisisssis e 17-8
Line Control REGISIET (LCR) ... esssens 179
Modem Control Register (MCR)........coiiiriiireeiese s 17-9
Line Status REGISIEr (LSR)cevieieeriieeeirciereeis st 17-10
Modem Status Register (MSR) ..o 17-11
Scratch REGISEr (SCR).....viicveiiceees et 17-12
ReSEE REGISIEr (RR).....vuiviiiicieieiscieeise et 17-12
TIMING DIAGIAM ...ttt ettt s st 17-12

79RC32334/332 User Reference Manual xiii _ June 4. 2002 1.

Table of Contents

Notes 18 Serial Peripheral
Interface
41T 0T 11o] 3T 18-1
SIgNAI DESCIIPHONSvvviivcveicee ettt bbb seees 18-2
SPI Data Setup/Hold and Delay Timingccueueurienereinirneienseieeseeessesseesessssessessssennes 18-3
SPI Setup and Register DESCTPONS ..o 18-3
SPI INterrupt DESCIPHONcvevicveveicieisiets et bbb 18-4
Serial Peripheral Clock Register (SPCNT)......cccovvieiiiieieesecese e, 18-4
Serial Peripheral Control Register (SPCNTL)cccvivrieiiinieeiseeseiseeissesseeeieseeseens 18-5
Serial Peripheral Status Register (SPSR).........coerennineenese e, 18-6
Serial Peripheral Data 1/O Register (SPDR).........cccovrennennrenenesesesesee e, 18-7
Interface to SPI Serial E2PROMs by ATMEL (AT25128)oeoeiieieineereieeiseeeineineeneens 18-8
Master Programming EXAMPIEc.cviurirrnecsnecece et 18-8
TIMING DIBGIAMS ...ceceereireicee st bbb 18-8
19 Clocking, Reset, and
Initialization
41T 0T 1o] 3PSO 19-1
SigNal TEMMINOIOGYvvvveeiciiiec sttt sns s 19-1
BasSiC SYSLEM CIOCKScviieiiiiciriiee et 19-1
CPU_MASLEICIK ..o 19-1
PCIOCK ... vv vttt s bbb bbb bbb 19-2
Phase-Locked LOOp (PLL) OPEIationccccvuierireiriiniiriiinirnieeesseisssssse s sssssssesssssssesnsssssees 19-2
PLL Components and OPeration............ccoueereeerurencerreneeeireeieesesees e seseeeens 19-2
PLL Analog POWET FltEHINGc.cveueveieieeeie ettt 19-3
RESEE FUNCHON. ...ttt 19-3
Reset and Initialization INterface ..o 19-4
Boot-Mode Configuration SENGScevvrrrieenirierreer et 19-4
reset_boot_mode SEHNGScccovcvevieiecc e 19-5
PCi_host_MOdE SEHNGScevieeeiiicece et 19-5
Reset of On-chip System Controller LOGICcocuvecveiicieieeieecee e 19-5
20 JTAG Boundary Scan
INEFOAUCHION ... bbb 20-1
System Logic TAP CONtroller OVEIVIEW..........cc. e essss s 20-2
SIgNAl DEFINIIONS .. v.vvivvicici ettt bbb senes 20-2
Test Data REGISIEr (DR)......cceuieerirecieirete ettt et 20-3
Boundary SCan REGISIErScvuvvieirrrrer st 20-3
INSLrUCHON REGISLET (IR).....vviiseiieictreies ettt bbbt 20-5
EXEES bbb 20-6
SAMPIE/PIEIOAT. ..ot 20-6
BYPASS .ottt 20-6
ClaMID et 20-7
DVICEID ...t 20-7
VAl ... 20-7
RESEIVEA ... 20-8
UNUSE ..ttt sttt 20-8
Usage CONSIAEIAtIONSv.vvcvicieiiciesece sttt 20-8
79RC32334/332 User Reference Manual xiv

v Datasheetdieom

Table of Contents

Notes 21 EJTAG (In-circuit Emulator)
Interface
41T 0T 11o] 3T 21-1
OVBIVIBW ...ttt bbb 21-2
BIOCK DiAQIAMS.......ceeeeiceieeeeer ettt ettt 21-3
DeEbUG SUPPOTE UNIt......cvcviiecieice ettt 21-3
Instruction Address Match LOGICveurrrrrieinricrries e 21-4
Data Address & Data Value Match LOGIC ... 214
Processor Address Bus & Processor Data Bus Match LOgiC..........covevnnencnicinininn. 21-4
EJTAG INEEITACEoocvcircieicicc bbb 21-4
OPETAtiNg MOGES.......coveviieieeste ettt 21-5
JTAG OPEIALON ..ottt e 21-7
Test Interface and Boundary-Scan ArchiteCture...........ccoceviieesicccsceeeee e 21-7
Test ACCESS POrt OPEration........cccoveucveiceiiessece et 21-7
TAP Controller State ASSIGNMENLSc.vrireerieririirieeiseeeeesesesse s 21-9
INStruction REGISLEr (IR)vvvreeiieieeeeieteee et 21-10
Test Data Register (DR)cviiiiririireseisises e 21-10
Implementation REGISIEN ..ot 21-11
PrOCESSOr ACCESSoociiierei ettt 2117
RESEE OVEIVIBWoveiciei bbb 21-18
EJTAG Module ClOCKINGcucvuieeviiiriieiictcicctee ettt 21-19
INSHIUCHION REGISIET ... 21-19
The DEDUG UNIE ..ottt 21-21
Extended INSIUCHONSc.cvuiiieeecee s 21-21
SDBBP (Software Debug Breakpoint)............ccoeireinienienenineissseesssssseessssenees 21-21
DERET (Debug EXception REIUM).......c.cceviuieriiniieieeseeeseeeseeseiee e 21-22
Extended CPO Registers (Debug REGISErs) ..o 21-22
DEDUG REGISIEN ...t 21-22
Debug Exception Program Counter Register (DEPC).........cccoevieneneineniieinenseiseenenn, 21-24
Debug Exception Save Register (DESAVE).........ccooiriirreircereneen e, 21-25
REGISIEN MAP ...ttt es 21-25
Debug Control REGISETc.cvcveiiiieiicie ettt 21-25
Instruction Address Match RegiSters............coovieeeniiicsccccc e 21-27
Data Address and Data Match registersoerenninnneneee e 21-28
Processor Bus Match REGISIENSc..cuveieirirecrescsee e 21-29
DEDUG EXCEPHON ..ot 21-32
Debug EXCEPHON CAUSES........ccevrivrireiiirieieinsie sttt 21-32
Debug Exception Enabling/Disabling ..o, 21-32
Debug EXCeption Handling........c.cveuriereiniieenenese it 21-32
Exception Handling when in Debug Mode (DM bit is Set)ccocevveerininenenenieeine, 21-33
Servicing the Debug EXCEPHONcvvueviicceries e 21-33
O I - (oo 21-33
INSErUCHON Trace METNOc.vuiiiiriiciee e 21-34
PC Status and Exception Vector ENCOAING..........cvieiriiriiinineseneseneis e 21-34
PC Status ENCOINGcevrvieiieieieieieieieeee ettt 21-34
Exception Vector ENCOINGc.vevveuiinieinireneise ettt 21-35
External Interface DEfINItION.cccviieiirirres st 21-36
EUTAG .ottt bbbt 21-36
Priority of Target Address OQutput (§Jtag_tPC).......cvvrrrimrrinieriiesicsrs e 21-36
79RC32334/332 User Reference Manual xv

www NataGhestdl eo

Table of Contents

Notes Real Time ejtag_tpc Output (TM='0"in DCRIO]).......cvoevvrrriiriinenniecie e, 21-36
Non-Real Time ejtag_tpc Output (TM="1"in DCR[O])cvevererrirerreirireireieceirereieieieen, 21-37
Examples of PC Trace OULPUL........ouirerre e 21-37
Conditional PC Relative Jump INStrUCHON............ocovurireeereerrecrrecseee e 21-37
Indirect JUMP INSITUCHON ... 21-37
PC Trace Of An Exception Followed By A Jump Indirect Instructionc.cceunnee. 21-38
PC Trace of an Indirect Instruction Followed by an EXCeption..........c.cccoueevevveernieeerninns 21-38
Examples of Trace Trgger OULPUL..........coviiririeeic e 21-39
Instruction Address Trace THGGENcevvrurerereieesirereeseses e eeenens 21-39
Trace Trigger and General Exception at the Same Timecccooeeervvcivcceiccenenen, 21-39
Jump Indirect Causes Trace THGGETcvevverrieerieresee et 21-39
Instruction after Jump Indirect Causes Trace THGGErccovvverivrreiiereereireieiseissiennas 21-40
Switching from Real-Time Trace t0 DebUG........c.ccverieininierccrcc e 21-40
Real-Time Trace Mode to Debug Mode (No ejtag_tpc Qutput).......cccovevvevreecrrrrcreinen, 21-40
Real-Time Trace Mode t0 Debug MOde ..o 21-41
Pin Out of the Standard EJTAG...........coreerrcercees et 21-41
EJTAG Application INfOrmation............ccccoueriieiiriieicsseeesetsesss et 21-42
Using JTAG Boundary Scan and EJTAGccooeviiiericeeece et 21-42
Hot Plug-In of the EJTAG Probe to Target System ... 21-43
Appendix A RC32300 CPU Core
Enhancements to MIPS Il ISA
INEFOAUCHION ... bbb A-1
PrEfEtCh (PREF) ...ttt s st st A-1
Elimination of 64-bit INSIIUCHONScviuiririrec e A-3
Conditional MOVe OPEratioNSc.ouveurireecerneieesnees sttt eese e seseees A-3
Move Conditional 0N NOt ZETOcvuviierirecrrieser st A-3
Move Conditional ON ZETO ..ottt A-3
INStrUCHONS fOr DSP SUPPOM ...ttt A-3
MUIIPIY A......ocveeeeeee ettt A-4
Multiply Add UNSIGNEAcooviieriricierieisreenreei et A-4
MUIEIPIY SUDEFACE ...t A-4
Multiply SUbtract UNSIGNEAcccocuiiiuiieiiiesiceeeece ettt A-5
COUNt LEAAING ZETOS......cecviviiiiieecteiee ettt ettt st b st A-5
CoUNt LEAAING ONES ...ttt e A-6
Appendix B Opcode Map
Appendix C The Timing of Cache
Operations
INEFOAUCHION ... s C-1
Caveats About Cache OPErationsccccccicveiiiiccieicicseeeceeece e C-1
Cache Operations TADIEScccvieuiiieiicesies et C-1
Fill_I EQUAtioN DEfINItIONSeeeieeeeieeeceeriees sttt C-3
Appendix D RC32334/RC32332 Standby
Mode Operation
INEFOAUCHION ...ttt D-1
79RC32334/332 User Reference Manual xvi

e Datasheetaieom

Table of Contents

Notes POWET MANAGEMENL........cuiieeirieieisi ettt e et naesnnes D-1
Power RedUCHON MOUEScuivicrirecinee e D-1
Entering Standby MOGEcuovorieeeeceeee sttt D-1

Appendix E Coprocessor 0 Hazards

1100 8T (oo I E-1
[o) 4= 0 F ST E-1

Appendix F Integer Multiply Scheduling
INEFOAUCHION ..o F-1

Appendix G RC32332 Differences

INEFOAUCHION ..ottt bbbttt G-1
DifferenCes iN FEATUMES.........c. i G-1
MEMOIY CONEIONETcevvivveieieieeeeeee ettt G-1

PCI Controller On-Chip ArbIter...........c.oierereereeesrecee e G-1

PCl Controller DEVICE ID ..ottt G-1

DMA Controller FIOW CONErOL...........ccieueeeeiiieececee ettt G-2

PIO CoNtroller SIGNAIS.......c.cvvriveviiriieiieie sttt G-2
TIMER Controller Signalccviiveiiiceieisisssce st ssse s G-3
INEEITUPE LINES ..vovcviecve ettt bbb bbb G-3
UART INTEITACE. ... ettt G-3
Internal Bus Interface SysID REGISIEN ..o G-3
JTAG DEVICE_ID REGISIENcvcvvivieciceeiccc ettt s G-3
JTAG Boundary SCan CellS.........ccciiueiieiriieriiice ettt G-3
EIECICAl / PINOUL ...ttt G-3

Pin DesCrption TabIeccieieieiiciceecccte ettt G4
LOGIC DIAQraM.....vuiecviiiciis ettt sttt ettt G-10
INARX ... -1

79RC32334/332 User Reference Manual xvii SUduned- 2002 .

Table of Contents

Notes

79RC32334/332 User Reference Manual xviii - dune 4. 2002 .

e
List of Tables

Table 1.1 Example of Byte Ordering for “Big Endian” or “Little Endian” System Definition 1-2
Notes Table 12 Pin DESCHPHON fOr RC32334 oo 1-6
Table 1.3 Pin Description for RC32332........cuiiiviieiieiceseee ettt 1-13
Table 1.4 RC32334 Typical MemMOIY MaPc.cccuiiiieeieceseeee ettt 1-21
Table 1.5 Internal Address Map for BIU Control REGISErS........c.cuvveierieineinieneiressisseseeseieenes 1-22
Table 1.6 Internal Address Map for Memory and DRAM Base Address and
Base Mask REQISIEIS...........ccvcuiiciiiiisceccee et 1-22
Table 1.7 Internal Address Map for Memory Control RegISters..........cccovviernenierneenieseineeieien, 1-23
Table 1.8 Internal Address Map for DRAM Memory Controller Registers............ccocveeverieuererenee, 1-23
Table 1.9 Internal Address Mapping of Expansion Interrupt REgiSterscovevenienenieineene, 1-23
Table 1.10 Internal Address Mapping of Programmable 1/0 RegiSterscccocovernerieneineenieinn, 1-25
Table 1.11 Internal Address Mapping of Timer Controller REGIStErsccoevvrriernenierieneeeien, 1-25
Table 112 Internal Address Mapping of UART 0 REGISIENScevvivrieineininineinieinee e, 1-26
Table 1.13 Internal Address Mapping of UART 1 REGISIENSccvvviirieineirieiseeiesee e, 1-27
Table 1.14 Internal Address Mapping Of SPI REGIStErS........c.cvivieininieiieeeseee e, 1-27
Table 1.15 Internal Address Mapping of DMA Channel 0 REGISIENSccovvvvveriernenierneineieieeen, 1-28
Table 1.16 Internal Address Mapping of DMA Channel 1 REGISIENSccovervviriernenieiieineieeien, 1-28
Table 1.17 Internal Address Mapping of DMA Channel 2 REGISIErSccovvvverierneinieineineieieinn, 1-28
Table 1.18 Internal Address Mapping of DMA Channel 3 REGISIErSccovvvveurierneinieineireieieien, 1-29
Table 1.19 Internal Address Mapping of PCI Interface Control Registersc.cccovvvierneineenreinen, 1-29
Table 3.1 Permitted Address COMDINALIONScoveieiiinieieneeee e 3-2
Table 3.2 Performance Levels of MUL/DIV and New INStructions..........c.ccceevenieneininineenseneennnn, 3-3
Table 3.3 Load and Store INSIUCHONS..........c.cuvieieriieiieisce e e 3-4
Table 3.4 Arithmetic Instructions (ALU IMMEIAtE)ccvvireriiririirirreiseeeeses s 35
Table 3.5 Arithmetic Instructions (3-Operand, R-TYPE)cccoerrrurirrriniereiesensseeeseesseessseseens 3-5
Table 3.6 Multiply, Divide and DSP INStrUCHONSccouiveiicreicece ettt 3-6
Table 3.7 Jump and Branch INSTrUCHIONSccovvvviiiicicceee e 3-6
Table 3.8 Shift INSIUCHONS ...ttt 3-7
Table 3.9 COoProcesSOr INSTUCHONScccueiiiiieice ettt 3-7
Table 3.10 Special INSTUCHONS..........ccoiuiieiicicecce et 3-7
Table 3.11 EXCEPtion INSLIUCHONS...........cieiececicicc s 3-8
Table 312 CPO INSIUCHONSvuvrieirriierieisiisieisces ettt 3-8
Table 5.1 TLB Register Field DESCHPHONSccvevviviiiiicicicieiee et 5-2
Table 5.2 RC32334 MMU REGISEIS......cocviviveiiecreiicirieie sttt st 5-3
Table 5.3 Index Register Field DeSCHPLONScccceeiieiiiccee e 5-3
Table 5.4 Random Register Field DeSCHPLONScccoceviviirireecceee et 54
Table 5.5 EntryLo0 and EntryLo1 Register Field DeSCriptionscccceevviviieiecceeesscseceinas 55
Table 5.6 TLB Page Coherency AHMDULEScccoveviveiiieiceeeee e 55
Table 5.7 Context Register Field DESCHPLONSccc.cccviiiviirieeeceee et 5-5
Table 5.8 PageMask Register Field DESCPHONS........cccccviviiiririieccciee e 5-6
Table 5.9 Wired Register Field DESCHPHONScceveviiieiicccecs e 5-7
Table 5.10 EntryHi Register Field Content DeSCHPLONScccoviuevicveieicececre e, 5-8
Table 6.1 Basic CPO REJISIEIS ..ottt 6-2
Table 6.2 Status Register Field DeSCHPHONS...........ccocvieiriieiece e 6-4
Table 6.3 Cause Register Field DESCHPLONScoevieriiieiiee e 6-6
Table 6.4 Cause Register EXCCOAE Field.........cccviieiieiicicececs et 6-6
Table 6.5 PRid Register Field DeSCrptionsccouieueuiiirri e 6-7
Table 6.6 Config Register Field Content DESCHPLONS..........cccviiveviicieiesceceee e 6-8
Table 6.7 Watch Register Field DeSCriplion.........ccccoviiieceessssseeeeee e 6-9

79RC32334/332 User Reference Manual Xix o Patashe

List of Tables

Table 6.8 DWatch Register Field DeSCIPHONScceureirieireeerceeree e 6-9
Notes Table 6.9 ECC Register Field DESCIPHONSc..cviirieiririereirie e 6-10
Table 6.10 Cache Error Register Field DESCIPHONS ..o, 6-10
Table 6.11 TaglLo Register Field DESCrPtONScoveveerrieriieericeis e eeeeenes 6-11
Table 6.12 Primary Cache State ValUES.........ccoceuviveririrrries e 6-12
Table 6.13 Exception Priority Order (highest t0 loWESt)c.ceririiiririerrere e, 6-13
Table 6.14 Base Address Vector OffSEt.........ccriririircsec e 6-14
Table 6.15 List 0f RC32334 EXCEPON VECIOS.........ccuieirirciiiicirieieis e 6-14
Table 6.16 RC32334 EXCEPLON VECIOTS.......coceeireeriieieiciree et 6-14
Table 6.17 List of Exception Handling Flowchart TYPes ..o, 6-22
Table 7.1 RC32334 Cache AHMDUIEScvveiiirircrcer e 7-2
Table 7.2 Primary |-Cache Line Field DeSCIPHONS ..o 7-3
Table 7.3 Primary D-Cache Line Field DESCIPHON.c.ccvvevrieieireiriesceseiseee e 7-4
Table 7.4 Primary Cache StateS........cvuriieririescrr ettt 7-6
Table 8.1 CPU Bus Interface Control REGISIErScoeuirieneneereneseseee e, 8-5
Table 8.2 CPU to IP Register Addresses and Descriptions............cocvenerninensneinienenceneenenn. 8-5
Table 8.3 Port Width Control Register Field Definitioncccoevirerneenninsseessesseeereeesns 8-6
Table 8.4 Encoding of 8-, 16-, and 32-bit Port Widths.........cc.ovevrieriicrrcererre e 8-7
Table 8.5 Memory Region Address RaANGES.........cocreriieniiinircensissese s eeeeses 8-7
Table 8.6 CPU Bus Turnaround (BTA) Control Register Field Descriptions..............cccvenerierneenene. 8-8
Table 8.7 Width Encoding of Bus Turnaround CYCIES ..o 89
Table 8.8 Bus Turnaround (BTA) Control Register Field Descriptionscccvevveenenenneinennnns 8-10
Table 8.9 Width Encoding of Bus Turnaround CYCIES ..o 8-10
Table 8.10 Address Latch Timing Bit Field DeSCriptionsccocvenernnenieneneseneseisceene 8-11
Table 8.11 Arbitration Field Values and Action DeSCrptON...........ccocvererenenenenesenese e 8-12
Table 8.12 BusError Control Register Field DeSCriptionscocvevreireineinieneniesenceseiseeeeene 8-13
Table 8.13 SysID Register Field DESCIPHONScvuevrieriricieiseisreeeseesse e 8-15
Table 9.1 Port Width Assignments t0 Data LiNESc.ccvenereininenneseeesceese e 9-2
Table 9.2 Data Transfer Sequences for 8-bit Port Widthccocvvinnicncecnercee 9-2
Table 9.3 Data Transfer Sequences for 16-bit Port Width..........ccoevenninincccseescne 9-3
Table 9.4 Data Transfer Sequences for 32-bit Port Width..........ccoevennieniecncence 9-3
Table 10.1 8- and 16-bit LSB Addresses and Write-Enable Connections............ccocveneneenieenen. 10-4
Table 10.2 RC32334 Typical MemMOry Mapcocvuuiuiiriieirieincinieseis e 10-5
Table 10.3 ~ Memory Type Field Values and ACHONS..........cocvnirienirrerece e, 10-6
Table 10.4 Port Width Size Field Values and ACHONS..........ccoocveininennercneseeesee e 10-6
Table 10.5 Minimum Wait-State SEiNgSc.ooeveurieririecre e 10-7
Table 10.6 Memory Controller Pin DESCrPONSc.ceurieineineireniesee e 10-8
Table 10.7 List of Memory Control REGISLErScviuririininierieerie e 10-9
Table 10.8 Internal Chip Select Base ADArESSEScveuvirerriirieiniinieneineinesee e, 10-10
Table 10.9 Internal Chip Select GroUPING........cc ittt 10-11
Table 10.10 Memory Mask Field Definitions and ValUes.........cc.ooevrieeirinniiesnece s 10-11
Table 10.11 Memory Controller Register Field Descriptions, Channels 5:0..........cccccovrvvnirnnnnne. 10-11
Table 111 SDRAM Differences Between Z and Y ReVISIONScccverriririnrnisnenienenee e, 11-1
Table 11.2 Modified and New SDRAM Control REJISIENS ..o 11-2
Table 1.3 SUPPOMEd SDRAMS ..ottt sens 11-3
Table 11.4 SDRAM Address MUIPIEXING.......c.cuieiiriiririiiriireseees e 114
Table 11.5 SDRAM Command ENCOINGceveuriiriiineinieinenieiree et 11-6
Table 11.6 Base Address and Base Mask Address Map ..o 1-7
Table 11.7 SDRAM Register AdAress Mapc.ccvennienneneeesee e 11-9
Table 1.8 SDRAM Primary Control Register Field Descriptions............cccvveenereeneneiereneenn 11-10
Table 11.9 SDRAM Secondary Control Register Field Descriptions............coocovevnenneinenierneenenn. 11-13
Table 12.1 PCI Differences Between Z and Y ReVISIONScccocuvierininnenienenieneneseiseeeene 12-2
Table 12.2 Additional PCl Control REGISIErSccceuiiriieiiirieerce e 12-3
Table 12.3 |Initialization Pins mem_addr[22:20] SEttiNgS.........cceveureerreurieeirieserieseseeeeseeene 12-3
Table 12,4 PClAAArESS MaP........couierieriieririierieieese et 12-7
79RC32334/332 User Reference Manual XX

e Datasheetaieom

List of Tables

Table 12.5 PCI Serial EEPROM Address Fieldscoocvininininennenceeseeesesese e 12-9
Notes Table 12.6 PClCOMMANGSoouieirieiiiiiieii e 12-9
Table 12.7 PCI Device to IDSEL MaPPING.......ccoevrirriiriinieireinieiseineeiseiseeiseisee e sseeens 12-10
Table 128 RC32334 Muxed PCI Pin Names and DireCtioNSccocevreerieneinieneneinence e, 12-12
Table 129 PCl Interface Control Register Address Map.........ccovvenrenineneeienceenceeens 12-12
Table 12.10 PCI Controller Interrupt Pending Register 11 Field Descriptions...........ccccocvvvrevninenes 12-13
Table 12.11 CPU to PCI Mailbox Interrupt Pending Register 12 Field Descriptionsccocee.e. 12-14
Table 12.12 PCl to CPU Mailbox Interrupt Pending Register 13 Field Descriptionsccocee.e. 12-14
Table 12.13 PCI Memory Space [1,2,3] Base Register Field Descriptionsccooevevverereuniennnns 12-15
Table 12.14 PCI I/O Base Register Field DeSCripions...........coceueurirerierieeinieneiseeeneeeeeeiseieenas 12-15
Table 12.15 PCI New Feature Register Field DeSCriptionscccooeverneneninenennenence e, 12-17
Table 12.16 PCI Target Control Register Field DeSCriptionscccoververrnrinsneenesseeeenenens 12-18
Table 12.17 PCI Arbitration Register Field DeSCriptionscccverieeerienenieneneneseieeiseieens 12-22
Table 12.18 PCl to CPU Memory/IO Space [1,2,3,4] Base Register Field Descriptions................... 12-23
Table 12.19 PCI Configuration Address Register Field Descriptionscccoveveneneinenieneenenn. 12-24
Table 12.20 PCI Configuration Data Register Field Description.............ccoerenneninnneninnns 12-24
Table 12.21 RC32334 PCI Configuration REGIStErs...........cceeuririeurireieiieeeneereseeeseisee e 12-25
Table 12.22 Vendor ID Address Field DeSCriPON...........coeuvieirinieneresere e, 12-25
Table 12.23 Device ID Address Field DeSCrIPLONcvereuriireinineren e, 12-26
Table 1224 CommaNd REJISIET........coviuiieieireeieisee e 12-26
Table 12.25 Configuration PCl Status Register...........corieiriririnneceeseeseseeeseiens 12-27
Table 12.26 Configuration Device Revision Identification Register Field Descriptionc...... 12-27
Table 12.27 Class Code Register Field DESCrPHONccvvevriirieirieeescereieeseseesee e 12-28
Table 12.28 Class Code DEfiNItioNSeeurieiriinienerieese e 12-28
Table 12.29 Configuration Cacheline Size Field DeSCription.............ccoevenenenenennenene e, 12-29
Table 12.30 Master Latency Timer Register Field DeSCriptionscccveveneneneneneneenenen, 12-29
Table 12.31 Header Type Register Field DeSCription..............cvveeivrireierieneneneseeseiseeeiseieenes 12-29
Table 12.32 BIST Register Field DESCIPHON.c.cvvieeiereieieereiereereereisee e 12-30
Table 12.33 Memory/IO Base Address Register 1 (BAR1) Field Description...........ccoeverierneennn. 12-30
Table 12.34 Memory/I/O Base Address Registers 2 and 4 (BAR2,4) Field Description................... 12-31
Table 12.35 Memory/I/O Base Address Register (BAR3) Field Description...........cccceveuvencerneencnn. 12-31
Table 12.36 Subsystem Vendor ID Field DESCrIPHONcoevrierieirierreneeseeeseee e 12-32
Table 12.37 Subsystem ID Field DESCPON.cvcvieuiirieieire e 12-32
Table 12.38 Interrupt Line Register Field DeSCHPHONcccoevierieirirrcecrereseeee e 12-32
Table 12.39 Interrupt Pin Register Field DeSCriptionccceuvireeirienierieereneseeneeseeeiseieenas 12-33
Table 12.40 MIN_GNT Register Field DeSCriptionccocoeeuririeninennenceseseeesesce e, 12-33
Table 12.41 MAX_LAT Register field DeSCription..........ccvererriniininienen e, 12-33
Table 12.42 TRDY Timeout Value Field DeSCrPtionccoceeurieineinienenceesee e 12-33
Table 12.43 Retry Timeout Value Field DeSCrPon ..o, 12-34
Table 13.1 DMA Differences Between Z and Y ReVISIONSccveurireninnenisnenesesce e, 13-2
Table 13.2 New Fields in DMA Configuration REgIStEr ..o 13-2
Table 13.3 Fixed Priority ENCOAING........oriuimriierieirireres e 13-8
Table 13.4 DMA Signal Pins and DefinitionScccvurerrrrrninienirsensesnese e 13-10
Table 13.5 DMA Interrupt DEfiNItionS.........coevieriiiniriere e 13-11
Table 13.6 DMA Channel 0 Register Address Map.........cceueereenineeinineneeeiseeseiseeeenneeeens 13-13
Table 13.7 DMA Channel 1 Register Address Map.........ccceueerieinineeinineneeeseeneeseeeenneeenns 13-13
Table 13.8 DMA Channel 2 Register Address Map.........ccoeuevrienieneeininenseiseeseiseeeenseieens 13-13
Table 13.9 DMA Channel 3 Register Address Map.........ccoeueerienieneeinneneeseeneeseeenseeeenes 13-14
Table 13.10 Configuration Register Field DeSCrPioNScocvieirierieineneineneneeeisesee e, 13-14
Table 13.11 Base Descriptor Address Field DeSCHPtONc.ocvvevrieeieirieereeseeneseeeiseieees 13-17
Table 13.12 Current Descriptor Address Field DeSCHPHONcovevrieinenienresenesesee e, 13-19
Table 13.13 Source Address Register Field DeSCription............ccoerennnnenenenesenee e, 13-19
Table 13.14 Destination Address Field DeSCHPHON.........ccoerevrieieiriereireeeeeseeee e 13-20
Table 13.15 Next Descriptor Address Field DeSCriptioNc.ocveurienierierneneseseeee e 13-20
Table 13.16 Status REGISIEN ... 13-20
79RC32334/332 User Reference Manual XXi

v Datasheetaieom

List of Tables

Notes Table 14.1 Interrupt Signal Pins and Definitions...........ccocvuerirnninnreresecs e 14-3
Table 14.2 Expansion Interrupt Register Group 0 Address Map..........ccoererieeninineninneeneeninenneen, 14-3
Table 14.3 Bus Error Register Group 1 Adress Mapcveveuriniennenineneeeiseseeise e 14-3
Table 14.4 PIO Low Register Group 2 Address Map ..o seeenns 14-3
Table 14.5 PIO High Register Group 3 AJdress Map........ccocvrrrrinnninencs e, 14-4
Table 14.6 Timer Rollover Interrupt Register Group 4 Address Mapcccooveveenenieneincnnenneen, 14-4
Table 14.7 UART 0 Interrupt Register Group 5 Address Mapccovverinnenienenenenee e, 14-4
Table 14.8 UART 1 Interrupt Register Group 6 Address Mapccooevverinnenienenenenee e, 14-4
Table 14.9 DMA Channel 0 Register Group 7 Address Map..........ccocevveuriernnsinennenencsineneenne 14-4
Table 14.10 DMA Channel 1 Register Group 8 Address Map..........cccoeuvreninenennencnieiseeneene 14-4
Table 14.11 DMA Channel 2 Register Group 9 Address Map.........cccoceuvrenenneninnencnneiseeeene 14-5
Table 14.12 DMA Channel 3 Register Group 10 Adress Map.........ccocevurernenenennencnceineneenne 14-5
Table 14.13 PCI Controller Interrupt Register Group 11 Address Mapccooeurerieninneeneeninenneen. 14-5
Table 14.14 External Interrupt Register Group 12 Address Map..........ccoerernenenenenenienenienne 14-5
Table 14.15 PCl to CPU Interrupt Register Group 13 Address Mapcocceverenennnenininenienns 14-5
Table 14.16 SPI Interrupt Register Group 14 Address Map........coocveverenennencenene e, 14-5
Table 14.17 Interrupt Pending Field DESCHPHONvviriericrercr e 14-6
Table 14.18 Interrupt Mask REGISIENcouiuriiirrcre e 14-6
Table 14.19 Interrupt Clear Register Field DeSCriptions...........ccocveerinneninnenenes e, 14-6
Table 14.20 Group 0 Register SEHNGScovvrierierirr e 14-7
Table 14.21 Group 1 (Bus Error) Register SEttings..........coerrineninierse e, 14-7
Table 14.22 Group 2 (PIO Low) Register SEHNGSocvveeieriririreris e, 14-7
Table 14.23 Group 3 (PIO High) Register SEtiNgSccocveureineininerenerceeree e 14-8
Table 14.24 Group 4 (Timer Rollover Interrupt) Register Settingsccocveveneninnenenenenenne 14-8
Table 14.25 Group 5 (UART 0 Interrupt) Register Settings.........ccouverirneninnenienenie e, 14-8
Table 14.26 Group 6 (UART 1 Interrupt) Register Settings.........ccocveurirneninnenienence e, 14-8
Table 14.27 Group 7 (DMA Memory2l/O Interrupt 0) Register Settings..........cccoeveerneerierneereenineenenn. 14-9
Table 14.28 Group 8 (DMA Memory2lO Interrupt 1) Register Settings.........ccooveveenenieneninneinnn, 14-9
Table 14.29 Group 9 (DMA PCI Master Interrupt 0) Register Settings.........coceverienennneninneenenn, 14-9
Table 14.30 Group 10 (DMA PCI Master Interrupt 1) Register Settings.........ccocovvevienennnincninnn. 14-9
Table 14.31 Group 11 (PCI Controller) Register SEtings.ccvvvverevrierenenierineneeeeseseeinees 14-10
Table 14.32 Group 12 RegiSter SEHNGScccvvrrriirrrerriieie et 14-10
Table 14.33 Group 13 RegiSter SEHNGScccvvrrriirrrerriee e 14-11
Table 14.34 Group 14 Register SEHNGScccvvrrriirerrerreee et 14-11
Table 15.1 Serial Mode Protocol/Alternate Signal Descriptionsccocverenerneneneinieineneenne 15-3
Table 15.2 UART Interface/Alternate Signal DesCriptions..........ocveuvireninnencenence e, 15-4
Table 15.3 Timer/Alternate Signal DESCHPHONScovueirieiniriereeeree e 15-4
Table 15.4 DMA Interface/Alternate Signal DeSCriptions.........ccceuvirieuninieininnereeneesceeene 15-5
Table 15.5 PIO Interface/Alternate Signal DESCIPHONS ..o, 15-5
Table 15.6 PIO Register AdAress Map ..o 15-5
Table 15.7 PIO Data Register 0 Field DeSCHPHON ..o, 15-6
Table 15.8 PIO Data Register 0 High/Low DeSCHPHONS........c.cviverierieireineireneseeesesee e 15-6
Table 15.9 PIO Data Register 1 Field DeSCHPHON ..o, 15-7
Table 15.10 PIO Data Register 1 High/Low DeSCHPHONS........c..cviveriiriieiieirieirenereeeiseseee e 15-7
Table 15.11 PIO Function Direction Register 0 Field DeSCriptionccocceeveneninneneneenenienne 15-7
Table 15.12 PIO Direction Register 0 Input/Output DeSCrIptioNsocevveurierrneerieneneneneeneeenn, 15-8
Table 15.13 PIO Direction Register 1 Field DESCIPHONcvveuierieirierierirence e, 15-9
Table 15.14 PIO Direction Register 1 Input/Output DESCrIPtONcvieireirierrerieneresesee e, 15-9
Table 15.15 PIO Function Select Register 0 Field DeSCription..........cccevrenineninnenenenenenne 15-9
Table 15.16 PIO Special Function/General Purpose Select Register 0 Descriptionccoeeuee. 15-10
Table 15.17 PIO Function Select Register 1 Field DeSCription...........coevenieneneieniseeseenns 15-11
Table 15.18 PIO Function Select Register 1 Special Function/General Purpose Description.......... 15-11
Table 15.19 PIO New Feature Register Field DeSCription...........cooveeureereeininierneeneneenenseeenenns 15-11
Table 16.1 Pin Definitions for the Timer/Counter Signals...........ccocovverrreennsnneereesseeeneeens 16-3
Table 16.2 Timer Register 0 (General Purpose) Address Mapccocveeerinneinienenenineineeenne 16-3

79RC32334/332 User Reference Manual xxii _ June 4. 2002 1.

List of Tables

Notes Table 16.3 Timer Register 1 (General Purpose) Address Mapccccveerinneninnencnneineeneene 16-3
Table 16.4 Timer Register 2 (General Purpose) Address Mapccccveeerinnenienencnineinenneene 16-3
Table 16.5 Register 3 for Watchdog Address Map ..o 16-3
Table 16.6 Register 4 for CPU Bus Time-out Address Mapcooereninenieencs e, 16-4
Table 16.7 Register 5 for IP Bus Time-out Address Mapcoevennnneninnenieneneseisceeene 16-4
Table 16.8 Register 6 for DRAM Refresh Address Map.........ccoernnneneneneeesenese e 16-4
Table 16.9 Register 7 for Warm Reset Address Map ..o 16-4
Table 16.10 Timer Controller Register Field DESCIPHONSccvveurieiriiriereresere e 16-5
Table 16.11 Count Register Fields DESCIIPHONScvirieerierieirinercs e 16-5
Table 16.12 Compare Register Fields DeSCrPLioNScccvrieirinineininneriees e, 16-5
Table 17.1 Divisor Value Examples for Typical Baud Rates.cccocvirinirininenicnenenence e, 17-2
Table 17.2 RC32334 Pin DESCrPONS.vueuieerierirrieiniesieineis it 17-3
Table 17.3 UARTO Register AdAress Mapccocverinnineree e 17-4
Table 17.4 UART1 Register AdAress Mapccocverinninere e 17-4
Table 17.5 Interrupt Enable Register Field DeSCrPHONScccvvieerivierriesseers s 17-6
Table 17.6 Interrupt Identity Register Fields and DeSCHptioNScccverrrinrnenrseersecereneen, 17-7
Table 17.7 Buffer Control Register Field DeSCriptions. ..o, 17-8
Table 17.8 Line Control Register Field DESCHPHONS ..o 179
Table 17.9 MODEM Control Register Field DeSCriptionsccoccoeurereeirineeneeneiseeeneseeeens 17-10
Table 17.10 Line Status Register Field DeSCriptions.........cccccuveieineneneneinese e, 17-10
Table 17.11 MODEM Status Register Field DeSCriptions..........ccooeeureinininnenie e 17-11
Table 17.12 Scratch Register Field DeSCripions...........ccveurieireinieininieneneenee e, 17-12
Table 18.1 SPI Signal DESCPHONSccvururieirririeireiriesieices et 18-2
Table 18.2 SPI Register AdAreSs Mapcccvverruriieririrrsieis st 18-4
Table 18.3 SPI Clock Register (SPCNT) Field DeSCrpPtioNccoeurierieinienieinieenee e 18-5
Table 18.4 SPI Control Register Field DESCrPONSccovvrurrereririeirreenseesseees e, 18-5
Table 18.5 SPI Status Register (SPSR) Field DeSCriptions..........c.ocoveuveneinineinieninesceiseneeene 18-6
Table 18.6 SPI Data I/O Register (SPDR) Field DeSCription...........cccoevrieineeneinenenenieinenenenne 18-7
Table 19.1 Boot-Mode Configuration SEHNGS............ccrurirurierierirerr e 19-4
Table 19.2 RC32334 reset_boot_mode Initialization SEttings..........c.cccveverrenenenerrerenene 19-5
Table 20.1 JTAG Pin DESCIPHONScuuvreerieireiireieesisie e 20-2
Table 20.2 Instructions Supported By RC32334’s JTAG Boundary Scancccoeeuvenneineenienneen. 20-5
Table 20.3 System Controller Device Identification RegISter............ccvverirnenisnenenene e, 20-7
Table 21.1 EJTAG PINS ..ottt sttt sttt 21-4
Table 21.2 CPU Core Device Identification RegISter...........cccocvenirennencnescnenence e, 21-11
Table 21.3 Implementation REGISIEN............ciir e 21-12
Table 21.4 EJTAG_CONtrol_REGISIENc.cvieiieieirieesee e 21-14
Table 21.5 InStruction DECOING.........cveuriiriieriieiieirce e 21-19
Table 21.6 DebUg REGISIEN ..o 21-23
Table 21.7 Debug Exception Program COUNLET...........cccoeurieinininineinieienesesee e, 21-24
Table 21.8 Debug Exception Save REGIStEr...........cvririirirrieeeeeieese e 21-25
Table 21.9 32-bit Register Map (Base Address = 0xff30 0000)........cccorerrrverrernerrninereenerenen, 21-25
Table 21.10 Debug Control Register - DCRc.cviiinininireneieeesee et 21-26
Table 21.11 Instruction Address Break Status Register - IBS...........ccooevnenineninencneene, 21-27
Table 21.12 Instruction Address Break Register n - IBAN ... 21-27
Table 21.13 Instruction Address Break Mask Register n - IBMn.........ccoccovnniennienenencnens 21-27
Table 21.14 Instruction Address Break Control n Register - IBCN ..o 21-28
Table 21.15 Data Address Break Status - DBS...........cooveirnnecseeesesess e 21-28
Table 21.16 Data Address Break n Register - DBAN.........couirnienienceee e 21-29
Table 21.17 Processor Bus Break Status - PBS ..., 21-29
Table 21.18 Processor Address Bus Break Register n - PBANccoovvvinnncnnnceeneneen, 21-29
Table 21.19 Processor Data Bus Break n Register - PBDIN ..., 21-30
Table 21.20 Processor Data Bus Mask n Register - PBMN.........coovvnnninnencseeeineies 21-30
Table 21.21 Processor Bus Break Control and Address Mask n - PBCn..........ccooevvniniinncninnns 21-30
Table 21.22 Dynamic Trace INfOrMation.........cceurieereininieneece e 21-34

79RC32334/332 User Reference Manual xxiii _ June 4. 2002 1.

List of Tables

Notes Table 21.23 PC Trace Status INformationcccvennnnnenesene e, 21-34
Table 21.24 Exception and Exception Codes at €jfag_tpcC........ccoveuvierieriennienneneeeneeee 21-35
Table 21.25 Pin Numbering of the JTAG and EJTAG Target Connectorccovevveninerencineennas 21-42
Table A1 Value of Hint Field for the Prefetch INStruction ..., A-2
Table C.1 Primary Data Cache Operations............crrerninseeseeeseesessese s C-1
Table C.2 Primary Instruction Cache OPerations.............coerireerneienenieneeeseesseseeesseenees C-2
Table F.1 Integer Multiply and Divide Performance............cocverienineninencs e, F-2
Table G.1 Feature Set Comparison Between RC32332 and RC32334cccovvvevvcvvccnnnnnens G-1
Table G.2 PIO [Data/Direction/Function Select] Register 0 Comparisoncoccerereerieneneenens G-2
Table G.3 PIO [Data/Direction/Function Select] Register 1 Comparisonccoccereereerieneneenens G-2
Table 21.26 Pin Description for RC32332coviiriiriirireirciresee et G4

79RC32334/332 User Reference Manual xXxiv _ June 4. 2002 1.

List of Figures

Figure 1.1 RC32334 BlOCK DIQramc.cviiuriririieirieirineieire s eeees st 1-1
Notes Figure 1.2 Signal TranSItIONSc.cvuevierireiierieiscisie ettt eb st 1-2
Figure 1.3 ClOCK-10-Q DEIAYuvovvieceiiieeieireiete ettt 1-3
Figure 1.4 System BIOCK DIaQramccoeurieeiriuniieisiinsinneinsscetssiss ettt sesnsns 1-4
Figure 1.5 Logic Diagram for RC32334cccoiririirinirireseiseesssseissssesesss s sseeees 1-19
Figure 1.6 Logic Diagram for RC32332 ..ot sssssssesees 1-20
Figure 2.1 RC32300 CPU COre BIOCKccovueirieriieireiriinisiseieieissiei ettt sesses s 2-2
Figure 2.2 RC32300 REGISIELSocvuivereiriiriieieieeieississieissss ettt ettt es st essessessssessessnsns 2-2
Figure 2.3 Big-Endian Byte Ordering CONVENtION..........ccceuiurireiiirieieiseeissisee s 2-3
Figure 2.4 Little-Endian Byte Ordering CONVENIONccovevrivriiniiinieiissesisseeesse s 2-3
Figure 3.1 CPU INStrUCtioN FOMMALSoovuieiieiiirieiciscieeiseeei ettt 3-1
Figure 4.1 Instruction Pipeling StAQEScccvuiveiieriicreeeee e e 4-1
Figure 4.2 PIpeling ACHVItIES........coiiueirieiirce s 4-3
Figure 4.3~ CPU Pipeling BranCh DElaY..........cccoeurieiiuriniiinieieinsnieissiesissieesssssessssssesessssesesssens 4-4
Figure 4.4 CPU Pipeling Load DEIAYccuvurivrireiiiriinieiseeieissisietssieeetssses st sessssessessssesessnens 4-4
Figure 4.5 EXCEPLion DELECHON.c.cueeiceircce e 4-5
Figure 4.6 Data Cache MISScoeueeicuririiierieisre ettt 4-5
Figure 4.7 InStruction Cache MiSScoirieiieriieiiirineisee ettt 4-6
Figure 5.1 Overview of a 32-bit Virtual Address Translation.............ccccvrerenirnnineneeseneesnns 5-1
Figure 5.2 TLB RegiSter FOMMAL ..ottt 5-2
Figure 5.3 Index Register FOMAL ... s 5-3
Figure 54 Random Register FOrMatoeririniice s 5-4
Figure 5.5 EntryLo0 and EntryLo1 Register FOrMatscooeeennieinicrceences e 5-4
Figure 5.6 Context Register FOMat.........ocviviiiriirineccees s 55
Figure 5.7 PageMask Register FOmMat..........coiiiece s 5-6
Figure 5.8 Diagram Showing Ranges of Wired and Random Entries............cccocvvvinninnneninnnens 5-7
Figure 5.9 Wired Register FOrMAaL..........ccuiiiiirniiccrce et 57
Figure 510 Bad Virtual Address Register (BadVAddr) FOrmatcccoueeeunineineneneneneseenees 5-8
Figure 5.11 EntryHi Register FOrMat ..o 5-8
Figure 5.12 lllustration of RC32334 User Mode Address SPacecccvueeeureenieenereieensnneesseeeeenns 59
Figure 5.13 lllustration of RC32334 Kernel Mode Address SPaceccveeerinieenieseseeneenneenees 5-10
Figure 6.1 Count REGISIEN FOMMALcuiviieiiieiciseeesee sttt 6-2
Figure 6.2 Compare Register FOrMatcccevieuiiciriiiieceeeee e 6-3
Figure 6.3 Status Register FOrMaLt..........cccccoviueiiciiiiceee et 6-3
Figure 6.4 Cause Register FOMMAL..........ccccoiiueiiciicccece et 6-6
Figure 8.5 EPC Register FOMMAL........cccovcveiiiiiieiicticcece ettt 6-7
Figure 6.6 PRId RegiSter FOMAt..........coioiiicieeess et 6-7
Figure 6.7 Config Register FOMMAL...........cccoiiueiiciiicceee e 6-8
Figure 6.8 IWatch Register FOrMaL..........ccovviiiieees e 6-9
Figure 6.9 DWatch Register FOrMat.........cccoiiiiiieic e 6-9
Figure .10 ECC Register FOrMALc.cccuiiiieiiiceceececte ettt 6-10
Figure 8.11 CaChEEIT REGISIENciveiivereictet ettt st 6-10
Figure 6.12 TagLo Register FOrmat...........ccoooviiiiieeic et 6-11
Figure 6.13 EMMOrEPC REGISIENc.vviveiieceeiicce ettt st s bbb 6-12
Figure 6.14 General EXCEPHON PIOCESSccveviicviiiicieice ettt bbb 6-13
Figure 6.15 Process of the Reset EXCEPHON...........cccvviiveiieiicc et 6-15
Figure 6.16 Process of the Soft Reset and NMI EXCEPHONS..........cccevicvevicieiiiceeece s 6-16
Figure 6.17 Process of the Cache Error EXCEPtioN.........ccovcevviceiiiccscescc e 6-19
Figure 6.18 General Exception Handling (HW)..........coccvurieninninnnenencs s 6-23

79RC32334/332 User Reference Manual XXV o Patashe

List of Figures

Notes Figure 6.19 General Exception Servicing GUIdeling (SW) ..o 6-24
Figure 6.20 TLB Refill Exception Handling (HW).......covvrirnirecrerceeceeseeeseieeisees 6-25
Figure 6.21 TLB Refill Exception Servicing Guideling (SW)ceririnrneninerenescercneens 6-26
Figure 6.22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)c.ccocovvreunenee 6-27
Figure 6.23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing Guidelines (SW).....6-28
Figure 7.1 Logical Hierarchy of MEMOTYc.cviriiirirerenes e 7-1
Figure 7.2 Primary [-Cache Ling FOrMat..........cocviiiinineireerceese e 7-3
Figure 7.3 Primary D-Cache Line FOrMAt.........ooouiviiiieiriescecseeseee e 7-4
Figure 7.4 Conceptual Primary Cache LOOKUP SEQUENCE...........cvierieurernieireieeireie e 7-5
Figure 7.5 Primary Cache Data and Tag Organization...............cccveurirerninneeneenenenesee e 7-5
Figure 8.1 IP Bus Bridge BIOCK Digramcooeueurienireeinieieenisicis s 8-1
Figure 8.2 Subblock Ordered Data Retrieval...........coocveiininneinnere e 8-2
Figure 8.3 Address Latch Time with Fast Decode Setting............cccovrrinnereneneneieeeeeeeis 8-3
Figure 8.4 Address Latch Time with Slow Decode Setting.........ccooevrerieinenennenenesere e, 8-3
Figure 8.5 RC32334 cpu_ad[31:0] Data PRaSse ..o 8-4
Figure 8.6 ~ Format of CPU Port Width Control REGIStErcvveurierieirirerceerceescree e 8-6
Figure 8.7 CPU Bus Turnaround (BTA) Control Register Format............ccccoooeneneninnnnenceneinenn, 8-8
Figure 8.8 Bus Turnaround (BTA) Control Register FOrmat...........ccovnrieninnenisnensercens 8-10
Figure 8.9 Timing of Bus Turnaround Cycle(s) (Example of 1 Cycle BTA).........cccvevvnirinreineenns 8-11
Figure 8.10 Address Latch Timing REGISEr. ..o 8-11
Figure 8.11 Arbitration Register FIeldcco it 8-12
Figure 8.12 BusError Control Register FIeldsocieirireniecrceenceecee e 8-12
Figure 8.13 BUSErOr AddreSs REGISIENcvvveeuriiirrieisrerrce sttt 8-12
Figure 8.14 SysID ReGISIEr FIElScviuieieiiirieirceeere e 8-14
Figure 9.1 External Local Bus Interface Unit Block Diagramcccocvevneinernenieineneeneneneen, 9-1
Figure 9.2 Debug Signals DUMNG @ REATcocurieiniinircireeceese e 9-5
Figure 9.3 Debug Signals DUring @ WIItE.c.ccvriurinieirnerererere e 9-6
Figure 10.1 Block Diagram of RC32334 Memory COntroller............occrrierieniereenirnieeneesencesenns 10-1
Figure 10.2 Subblock Ordered Burst Read SEQUENCES..........ccovuiereeurieeieirieerceeseeeeseieeieeas 10-2
Figure 10.3 Memory Base Address Register for Banks 1:0..........cccovenenninnnnenencneneneene 10-10
Figure 10.4 Memory Bank Mask Register for Banks 1:0coccoeririniriinisenesenceseneeens 10-10
Figure 10.5 Memory Control Register Channel 5:0ccoovernirriierieeses e 10-11
Figure 10.6 Single Word SRAM Read Transactionc.cvereninneninineinieinesieseesieiseesceens 10-13
Figure 10.7 Single Word SRAM Read Transaction with Wait-Stateccoevrrenrninirnens 10-14
Figure 10.8 Single Word SRAM Write TranSaction............cccerierieninineninnenses s 10-15
Figure 10.9 Single Word SRAM Write Transaction with Wait-Stateccoooeviinenccninneninn. 10-16
Figure 10.10 Quad Word Burst Read SRAM TranSactioncccccevrenienineninnenceneneesenceens 10-17
Figure 10.11 SRAM 4 WOrd BUrst WIItEcuevieerrecrsce et 10-18
Figure 10.12 Tri-byte 16-bit SRAM Write TranSaction.............cccevrrverirrrerirssreeeseseesseeeeeseseeseees 10-18
Figure 10.13 1011 Word Single REAd..........coveuieiiiiiiirieeseees e 10-19
Figure 10.14 101 1 Word Single Read with Wait-State............ccocreririninrcrcrccrcres 10-20
Figure 10.15 1011 Word Single Wc..cvuiuririirereeeeese e 10-21
Figure 10.16 101 1 Word Single Write with Wait-State............ccccoerrnirenircrerceeseens 10-22
Figure 10.17 1014 Word BUrst REadcouiurirriierieincrieceee e 10-22
Figure 10.18 1014 WOrd BUrst WHIE.........ccivireeieririseereesees st 10-23
Figure 10.19 IOM 1 Word Single REa.........c.cceuivriiiireerisesee et 10-23
Figure 10.20 10OM 1 Word Single Read with Wait-State............ccocovrerirninnncrerrenceenenne 10-24
Figure 10.21 10OM 1 WOrd Single WIILEc.ovueuierieirieerereese e 10-25
Figure 10.22 10M 1 Word Single Write with Wait-State..........ccooevrnirirnneeeese e 10-26
Figure 10.23 10OM 4 WOrd BUrst REAdccvueuieriiiiirieeinieeesese s 10-26
Figure 10.24 10M 4 WOrd BUrSt WIILE......c.c.ovueeeirieerirecinineiessisise et sssnes 10-27
Figure 10.25 Dual-Port 1 Word Single Readcceviiiniriirircs e 10-27
Figure 10.26 Dual-Port 1 Word Single Read with Wait-Stateccovnrinrcnncninenens 10-28
Figure 10.27 Dual-Port 1 Word Single WIIte..........ccoeriiirirerisenie e 10-29
Figure 10.28 Single Word SRAM Write Transaction with Wait-Statecccooevenivnenininienns 10-30

79RC32334/332 User Reference Manual xXxvi _ June 4. 2002 1.

List of Figures

Figure 10.29 Dual-Port 4 Word Burst Readcceuierirrinirinieereeseecscse e 10-30
Notes Figure 10.30 Dual-Port 4 Word Burst WHIEcevveririeerrsree e 10-31
Figure 11.1 SDRAM BIOCK DIaQramccceuiurieniiiniieeeineieieineiee ettt ensesessesseens 11-3
Figure 11.2 Subblock Ordered Retrieval MEthOd...........ccoeuieriiinirerirereeceeseeesee s 11-8
Figure 11.3 SDRAM Primary Control Register Fields...........coovrrrrinniienreeries s 11-10
Figure 11.4 SDRAM Secondary Control Register Fieldscccooverirniiesreeres s 11-13
Figure 11.5 SDRAM Non-Page Burst Read..........c.ccoveuvirrninniereesesseeesees s 11-15
Figure 11.6 SDRAM Non-Page Burst WIIte.........c.ocruiirirerircrec e 11-16
Figure 1.7 SDRAM Non-Page Word Readccoiririnineneencsees e 11-16
Figure 11.8 SDRAM Non-Page Word WHIte...........oorirrriririeeseces s 11-17
Figure 11.9 SDRAM Page-Hit Burst Read............coiuririirininieeneeicse s 11-17
Figure 11.10 SDRAM Page-Hit BUrst W ..o 11-18
Figure 11.11 SDRAM Page-Hit WOrd Read..........cccvviriiriniirirerce e 11-18
Figure 11.12 SDRAM Page-Hit WOrd WIIte.........c.ocvueurirerirercs s 11-19
Figure 11.13 SDRAM Page-Miss Burst REad...........ccouiuiuiriirinercsereeseee e 11-19
Figure 11.14 SDRAM Page-Miss Word REad...........ccouiuuirieininencerecseee s 11-20
Figure 11.15 SDRAM RETESN ... 11-20
Figure 11.16 SDRAM SODIMM Even Bank Non-page Word Read............ccccocverirnineninieinienns 11-21
Figure 11.17 SDRAM SODIMM Odd Bank Non-page Word Read...........ccocvueurieneninncenininenienne 11-22
Figure 11.18 SDRAM SODIMM REfTESNcoiererireireireireireireee et sseseeeeeenes 11-23
Figure 12.1 PClI Interface Controller BIOck Diagram..........ccoeereeerierieueenieinieneenesseesesseeesessenees 12-3
Figure 12.2 CPU to PCI MeMOry MapPingc.vveeereuriereriinierieinereeeeseneeeessseeeeseseenesssseesess s eesssnen 12-4
Figure 12.3 PCl to CPU MemOry Mappingcoueeierereereenireeieneseeeeseseeeesiseesesseseesesseesssssssesnsssenees 12-5
Figure 12.4 PCI Controller Interrupt Pending Register 11 Fields........c.cocovveneneinnncnieienne 12-13
Figure 125 CPU to PCI Mailbox Interrupt Pending Register 12 Fieldscooovevencnieneninnn. 12-13
Figure 126 PCl to CPU Mailbox Interrupt Pending Register 13 Fieldscooovevencnieneninn. 12-14
Figure 12.7 PCI Memory Space [1,2,3] Base ReGISter.........covuvnirininerieeneese e 12-15
Figure 12.8 PCI I/O BaSE REJISIETvuvuieireiierieerseeesee s 12-15
Figure 12.9 PCI New Feature RegiSter.........coviiiriirrcsec e 12-17
Figure 12.10 PCI Target Control REGISIENc.uriuiuieriiireseeeseees e 12-17
Figure 12.11 PCI Arbitration Register FIEldSccouirriererrice s 12-22
Figure 12.12 PCl to CPU Memory/IO Space [1,2,3,4] Base Register..........cccocovenennenenisneninnne 12-22
Figure 12.13 PCI Configuration Address Register Fields ... 12-24
Figure 12.14 PCI Configuration Data Register Field............cooerirniinnneenecse e 12-24
Figure 12,15 Vendor ID REJISIETcvvrurirererieis et 12-25
Figure 12.16 DEVICE ID REGISIEN.......cerieerieercierieis st 12-26
Figure 12.17 PCl ComMAaNnd REGISIEN........c.ovuivriieerirerirrce et 12-26
Figure 12.18 PCl Status REGISIENcuvveeeiiercirietcsecr et 12-27
Figure 12.19 Configuration Device Revision Identification Register..........c.cccuverenneniniieneninnn. 12-27
Figure 12.20 Class Code REGISIEN...........cirimiiieriiirieeeniseeese e 12-28
Figure 12.21 Cacheling Size REGISIENcvvuiiieriiirrere e 12-28
Figure 12.22 Master Latency Timer Register FIelds ..o 12-29
Figure 12.23 Header Type Register Field..........cocoiriiiecececsees e 12-29
Figure 12.24 BIST ReGISter FIBld........cvieeiieieeseirreee et 12-29
Figure 12.25 PCI Memory/IO Base Address [1,2,3,4] REGIStEr ... 12-30
Figure 12.26 Subsystem Vendor ID REGISIEN ..ot 12-32
Figure 12.27 SUbSYSIEM ID REGISIETcvuieieeiriercieiceeeeiree et 12-32
Figure 12.28 Interrupt Ling REGISIENcc i 12-32
Figure 12.29 Interrupt Pin REGISIEr.........cvviriirierecres e 12-32
Figure 12.30 MIN_GNT REGISET ..o vttt 12-33
Figure 12.31 MAX_LAT REGISIENovrieireiieeieireesiee ettt 12-33
Figure 12.32 TRDY Timeout Valug REJISIErcovriiirireirise e 12-33
Figure 12.33 Retry TimEOUt REGISIEN.......c.cvivreeirieerreeir et 12-34
Figure 13.1 Diagram of DMA General Block with IP Bus Interface............ccocoevenennenncninnenenns 13-3
Figure 13.2 DMA Transfer Configurationc.cceureeiniinenineneeeesseeese s eensesens 13-6

79RC32334/332 User Reference Manual xXxvii __ June 4. 2002 1.

List of Figures

Notes Figure 13.3 Diagram Showing the Rotating Arbitration SChemecccoevieniviinnienseres 13-8
Figure 13.4 DMA Ready Sampling POiNtcoiiriiircne s 13-10
Figure 13.5 DMA Done Timing DIagram........coeurieruierireeeinineisereeeseseeeesssseeessse s sseesessssesnesens 13-11
Figure 13.6 Configuration Register FIelds ..o 13-14
Figure 13.7 Base Descriptor Address Register Field...........coovrnnnnnncrecencsesenne 13-16
Figure 13.8 Next Descriptor Address FIeldcoviirnirceeeseeees s 13-19
Figure 13.9 Source AdAress FIeldccoveeieirrecrsee e 13-19
Figure 13.10 Destination Address FIelds ..o 13-20
Figure 13.11 Next Descriptor Address Field..........ccovirrirrennise e 13-20
Figure 13.12 Status Register FIEIAS.........cccviirririrrecrsee et 13-20
Figure 13.13 Two Word SRAM to SRAM Access by DMA ... 13-23
Figure 14.1 Expansion Interrupt Controller Block Diagram...........ccveveneenieneneeneneneiseeeenees 14-1
Figure 14.2 Expansion Interrupt Block Diagram Group/Bit-SliCe............ccoeuriererninrernenrercineineens 14-2
Figure 14.3 Interrupt Pending Register FIeldscoovenrinincrenceee e 14-6
Figure 14.4 Interrupt Mask REGISIENcuviiiiirircreecrec e 14-6
Figure 14.5 Interrupt Clear Register Field...........ccovieuriirrnicrcessee et 14-6
Figure 14.6 PIO Input Asserting Internal cpu_int_N[3].......ccoreuririrmririrrneneese e 14-11
Figure 14.7 Internal Condition Asserting Internal cpu_int_n[3] INterrupt...........ccoovrerininirenienn. 14-11
Figure 14.8 Pending Register Write Asserting Internal cpu_int_n[3]ccccoveverinneninenenienne 14-11
Figure 14.9 Pending or Clear Register Write De-Asserting Internal cpu_int_n[3] Interrupt 14-12
Figure 14.10 Internal Condition Asserting PCI INterruptccovvvrveirnreniicsrrcesses s 14-12
Figure 14.11 Pending or Clear Register Write De-Asserting PCl Interrupt..........ccocoovvenienienienn. 14-12
Figure 14.12 CPU INEITUPES ...ovveereeceececee ettt e 14-12
Figure 15,1 PIO BIOCK DIaQramccceuiuriieiriinieicineeeiseieieiseeieissie ettt es st senssens 15-2
Figure 15.2 PIO Block Diagram Bit-SlICeveurirerrieircirrice st 15-2
Figure 15.3 PIO Data Register 0 FieldS ..o 15-6
Figure 15.4 PIO Data Register 1 FieldS ..o 15-6
Figure 15.5 PIO Direction Register 0 FIeldscccovoeriernerniinreeri s 15-7
Figure 15.6 PIO Direction Register 1 FIeldsccovevernernierce e 15-8
Figure 15.7 PIO Function Select Register 0 Fields.........cocviiriirenersencseeses s 15-9
Figure 15.8 PIO Function Select Register 1 Fields.........cooverirninercreen e 15-10
Figure 15.9 PIO New Feature Register FIelds ..o 15-11
Figure 15.10 PIO Input, Affecting Data REgiSter...........covriririiinecrcseres e 15-12
Figure 15.11 Data Register Write, Affecting PIO OULPULccoviiiirirrcrcscrcs e 15-12
Figure 16.1 Timer BIOCK DIagram ..ottt 16-1
Figure 16.2 Diagram of Individual TImer COrecovuurrrrnniniereneeneie e 16-2
Figure 16.3 Timer Control Register FIeldsoooirinnireeeseeee s 16-4
Figure 16.4 Count RegiSter FIEldScocuiieiiiririirceencreeee e 16-5
Figure 16.5 Compare RegiSter FIeldS ..o 16-5
Figure 16.6 Timer Rollover Causing timer_tc_nt0 TOGGIecccvuvverireinieereeseeeeseieeieeas 16-6
Figure 16.7 timer_gate_n Input Causing TIMer to Count............ccerireriereinireneeees s 16-6
Figure 17.1 UART BIOCK DIaQram........cccvueururireiririrrinirsieisisesisessenesssssssssseesssssssnssssesssssssssssesnsssssnsnes 171
Figure 17.2 INTEITUPE FIOW.....coivieiicii bbbt 17-3
Figure 17.3 Receive BUffer REGISIEN. ..o 17-5
Figure 17.4 Transmit Buffer REGISTErc.ovviiirirceecreee e 17-5
Figure 17.5 Interrupt Enable REGISIEN........c.ocviiiiiriirceccce et 17-5
Figure 17.6 Divisor Latch Least Register (DLL).......cocvveiririeninercreneeesee e 17-6
Figure 17.7 Divisor Latch Most Register (DLM).........c..coeirminienreeiseeeeeerseese s 17-6
Figure 17.8 Interrupt Identity REGISIENc.oveiiirieciecrce s 17-6
Figure 17.9 Buffer Control Register (BCR) Fields..........cccocviriininininierreceesesereiseeees 17-8
Figure 17.10 Line Control ReGISter FIeldscovereiririeinnenieeceeeee e 17-9
Figure 17.11 MODEM Control Register FIelds ..o 17-10
Figure 17.12 Line Status Register FIelds...........coiiirnnee e 17-10
Figure 17.13 MODEM Status Register FIelds...........cooiiriiiniineseeseees e 17-11
Figure 17.14 Scratch RegiSter Fieldc.coierirrrice et 17-12

79RC32334/332 User Reference Manual xxviii _ June 4. 2002 1.

List of Figures

Figure 17.15 Reset Register FIEldocivriieieirrecrce e 17-12
Notes Figure 17.16 UART TIMING c..oucvueeerreieieieeeie st ss s 17-12
Figure 18.1 SPIBIOCK Diagram........ccoueuririreiriieiririeieisisesissisisesss s sess s sssssssssssssssessssssnsnes 18-1
Figure 18.2 Serial Peripheral Interface (SPI) Clock/Data Timing..........ccoveureereunireneeneeneeneneineens 18-3
Figure 18.3 SPI Clock Register Field............ccviirnrinrerercese e 18-5
Figure 18.4 Serial Peripheral Control (SPCNTL) Register Fieldscccovenirennenininreineens 18-5
Figure 18.5 SPI Status Register (SPSR) Fields............ccoeririinirerineneeeeseeeiseieeisees 18-6
Figure 18.6 SPI Data /O REGISIEN ..o vttt 18-7
Figure 18.7 lllustration of Glueless Connection Between RC32334 Processor and
ATMEL SPI Serial E2PROMS.........ccviuriirenrereeneeeieereieeseiseessssesssssesssssesssssessassssssessenees 18-8
Figure 18.8 SPI Clock-to-Data Output Relationshipcoevverirenireneenceenceeeiseeeis 18-9
Figure 18.9 SPI Clock-to-Data Input Relationshipcceeurierieiririirieiseeseeeseeeeseieens 18-9
Figure 19.1 Signal TranSItioNScviurireiiirieirieece ettt 19-1
Figure 19.2 ClOCK-10-Q DEIAYcovreieeieiciecerece ettt 19-1
Figure 19.3 System Clocks Data Setup, Output, and Hold Timing.........ccccvevrrerninnenennenineineens 19-2
Figure 19.4 Timing lllustration of cpu_masterclk-to-PClock Multiply by 2..........ccocoevivvnninrinennes 19-2
Figure 19.5 PLL Passive COMPONENLSccriumimrmirieiiecseiseeseisesssisessessesseese s 19-3
Figure 19.6 PLL Filter Circuit for Noisy ENVIFONMENES ..o 19-3
Figure 19.7 Mode Configuration Interface Reset SEQUENCE...........crvurvririenirersec s 19-4
Figure 19.8 Reset Vector Initialization Part 1 0f 2..........cociieeiiciesresereeeee 19-6
Figure 19.9 Reset Vector Initialization Part 2 0f 2. 19-6
Figure 20.1 Dual TAP Controller BIock Digramcoeueurierieenieninineeseinesseiseseeeesesseseeseesenees 20-1
Figure 20.2 Diagram 0f the JTAG LOGICcuveriuieririiniineieieireeieisee ettt 20-2
Figure 20.3 State Diagram of RC32334’s TAP COntrollerccovnmnenenenenenereseeceeiscenees 20-3
Figure 20.4 Diagram of Observe-only INput Cell...........ccoeiiirinirereceeeeeseee s 20-4
Figure 20.5 Diagram of OULPUL Cell...........cuiuriiirieicirnerce et 20-4
Figure 20.6 Diagram of Output Enable Cell............ceiriniririrece s 20-4
Figure 20.7 Diagram of Bidirectional Cellccoerrieieiciere e 20-5
Figure 20.8 System Controller Device ID Instruction FOrmat...........ccccocvvvivevinnennenenereseenns 20-7
Figure 21.1 Dual TAP Controller BIock Digramcoeeeuriereeerierieineeseenesseiseseeeesesssseeeesenees 21-1
Figure 21.2 BIOCK DIBQramcoveiieiieiiirieircine ettt 21-3
Figure 21.3 Simplified EJTAG BIOCK Di@gramcccveerrerrninirnsenissesiseesesesesessseesssseesssesenes 21-3
Figure 21.4 RC32334 Debug Operating MOGESc.ocereurieririenirriiireiceseees e eessenes 21-7
Figure 21.5 TAP Controller State Diagramccereirirriereseieesseeeeseesess s 21-8
Figure 21.6 CPU Core Device ID Instruction FOrMat............cocvirnninnininncnees e 21-11
Figure 21.7 Byte Organization in a 32-bit EJTAG Data Register............ccoovvnnnnincnenerennenne, 21-13
Figure 21.8 Examples of Byte Organization in a 32-bit EJTAG Data Register..........ccccocovvneninnn. 21-14
Figure 21.9 Examples of the Sync Operation ..o 21-16
Figure 21.10 EJTAG ProCESSOT ACCESS ...e.vvreririrreirereenissretsissisessssssssssssssssssssssssssesssssssssnsessssssesssnnes 21-18
Figure 21.11 RESEE OVEIVIEW ...t e 21-19
Figure 21.12 Shift Order Sequence of the JTAG_AI_IR Register..........cocvrvnrininneniniencens 21-21
Figure 21.13 Trace of Conditional PC Relative Jump INStructionccoevvvininrninininerennenne, 21-37
Figure 21.14 Trace of Indirect Jump INSEIUCHION ..o, 21-38
Figure 21.15 Trace of an Exception Followed by a Jump Indirect Instructionccccoeviriiinienc. 21-38
Figure 21.16 Trace of Indirect Jump Instruction Followed by an Exceptionccccovreniriinienn. 21-38
Figure 21.17 instruction Address Trace TrHGQEN.......coruruueiriririenieirisieresse e 21-39
Figure 21.18 Trace Trigger and General Exception at the Same Timecccovevnneninieneninn. 21-39
Figure 21.19 Jump Indirect Causes Trace THGUEN ..o 21-40
Figure 21.20 Instruction after Jump Indirect Causes Trace THGGer........cooverrreriereeereeneereerieereenens 21-40
Figure 21.21 Real-Time Trace Mode to Debug Mode (N0 TpC OUtPUL).........ceurieereinieireinieireinine 21-40
Figure 21.22 Real Time Trace Mode to Debug Mode (Debug Exception in Branch Delay Slot)........ 21-41
Figure 21.23 Timing Diagram of the EJTAG Interface Signals............cccoevvnininnennncnenenenne 21-41
Figure 21.24 Application Diagram of Target Board and EJTAG Connection.............ccoeveererreennen. 21-42
Figure A1 Format of Prefetch INStruCtioncccviirics e A-1
Figure A2 Flowchart for Prefetch Operation............cccvrinninneneence e A-2

79RC32334/332 User Reference Manual XXiX _ June 4. 2002 1.

List of Figures

Notes Figure D.1 Flowchart for Standby Mode Operation.............cccvvnnnnnenenese e D-2

79RC32334/332 User Reference Manual XXX — dune 4. 2002 .

RC32334 Device
Overview

®

79RC32334/332 User Reference Manual 1-1

Foreword

In this manual, numerous references are made to the RC32334, fewer references to the RC32332.
Because the RC32334 core and the RC32332 core are essentially the same device, the information in this
manual applies equally to both devices except where noted in occasional notes and footnotes in various
chapters. Therefore, all references to the RC32334 should be interpreted as applying also to the RC32332
except where noted. The differences between the RC32334 and RC32332 are summarized in Appendix G.

Introduction

The RC32334 is an integrated processor that combines a 32-bit MIPS instruction set architecture (ISA)
CPU core with a number of on-chip peripherals, to enable direct connection to boot memory, main memory,
/0, and PCI. The RC32334 also includes system logic for DMA, reset, interrupts, timers, and UARTs. The
RC32334 integrates all of the peripherals commonly associated with an embedded system to reduce board
space, design time, and effort.

Block Diagram

The RC32334 block diagram is shown in Figure 1.1. The sections that follow present an operational
overview of the various peripheral interfaces and controller capabilities that comprise the RC32334 system.
Also included in this chapter is a full pin description table and logic diagram. More detailed explanations and
user details such as register descriptions, timing diagrams and memory maps are provided in the specific
chapter for that function.

Address Bus

[ovam | w0

Data Bus
|

Serial Peripheral
Interface

Timer, UART,
Interrupt Modules II

DMA Channels

SDRAM Control
—>
Memory &

1/0 Control
—>

SDRAM
Control
Memory /0
Control

RC32334 | pCilFandBidge |

PCl Bus

Figure 1.1 RC32334 Block Diagram

Documentation Conventions and Definitions
Note that throughout this manual the following terms and conventions will be used:

* To avoid confusion when dealing with a mixture of “active-low” and “active-high” signals, the terms
assertion and negation are used. The term assert or assertion is used to indicate that a signal is
active or true, independent of whether that level is represented by a high or low voltage. The term
negate or negation is used to indicate that a signal is inactive or false.

* To define the active polarity of a signal, a suffix will be used. Signals ending with an *_n’ should be
interpreted as being active, or asserted, when at a logic zero (low) level. All other signals (including

L Jiiae 42002

RC32334 Device Overview Block Diagram

Notes clocks, buses and select lines) will be interpreted as being active, or asserted when at a logic one
(high) level.

* To define buses, the most significant bit (MSB) will be on the left and least significant bit (LSB) will
be on the right. No leading zeros will be included.

* To represent numerical values, either decimal, binary, or hexadecimal formats will be used. The
binary format is as follows: 0bDDD, where “D” represents either 0 or 1; the hexadecimal format is
as follows: 0xDD, where “D” represents the hexadecimal digit(s); otherwise, it is decimal.

* Unless otherwise denoted, a byte will refer to an 8-bit quantity. A halfword will refer to a 16-bit quan-
tity. A triple-byte will refer to a 24-bit quantity. A word will refer to a 32-bit quantity, and a double or
double word will refer to a 64-bit quantity.

* Abitis set when its value is 0b1. A bit is cleared when its value is 0b0.
* The compressed notation ABC[x|y|z]D refers to ABCxD, ABCyD, and ABCzD.
* Inwords, bit 31 is always the most significant bit and bit 0 is the least significant bit. In halfwords, bit

15 is always the most significant bit and bit 0 is the least significant bit. In bytes, bit 7 is always the
most significant bit and bit 0 is the least significant bit.

* The ordering of bytes within words is referred to as either “big endian” or “little endian.” Big endian
systems label byte zero as the most significant (leftmost) byte of a word. Little endian systems label
byte zero as the least significant (rightmost) byte of a word.

bit 31 bit 0
of1]2]3]

Address of Bytes within Words: Big Endian

bit 31 bit 0
(3[2[1]0]

Address of Bytes within Words: Little Endian

Table 1.1 Example of Byte Ordering for “Big Endian” or “Little Endian” System Definition

Signal Terminology
Throughout this manual, when describing signal transitions, the following terminology is used:
* Rising edge indicates a low-to-high (0 to 1) transition.
* Falling edge indicates a high-to-low (1 to 0) transition.

* Clock-to-Q delay is the amount of time it takes for a signal to move from the input of a device (clock)
to the output of the device (Q).

These terms are illustrated in Figure 1.2 and Figure 1.3.

single clock cycle
I
high-to-low \
transition low-to-high
transition
Figure 1.2 Signal Transitions
79RC32334/332 User Reference Manual 1-2

www NataGhestdleo

RC32334 Device Overview List of Features

Notes
data out

datain

oy)

clock input

Clock-to-Q delay‘

.

Figure 1.3 Clock-to-Q Delay

List of Features

Note: This list is not entirely applicable to the RC32332. For the differences in features between
the RC32334 and RC32332, see Table G.1 in Appendix G.

* High performance 32-bit CPU core
DSP instruction set extensions
= Enhanced MIPS-Il ISA compatible
8KkB instruction/2kB data cache, lockable per line
Big or little endian support

* SDRAM Controller (32-bit memory only)
4 banks, non-interleaved, 512MB total
Automatic refresh generation

* Memory & Peripheral Controller

6 banks, up to 32 or 64MB per bank (bank dependent)
= 8/16/ or 32-bit interface per bank

Supports Flash ROM, PROM, SRAM, dual-port memory, and peripheral devices
Intel or Motorola style 10 supports external wait-state generation

* PCl Bridge

32-bit PCI, up to 66 MHz

Revision 2.2 compliant

Target and master

Host or satellite

On-chip three slot PCI arbiter

* 4 DMA Channels
~ 4 general purpose DMA, each with Endianness swappers and byte lane data alignment
Any channel can be used for PCI
Supports scatter/gather
Supports memory-to-memory, memory-to-I/0, memory-to-PCI, PCI-to-PCI, and I/O-to-I/O trans-
fers
Supports chaining via linked lists of records
Supports unaligned transfers
Supports burst transfers
Programmable DMA transactions burst size
* UART Interface
Two 16550 Compatible UARTs
Baud rate support up to 1.5M
Modem signals included on one channel
¢ Programmable IO (PIO)
Input/Output/Interrupt source
Individually programmable

79RC32334/332 User Reference Manual 1-3 __ June 4. 2002 1.

RC32334 Device Overview System Block Diagram

.
Notes) Interrupf Control ’ .

Provides services for internal and external sources
Allows status of each interrupt to be read and masked

* Four general purpose 32-bit timer/counters
* Serial Peripheral Interface (SPI)
* Boundary Scan JTAG Interface (IEEE Std. 1149.1 compatible)

* In Circuit Emulator Interface
Compatible with enhanced JTAG (EJTAG) standard

System Block Diagram

Figure 1.4 illustrates the typical system implementation, based on the RC32334 integrated processor.
The RC32334 provides all of the necessary control and address signals to drive the external memory and
I/0. Note that, depending on the loading of the system bus, external data buffers could be used to reduce
the loading and isolate different memory regions.

=Ty

RC32334 32-bit Data Bus
CPU Core
Serial Peripheral
EEPROM[™ Interface DRAM Ct P | SDRAM (<&
Seril Tmers, UART Address & Control
PO e Interrupt Controller

Memory 1/0 Memory
DMA Channels et — 810 -

RC32334 | pciBiidge with Arbiter |

-
i 32-bit, 66 MHz PCI Bus

Figure 1.4 System Block Diagram

System Overview

Note: The PCI bridge information and the UART information in this section is not entirely
applicable to the RC32332. For the differences, see Table G.1 in Appendix G.

The RC32334 generates all necessary control signals and address buses to the external memory and
I/0. For main memory, I/O, on-chip peripherals, registers, and PCI, the RC32334 divides the physical
address space into 13 different regions.

Memory Controller. The Memory Controller on the RC32334 provides all of the address buses and
control signals for interfacing the RC32334 to standard SRAM, PROM, FLASH, and /O, and includes the
boot PROM interface. The memory controller provides six individual chip selects and supports 8, 16, and
32-bit wide memory and 1/Os. The two chip selects have highly configurable memory address ranges,
allowing selection of various memory types and widths to be supported. The RC32334 provides controls for
optional external data transceivers, for systems that require fast signalling with large loads.

SDRAM Controller. The SDRAM controller provides higher throughput while using available DRAM
circuitry, adding little to the cost of the system. The SDRAM controller directly manages four banks of 32-bit
physical non-interleaved memory. Each bank is 32-bits wide and supports a maximum of 64 MB per bank,

79RC32334/332 User Reference Manual 1-4 _ June 4. 2002 1.

RC32334 Device Overview System Overview

Notes up to a total memory size of 512 MB. The SDRAM memory subsystem can be implemented with a broad
range of device types, including SO-Dimms and SDRAM modules with devices from 16 Mb to 256 Mb. The
SDRAM controller has a built-in refresh generator.

PCI Bridge. To transfer data between main memory and the PCI bus, the RC32334 incorporates a PCI
bridge. At reset time, the PCI bridge can be configured as either a host or satellite bridge. The PCI bridge
supports 32-bit PCl—at up to 66MHz—and is revision 2.2 compliant.

As a PCI master, the RC32334 can generate memory, 1/O, or configuration cycles for direct local-to-PClI
bus accesses. The PCI bridge contains internal logic to arbitrate the ownership of the PCI bus between
multiple PCI bus master devices. For up to three external PCI devices, two arbitration schemes are
supported:

* Round robin, allowing devices to control the bus in a programmable sequential order
* Fixed priority, allowing the user to provide more bus bandwidth to a specific PCl-based peripheral

As a PCI target, the RC32334 allows access to its internal registers and to the RC32334 local bus
through the PCI, 1/O read and write, or Memory read and write commands. The RC32334 PCI bridge
supports byte swapping between little endian and big endian ordering conventions for systems when the
CPU subsystem is configured as a big endian system.

DMA Controller. Four general purpose DMA channels move data between source and destination
ports. Source and destination ports can be system memory, PCI, or I/O devices. Any of the four channels
can be used for PCl initiator reads or writes. All four channels support a descriptor structure, to allow effi-
cient data scatter/gather. The DMA controller supports swapping of data between big and little endian
memory and /O subsystems. It also supports quad-word burst transfers. All external 16 and 8-bit memory
I/Os are treated as memory-mapped, word-aligned devices.

Expansion Interrupt Controller. The Expansion Interrupt Controller provides the interrupt logic for soft-
ware to analyze the various RC32334 generated system interrupts and adds to the control already provided
through the CPO registers of the RISCore™ 32300. Each system interrupt is registered and the pending
status provided through this feature. The pending status can then be used to automatically generate a hard-
ware interrupt to the CPU core via individual mask bits. The pending interrupt status can also be optionally
set or cleared by a direct software write.

PIO. Programmable 1/O (PIO) pins are provided on the RC32334 so that any unused peripheral pins can
be programmed for use as general purpose discrete I/O pins. These PIO pins can be software programmed
as input or output lines, allowing pin values to be software programmed in output mode and software read-
able while in the input mode. The PIO pins can also be used as a source of interrupts to the CPU.

UART. The RC32334 incorporates two 16550 (an enhanced version of the 16450) compatible UARTSs.
To relieve the CPU of software overhead, the 16550 UART can be put into FIFO mode, allowing execution
of either 16450 or 16550 compatible software. Two sets of 16-byte FIFOs are enabled during the 16550
mode: one set in the receive data path and one set in the transmit data path. A baud rate generator is
included that divides the system clock by 1 to 65K and provides a 16X clock for driving the transmitter and
receiver logic.

Timers/Counters. Three on-chip 32-bit general purpose Timers are provided on the RC32334. Each
timer consists of both a count and a compare register. The count register resets to zero and then incre-
ments until it equals the compare register. When the count and compare registers are equal, the TC_n
output is asserted and the count is then reset to zero.

JTAG. Board-level manufacturing debugging is facilitated through implementation of a fully compliant
IEEE std. 1149.1 JTAG Boundary Scan interface.

In-Circuit Emulation. The part provides an on-chip debug port, enabling an external system to access
CPU core information. In conjunction with an in-circuit emulator (compatible with the EJTAG standard
defined by MIPS Technologies), this enables a sophisticated system debug capability to improve the soft-
ware development process.

Serial Peripheral Interface (SPI). This slow speed serial interface provides direct connection to SPI-
based peripherals, including EEPROMSs and analog to digital (A-to-D) converters.

79RC32334/332 User Reference Manual 1-5 __ June 4. 2002 1.

RC32334 Device Overview

Pin Description Table — RC32334

Pin Description Table — RC32334

The following table lists the pins provided on the RC32334. Note that those pin names followed by “_n" are active-low signals. All external pull-ups
and pull-downs require 10 kQ resistor.

Reset
State
Status

Drive
Strength
Capability|

Name Type Description

Local System Interface

mem_data[31:0] 110 z High Local system data bus

Primary data bus for memory. /O and SDRAM. Requires external pull-up.

mem_addr[25:2] I/0 | [25:10]Z| [25:16] Low | Memory Address Bus

These signals provide the Memory or DRAM address, during a Memory or DRAM bus transaction. During
each word data, the address increments either in linear or sub-block ordering, depending on the transaction
type. The table below indicates how the memory write enable signals are used to address discreet memory

port width types.

9:2]L | [15:2] High

Pin Signals

Port Width

mem_we_n[3]

mem_we_n[2]

mem_we_n[1]

mem_we_n[0]

DMA (32-bi)

mem_we_n[3]

mem_we_n[2]

mem_we_n[1]

mem_we_n[0]

32-bit

mem_we_n[3]

mem_we_n[2]

mem_we_n[1]

mem_we_n[0]

16-bit

Byte High Write Enable

mem_addr{1]

Not Used (Driven Low)

Byte Low Write Enable

8-bit

Not Used (Driven High)

mem_addr{1]

mem_addr{0]

Byte Write Enable

mem_addr[22] Alternate function: reset_boot_mode[1].
mem_addr[21] Alternate function: reset_boot_mode[0].
mem_addr[20] Alternate function: reset_pci_host_mode.
mem_addr[19] Alternate function: modebit [9].
mem_addr[18] Alternate function: modebit [8].
mem_addr[17] Alternate function: modebit [7].
mem_addr[15] Alternate function: sdram_addr[15].
mem_addr[14] Alternate function: sdram_addr[14].
mem_addr[13] Alternate function: sdram_addr{13].
mem_addr[11] Alternate function: sdram_addr{11].
mem_addr[10] Alternate function: sdram_addr[10].
mem_addr[9] Alternate function: sdram_addr{9].
mem_addr[8] Alternate function: sdram_addr{8].
mem_addr{7] Alternate function: sdram_addr{7].
mem_addr[6] Alternate function: sdram_addr[6).
mem_addr[5] Alternate function: sdram_addr(5).
mem_addr{4] Alternate function: sdram_addr{4].
mem_addr[3] Alternate function: sdram_addr{3].
mem_addr[2] Alternate function: sdram_addr[2].

Low with
internal pull-
up

mem_cs_n[5:0] Output H Memory Chip Select Negated
Recommend external pull-up.

Signals that a Memory Bank is actively selected.

mem_oe_n Output H High Memory Output Enable Negated

Recommend external pull-up.
Signals that a Memory Bank can output its data lines onto the cpu_ad bus.

mem_we_n[3:0] Output H High Memory Write Enable Negated Bus

Signals which bytes are to be written during a memory transaction. Bits act as Byte Enable and
mem_addr[1:0] signals for 8-bit or 16-bit wide addressing.

Table 1.2 Pin Description for RC32334 (Part 1 of 7)

79RC32334/332 User Reference Manual 1-6 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32334

Reset Drive
Name Type | State | Strength Description
Status| Capability

mem_wait_n Input — Memory Wait Negated

Requires external pull-up.

SRAM/IOI/IOM modes: Allows external wait-states to be injected during last cycle before data is sampled.
DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction.

Alternate function: sdram_wait_n.

mem_245_oe_n Output H Low Memory FCT245 Output Enable Negated
Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to a
memory or |/O bank.

mem_245_dt_r_n | Output z High Memory FCT245 Direction Xmit/Rcv Negated
Recommend external pull-up.
Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below.

output_clk Output | cpu-mas High Output Clock
terclk Optional clock output.
PCl Interface
pci_ad[31:0] I/0 z PCI PCI Multiplexed Address/Data Bus

Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus Mas-
ter during writes; or the Data is driven by the Bus Slave during reads.

pci_cbe_n[3:0] 110 Z PCI PCI Multiplexed Command/Byte Enable Bus
Command (not negated) Bus driven by the Bus Master during the initial frame_n assertion. Byte Enable
Negated Bus driven by the Bus Master during the data phase(s).

pci_par I/0 z PCI PCI Parity
Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven by
the Bus Slave during the Read Data phase.

pci_frame_n 110 z PCI PCI Frame Negated
Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates the
last datum.

pci_trdy_n 110 VA PCI PCI Target Ready Negated
Driven by the Bus Slave to indicate the current datum can complete.

pci_irdy_n I/0 z PCI PCl Initiator Ready Negated
Driven by the Bus Master to indicate that the current datum can complete.

pci_stop_n 110 z PCI PCI Stop Negated
Driven by the Bus Slave to terminate the current bus transaction.

pci_idsel_n Input — PCl Initialization Device Select
Uses pci_req_n[2] pin. See the PCI subsection.

pci_perr_n I/0 z PCI PCI Parity Error Negated
Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs.

pci_serr_n 110 z PCI System Error

Open- External pull-up resistor is required.
collecton Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or any

other system error.

pci_clk Input — PCI Clock

Clock for PCI Bus transactions. Uses the rising edge for all timing references.

pci_rst_n Input L — PCI Reset Negated
Host mode: Resets all PCl related logic.
Satellite mode: with boot from PCI mode: Resets all PCl related logic and also warm resets the 32334.

pci_devsel_n 110 z PCI PCI Device Select Negated
Driven by the target to indicate that the target has decoded the present address as a target address.

Table 1.2 Pin Description for RC32334 (Part 2 of 7)

79RC32334/332 User Reference Manual 1-7 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32334

Reset Drive
Name Type | State | Strength Description
Status| Capability

pci_req_n[2] Input z — PCI Bus Request #2 Negated

Requires external pull-up.

Host mode: pci_req_n[2] is an input indicating a request from an external device.

Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write.
Alternate function: pci_idsel (satellite).

pci_req_n[1] Input z — PCI Bus Request #1 Negated

Requires external pull-up.

Host mode: pci_req_n[2] is an input indicating a request from an external device.
Alternate function: Unused (satellite).

pci_req_n[0] I/0 z High PCI Bus Request #0 Negated

Requires external pull-up for burst mode.

Host mode: pci_req_n[0] is an input indicating a request from an external device.
Satellite mode: pci_req_n[0] is an output indicating a request from this device.

pci_gnt_n[2] Output Z' High PCl Bus Grant #2 Negated

Recommend external pull-up.

Host mode: pci_gnt_n[2] is an output indicating a grant to an external device.
Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin.

Alternate function: pci_inta_n (satellite).

pci_gnt_n[1]/ 110 Xfor 1 High PCl Bus Grant #1 Negated
pci_eeprom_cs pci clock Recommend external pull-up.
then H? Host mode: pci_gnt_n[2:1] are outputs indicating grants to external devices.

Satellite mode: Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration Regis-
ters in the RC32334 Reset Initialization Vector PCI boot mode. Defaults to the output direction at reset time,|
1st Alternate function: pci_eeprom_cs (satellite).

2nd Alternate function: PIO[11].

pci_gnt_n[0] I/0 z High PCI Bus Grant #0 Negated
Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pull-up.
Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Require external pull-up.

pci_inta_n Output z PCI PCl Interrupt #A Negated
Open- Uses pci_gnt_n[2]. See the PCI subsection.
collecton
pci_lock_n Input — PCI Lock Negated

Driven by the Bus Master to indicate that an exclusive operation is occurring.

1 Zin host mode; L in satellite non-boot mode; Z in satellite boot mode.
2 Hin host mode; L in satellite non-boot mode; L in satellite boot mode.

SDRAM Control Interface

sdram_addr_12 Output L High SDRAM Address Bit 12 and Precharge All

SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and "pre-

charge all" signal during refresh, read and write command.
sdram_ras_n Output H High SDRAM RAS Negated

SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks.
sdram_cas_n Output H High SDRAM CAS Negated

SDRAM mode: Provides SDRAM CAS control signal to all SDRAM banks.
sdram_we_n Output H High SDRAM WE Negated

SDRAM mode: Provides SDRAM WE control signal to all SDRAM banks.
sdram_cke Output H High SDRAM Clock Enable

SDRAM mode: Provides clock enable to all SDRAM banks.

Table 1.2 Pin Description for RC32334 (Part 3 of 7)

79RC32334/332 User Reference Manual 1-8 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32334

Reset Drive
Name Type | State | Strength Description
Status| Capability

sdram_cs_n[3:0] Output H High SDRAM Chip Select Negated Bus

Recommend external pull-up.

SDRAM mode: Provides chip select to each SDRAM bank.
SODIMM mode: Provides upper select byte enables [7:4].

sdram_s_n[1:0] Output H High SDRAM SODIMM Select Negated Bus
SDRAM mode: Not used.
SDRAM SODIMM mode: Upper and lower chip selects.

sdram_bemask_n | Output H High SDRAM Byte Enable Mask Negated Bus (DQM)

[3:0] SDRAM mode: Provides byte enables for each byte lane of all DRAM banks.
SODIMM mode: Provides lower select byte enables [3:0].

sdram_245_oe_n | Output H Low SDRAM FCT245 Output Enable Negated

Recommend external pull-up.
SDRAM mode: Controls output enable to optional FCT245 transceiver bank by asserting during both reads
and writes to any DRAM bank.

sdram_245_dt_r_n | Output z High SDRAM FCT245 Direction Transmit/Receive
Recommend external pull-up.
Uses cpu_dt_r_n. See CPU Core Specific Signals below.

On-Chip Peripherals

dma_ready_n[1:0]/| 1/O z Low DMA Ready Negated Bus

dma_done_n[1:0] Requires external pull-up.

Ready mode: Input pin for each general purpose DMA channel that can initiate the next datum in the current
DMA descriptor frame.

Done mode: Input pin for each general purpose DMA channel that can terminate the current DMA descriptor
frame.

dma_ready_n[0] 1st Alternate function PIO[1]; 2nd Alternate function: dma_done_n[0].

dma_ready_n[1] 1st Alternate function PIO[0]; 2nd Alternate function: dma_done_n[1].

pio[15:0] 110 See Low Programmable Input/Qutput
related General purpose pins that can each be configured as a general purpose input or general purpose output.
pins These pins are multiplexed with other pin functions:

uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0], pci_gnt_n[1], spi_mosi, spi_miso, spi_sck,
spi_ss_n, uart_rx[0], uart_tx[0], uart_rx[1], uart_tx[1], timer_tc_n[0], dma_ready_n[0], dma_ready_n[1]. Note
that pci_gnt_n[1], spi_mosi, spi_sck, and spi_ss_n default to outputs at reset time. The others default to

inputs.
timer_tc_n[0] / I/0 z Low Timer Terminal Count Overflow Negated
timer_gate_n[0] Terminal count mode (timer_tc_n): Output indicating that the timer has reached its count compare value and

has overflowed back to 0.

Gate mode (timer_gate_n): input indicating that the timer may count one tick on the next clock edge.
1st Alternate function: PIO[2].

2nd Alternate function: timer_gate_n([0].

uart_rx[1:0] 110 z Low UART Receive Data Bus

UART mode: Each UART channel receives data on their respective input pin.
uart_rx[0] Alternate function: PIO[6].

uart_rx[1] Alternate function: PIO[4].

uart_tx[1:0] 110 z Low UART Transmit Data Bus

UART mode: Each UART channel sends data on their respective output pin. Note that these pins default to
inputs at reset time and must be programmed via the PIO interface before being used as UART outputs.
uart_tx[0] Alternate function: PIO[5].

uart_tx[1] Alternate function: PIO[3].

Table 1.2 Pin Description for RC32334 (Part 4 of 7)

79RC32334/332 User Reference Manual 1-9 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32334

Reset Drive
Name Type | State | Strength Description
Status| Capability
uart_cts_n[0] 110 z Low UART Transmit Data Bus
uart_dsr_n[0] UART mode: Data bus modem control signal pins for UART channel 0.
uart_dtr_n[0] uart_cts_n[0] Alternate function: PIO[15].
uart_rts_n[0] uart_dsr_n[0] Alternate function: PIO[14].

uart_dtr_n[0] Alternate function: PIO[13].
uart_rts_n[0] Alternate function: PIO[12].

Spi_mosi 110 L Low SPI Data Output

Serial mode: Output pin from RC32334 as an Input to a Serial Chip for the Serial data input stream.

In PCI satellite mode, acts as an Output pin from RC32334 that connects as an Input to a Serial Chip for the
Serial data input stream for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector
PCI boot mode.

1st Alternate function: PIO[10]. Defaults to the output direction at reset time.

2nd Alternate function: pci_eeprom_mdo.

Spi_miso I/0 z Low SPI Data Input

Serial mode: Input pin to RC32334 from the Output of a Serial Chip for the Serial data output stream.

In PCl satellite mode, acts as an Input pin from RC32334 that connects as an output to a Serial Chip for the
Serial data output stream for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector
PCI boot mode.

Defaults to input direction at reset time.

1st Alternate function: PIO[7].

2nd Alternate function: pci_eeprom_mdi.

spi_sck 110 L Low SPI Clock

Serial mode: Output pin for Serial Clock.

In PCl satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the
RC323334 Reset Initialization Vector PCI boot mode.

1st Alternate function: PIO[9]. Defaults to the output direction at reset time.

2nd Alternate function: pci_eeprom_sk.

spi_ss_n 110 H Low SPI Chip Select
Output pin selecting the serial protocol device as opposed to the PCl satellite mode EEPROM device.
Alternate function: PIO[8]. Defaults to the output direction at reset time.

CPU Core Specific Signals
cpu_nmi_n Input — CPU Non-Maskable Interrupt
Requires external pull-up.
This interrupt input is active low to the CPU.
cpu_masterclk Input — CPU Master System Clock
Provides the basic system clock.
cpu_int_n[5:4], [2:0] Input — CPU Interrupt
Requires external pull-up.
These interrupt inputs are active low to the CPU.
cpu_coldreset_n Input L — CPU Cold Reset
This active-low signal is asserted to the RC32334 after V. becomes valid on the initial power-up. The
Reset initialization vectors for the RC32334 are latched by cold reset.
cpu_dt_r_n Output z — CPU Direction Transmit/Receive

This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during
read operations. Requires external pull-up.

1st Alternate function: mem_245_dt_r_n.

2nd Alternate function: sdram_245_dt_r_n.

Table 1.2 Pin Description for RC32334 (Part 5 of 7)

79RC32334/332 User Reference Manual 1-10 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32334

Reset Drive
Name Type | State | Strength Description
Status| Capability

JTAG Interface Signals

jtag_tck Input — JTAG Test Clock

Requires external pull-down.

An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of the
system and the processor clock with nominal 50% duty cycle.

jtag_tdi, Input — JTAG Test Data In

ejtag_dint_n Requires an external pull-up on the board.

On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register,
depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the
debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG). This
pin is also used as the ejtag_dint_n signal in the EJTAG mode.

jtag_tdo, Output z High JTAG Test Data Out

ejtag_tpc The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When
no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a non-sequen-
tial program counter at the processor clock or at a division of processor clock. This pin is also used as the

ejtag_tpc signal in the EJTAG mode.

jtag_tms Input — JTAG Test Mode Select

Requires external pull-up.

The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation.
jtag_tms is sampled on the rising edge of the jtag_tck.

jtag_trst_n Input L — JTAG Test Reset
When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven or pulled low, or the jtag_tms/
ejtag_tms signals must be pulled up and jtag_clk actively clocked.

ejtag_dclk Output VA — EJTAG Test Clock
Processor Clock. During Real Time Mode, this signal is used to capture address and data from the ejtag_tpc
signal at the processor clock speed or any division of the internal pipeline.

ejtag_pcst[2:0] 110 z Low EJTAG PC Trace Status Information

111 (STL) Pipe line Stall

110 (JMP) Branch/Jump forms with PC output

101 (BRT) Branch/Jump forms with no PC output

100 (EXP) Exception generated with an exception vector code output
011 (SEQ) Sequential performance

010 (TST) Trace is outputted at pipeline stall time

001 (TSQ) Trace trigger output at performance time

000 (DBM) Run Debug Mode

Alternate function: modebit[2:0].

ejtag_debugboot Input — EJTAG DebugBoot
Requires | The ejtag_debugboot input is used during reset and forces the CPU core to take a debug exception at the
external pull-| end of the reset sequence instead of a reset exception. This enables the CPU to boot from the ICE probe
down without having the external memory working. This input signal is level sensitive and is not latched internally.
This signal will also set the JtagBrk bit in the JTAG_Control_Register[12].

ejtag_tms Input — EJTAG Test Mode Select
Requires | An external pull-up on the board is required.
external pull-| The ejtag_tms is sampled on the rising edge of jtag_tck.
up

Debug Signals

debug_cpu_dma_n| /O z Low Debug CPU versus DMA Negated

De-assertion high during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction
was generated from the CPU.

Assertion low during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was
generated from DMA.

Alternate function: modebit[6].

Table 1.2 Pin Description for RC32334 (Part 6 of 7)

79RC32334/332 User Reference Manual 1-11 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32334

Reset Drive
Name Type | State | Strength Description
Status| Capability

debug_cpu_ack_n 110 z Low Debug CPU Acknowledge Negated
Indicates either a data acknowledge to the CPU or DMA.
Alternate function: modebit[4].

debug_cpu_ads_n 110 Z Low Debug CPU Address/Data Strobe Negated

Assertion indicates that either a CPU or a DMA transaction is beginning and that the mem_data[31:4] bus
has the current block address.

Alternate function: modebit[5].

debug_cpu_i_d_n 110 Z Low Debug CPU Instruction versus Data Negated

Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a CPU
or DMA data transaction.

De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a
CPU instruction transaction.

Alternate function: modebit[3].

Table 1.2 Pin Description for RC32334 (Part 7 of 7)

79RC32334/332 User Reference Manual 1-12 _ June 4. 2002 1.

RC32334 Device Overview

Pin Description Table — RC32332

Pin Description Table — RC32332

The following table lists the pins provided on the RC32332. Note that those pin names followed by “_n” are active-low signals. All external pull-ups
and pull-downs require 10 kQ resistor.

Name

Type

Reset
State
Status

Drive
Strength
Capability

Description

Local System Interface

mem_data[31:0]

10

High

Local system data bus

Primary data bus for memory. 1/0 and SDRAM.

mem_addr[22:2]

IO

[25:10] Z

[9:2]L

[22:16] Low

[15:2] High

Memory Address Bus

These signals provide the Memory or DRAM address, during a Memory or DRAM bus transaction. During
each word data, the address increments either in linear or sub-block ordering, depending on the transac-
tion type. The table below indicates how the memory write enable signals are used to address discrete

memory port width types.

Port Width

Pin Signals
mem_we_n[3]

mem_we_n[2]

mem_we_n[1]

mem_we_n[0]

DMA (32-bit)

mem_we_n[3]

mem_w

e_n[2] mem_we_n[1]

mem_we_n[0]

32-bit

mem_we_n[3]

mem_w

e_n[2] mem_we_n[1]

mem_we_n[0]

16-bit

Byte High Write Enable

mem_addr[1]

Not Used
(Driven Low)

Byte Low Write
Enable

8-bit Not Used

(Driven High)

mem_addr[1]

mem_addr[0]

Byte Write
Enable

mem_addr[22] Alternate function:
mem_addr[21] Alternate function:
mem_addr[20] Alternate function:
mem_addr{19] Alternate function:
mem_addr{18] Alternate function:
mem_addr{17] Alternate function:
mem_addr{15] Alternate function:
mem_addr{14] Alternate function:
mem_addr{13] Alternate function:
mem_addr{11] Alternate function:
mem_addr{10] Alternate function:

mem_addr[9] Alternate function:
mem_addr[8] Alternate function:
mem_addr{7] Alternate function:
mem_addr{6] Alternate function:
mem_addr[5] Alternate function:
mem_addr{4] Alternate function:
mem_addr{3] Alternate function:
mem_addr{2] Alternate function:

modebit [9].
modebit [8].
modebit [7].

sdram_addr[9].
sdram_addr8].
sdram_addr{7].
sdram_addr[6].
sdram_addr[5].
sdram_addr[4].
sdram_addr[3].
sdram_addr{2]

reset_boot_mode[1].
reset_boot_mode|0].
reset_pci_host_mode.

sdram_addr[15].
sdram_addr[14].
sdram_addr[13].
sdram_addr[11].
sdram_addr[10].

mem_cs_n[5:0]

Output

Low

Memory Chip Select Negated Recommend external pull-up.
Signals that a Memory Bank is actively selected.

mem_oe_n

Output

High

Memory Output Enable Negated Recommend external pull-up.
Signals that a Memory Bank can output its data lines onto the cpu_ad bus.

mem_we_n[3:0]

Output

High

Memory Write Enable Negated

Signals which bytes are to be written during a memory transaction. Bits act as Byte Enable and

Bus

mem_addr[1:0] signals for 8-bit or 16-bit wide addressing.

mem_wait_n

Input

Memory Wait Negated Requires external pull-up.
SRAM/IOI/IOM modes: Allows external wait-states to be injected during the last cycle before data is sam-

pled.

DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction.

Alternate function: sdram_wait_n.

79RC32334/332 User Reference Manual

Table 1.3 Pin Description for RC32332 (Part 1 of 6)

1-13

www NataGhestdleo

RC32334 Device Overview Pin Description Table — RC32332

Reset Drive
Name Type | State | Strength Description
Status | Capability

mem_245_oe_n Output H Low Memory FCT245 Output Enable Negated
Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to a
memory or |/O bank.

mem_245_dt r_n Output z High Memory FCT245 Direction Xmit/Rcv Negated Recommend external pull-up.
Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below.
output_clk Output | cpu-mas High Output Clock
terclk Optional clock output.
PCl Interface
pci_ad[31:0] I/0 Z PCI PCI Multiplexed Address/Data Bus

Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus
Master during writes; or the Data is driven by the Bus Slave during reads.

pci_cbe_n[3:0] 110 z PCI PCI Multiplexed Command/Byte Enable Bus

Command (not negated) Bus driven by the Bus Master during the initial frame_n
assertion. Byte Enable Negated Bus driven by the Bus Master during

the data phase(s).

pci_par 110 z PCI PCI Parity
Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven
by the Bus Slave during the Read Data phase.

pci_frame_n I/0 z PCI PCI Frame Negated
Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates
the last datum.

pci_trdy_n 110 VA PCI PCI Target Ready Negated
Driven by the Bus Slave to indicate the current datum can complete.
pci_irdy_n I/0 z PCI PCl Initiator Ready Negated
Driven by the Bus Master to indicate that the current datum can complete.
pci_stop_n 110 z PCI PCI Stop Negated
Driven by the Bus Slave to terminate the current bus transaction.
pci_idsel_n Input — PCl Initialization Device Select
Uses pci_req_n[2] pin. See the PCI subsection.
pci_perr_n 110 z PCI PCI Parity Error Negated
Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs.
pci_serr_n I/0 z PCI System Error External pull-up resistor is required.
Open- Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or
collector any other system error.
pci_clk Input — PCI Clock

Clock for PCI Bus transactions. Uses the rising edge for all timing references.

pci_rst_n Input L — PCI Reset Negated
Host mode: Resets all PCl related logic.
Satellite mode: with boot from PCI mode: Resets all PCl related logic and also warm resets the 32332.

pci_devsel_n I/0 Z PCI PCI Device Select Negated
Driven by the target to indicate that the target has decoded the present address as a target address.

pci_req_n[2] Input z — PCI Bus Request #2 Negated Requires external pull-up.

Host mode: pci_req_n[2] is an input indicating a request from an external device.

Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write.
Alternate function: pci_idsel (satellite).

pci_req_n[0] 110 z High PCI Bus Request #0 Negated Requires external pull-up for burst mode.
Host mode: pci_req_n[0] is an input indicating a request from an external device.
satellite mode: pci_req_n[0] is an output indicating a request from this device.

Table 1.3 Pin Description for RC32332 (Part 2 of 6)

79RC32334/332 User Reference Manual 1-14 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32332

Reset Drive
Name Type | State | Strength Description
Status | Capability

pci_gnt_n[2] Output Z' High PCI Bus Grant #2 Negated Recommend external pull-up.

Host mode: pci_gnt_n[2] is an output indicating a grant to an external device.

Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin. External pull-up is required.
Alternate function: pci_inta_n (satellite).

pci_gnt_n[1] I/O | Xfor1pci High PCI Bus Grant #1 Negated Recommend external pull-up.
clockthen Host mode: not used.
H2 Satellite mode: Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration Reg-
isters in the RC32332 Reset Initialization Vector PCI boot mode. Defaults to the output direction at reset
time.

1st Alternate function: pci_eeprom_cs (satellite).
2nd Alternate function: PIO[7].

pci_gnt_n[0] I/0 z High PCI Bus Grant #0 Negated
Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pull-
up.
Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Requires external pull-up.

pci_inta_n Output z PCI PCl Interrupt #A Negated

Open- Uses pci_gnt_n[2]. See the PCI subsection.
collector|
pci_lock_n Input — PCI Lock Negated

Driven by the Bus Master to indicate that an exclusive operation is occurring.

1 Zin host mode; L in satellite non-boot mode; Z in satellite boot mode.
2Hin host mode; L in satellite non-boot mode; L in satellite boot mode.

SDRAM Control Interface

sdram_addr_12 Output L High SDRAM Address Bit 12 and Precharge All
SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and “pre-
charge all” signal during refresh, read and write command.

sdram_ras_n Output H High SDRAM RAS Negated

SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks.
sdram_cas_n Output H High SDRAM CAS Negated

SDRAM mode: Provides SDRAM CAS control signal to all SDRAM banks.
sdram_we_n Output H High SDRAM WE Negated

SDRAM mode: Provides SDRAM WE control signal to all SDRAM banks.
sdram_cke Output H High SDRAM Clock Enable

SDRAM mode: Provides clock enable to all SDRAM banks.

sdram_cs_n[3:0] Output H High SDRAM Chip Select Negated Bus Recommend external pull-up.
SDRAM mode: Provides chip select to each SDRAM bank.
SODIMM mode: Provides upper select byte enables [7:4].

sdram_s_n[1:0] Output H High SDRAM SODIMM Select Negated Bus
SDRAM mode: Not used.
SDRAM SODIMM mode: Upper and lower chip selects.

sdram_bemask_n | Output H High SDRAM Byte Enable Mask Negated Bus (DQM)
[3:0] SDRAM mode: Provides byte enables for each byte lane of all DRAM banks.
SODIMM mode: Provides lower select byte enables [3:0].

Table 1.3 Pin Description for RC32332 (Part 3 of 6)

79RC32334/332 User Reference Manual 1-15 _ June 4. 2002 1.

RC32334 Device Overview Pin Description Table — RC32332

Reset Drive
Name Type | State | Strength Description
Status | Capability

sdram_245_oe_n Output H Low SDRAM FCT245 Output Enable Negated Recommend external pull-up.
SDRAM mode: Controls output enable to optional FCT245 transceiver bank by asserting during both
reads and writes to any DRAM bank.

sdram_245_dt_r_n | Output VA High SDRAM FCT245 Direction Transmit/Receive Recommend external pull-up.
Uses cpu_dt_r_n. See CPU Core Specific Signals below.

On-Chip Peripherals

dma_ready_n[0] I/0 z Low DMA Ready Negated Bus Requires external pull-up.
Ready mode: Input pin for general purpose DMA channel 0 that can initiate the next datum in the current
DMA descriptor frame.
Done mode: Input pin for general purpose DMA channel 0 that can terminate the current DMA descriptor
frame.

dma_ready_n[0] 1st Alternate function PIO[0]; 2nd Alternate function: dma_done_n[0].

pio[7:0] I/0 See Low Programmable Input/Output
related General purpose pins that can each can be configured as a general purpose input or general purpose out-
pins put. These pins are multiplexed with other pin functions:

pci_gnt_n[1], spi_mosi, spi_miso, spi_sck, spi_ss_n, uart_rx[0], uart_tx[0], dma_ready_n[0]. Note that
pci_gnt_n[1], spi_mosi, spi_sck, and spi_ss_n default to outputs at reset time. The others default to
inputs.

uart_rx[0] 110 zZ Low UART Receive Data Bus
UART mode: UART channel receives data.
uart_rx[0] Alternate function: PIO[2].

uart_tx[0] I/0 z Low UART Transmit Data

UART mode: UART channel send data. Note that this pin defaults to an input at reset time and must be
programmed via the PIO interface before being used as a UART output.

uart_tx[0] Alternate function: PIO[1].

Spi_mosi 110 L Low SPI Data Output

Serial mode: Output pin from RC32332 as an Input to a Serial Chip for the Serial data input stream.

In PCl satellite mode, acts as an Output pin from RC32332 that connects as an Input to a Serial Chip for
the Serial data input stream for loading PCI Configuration Registers in the RC32332 Reset Initialization
Vector PCl boot mode.

Defaults to the output direction at reset time.

1st Alternate function: PIO[6].

2nd Alternate function: pci_eeprom_mdo.

Spi_miso 110 z Low SPI Data Input

Serial mode: Input pin to RC32332 from the Output of a Serial Chip for the Serial data output stream.

In PCI satellite mode, acts as an Input pin from RC32332 that connects as an output to a Serial Chip for
the Serial data output stream for loading PCI Configuration Registers in the RC32332 Reset Initialization
Vector PCI boot mode.

1st Alternate function: PIO[3].

2nd Alternate function: pci_eeprom_mdi.

spi_sck 110 L Low SPI Clock

Serial mode: Output pin for Serial Clock.

In PCI satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the
RC323332 Reset Initialization Vector PCI boot mode.

Defaults to the output direction at reset time.

1st Alternate function: PIO[5].

2nd Alternate function: pci_eeprom_sk.

spi_ss_n 110 H Low SPI Chip Select
Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device.
Alternate function: PIO[4]. Defaults to the output direction at reset time.

Table 1.3 Pin Description for RC32332 (Part 4 of 6)

79RC32334/332 User Reference Manual 1-16 _ June 4. 2002 1.

RC32334 Device Overview

Pin Description Table — RC32332

Reset Drive
Name Type | State | Strength Description
Status | Capability

CPU Core Specific Signals

cpu_nmi_n Input — CPU Non-Maskable Interrupt Requires external pull-up.
This interrupt input is active low to the CPU.

cpu_masterclk Input — CPU Master System Clock
Provides the basic system clock.

cpu_int_n[1:0] Input — CPU Interrupt Requires external pull-up.
These interrupt inputs are active low to the CPU.

cpu_coldreset_n Input L — CPU Cold Reset
This active-low signal is asserted to the RC32332 after V., becomes valid on the initial power-up. The
Reset initialization vectors for the RC32332 are latched by cold reset.

cpu_dt_r_n Output Z — CPU Direction Transmit/Receive
This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during
read operations.
1st Alternate function: mem_245_dt_r_n.
2nd Alternate function: sdram_245_dt_r_n.

JTAG Interface Signals

jtag_tck Input — JTAG Test Clock
Requires external pull-down.
An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of
the system and the processor clock with nominal 50% duty cycle.

jtag_tdi, Input — JTAG Test Data In

ejtag_dint_n Requires an external pull-up on the board.
On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register,
depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the
debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG).
Requires an external pull-up on the board. This pin is also used as the ejtag_dint_n signal in the EJTAG
mode.

jtag_tdo, Output z High JTAG Test Data Out

ejtag_tpc The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When
no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a non-
sequential program counter at the processor clock or at a division of processor clock. This pin is also used
as the ejtag_tpc signal in the EJTAG mode.

jtag_tms Input — JTAG Test Mode Select
Requires external pull-up.
The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation.
jtag_tms is sampled on the rising edge of the jtag_tck.

jtag_trst_n Input L — JTAG Test Reset
When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven or pulled low, or the jtag_tms/
ejtag_tms signals must be pulled up and jtag_clk actively clocked.

ejtag_dclk Output z — EJTAG Test Clock
Processor Clock. During Real Time Mode, this signal is used to capture address and data from the
ejtag_tpc signal at the processor clock speed or any division of the internal pipeline.

Table 1.3 Pin Description for RC32332 (Part 5 of 6)
79RC32334/332 User Reference Manual 1-17

www NataGhestdleo

RC32334 Device Overview

Pin Description Table — RC32332

Name

Type

Reset
State
Status

Drive
Strength
Capability

Description

ejtag_pcst[2:0]

IO

Low

EJTAG PC Trace Status Information

111 (STL) Pipe line Stall

110 (JMP) Branch/Jump forms with PC output

101 (BRT) Branch/Jump forms with no PC output

100 (EXP) Exception generated with an exception vector code output
011 (SEQ) Sequential performance

010 (TST) Trace is outputted at pipeline stall time

001 (TSQ) Trace trigger output at performance time

000 (DBM) Run Debug Mode

Alternate function: modebit[2:0].

ejtag_debugboot

Input

EJTAG DebugBoot

Requires an external pull-down.

The ejtag_debugboot input is used during reset and forces the CPU core to take a debug exception at the
end of the reset sequence instead of a reset exception. This enables the CPU to boot from the ICE probe
without having the external memory working. This input signal is level sensitive and is not latched inter-
nally. This signal will also set the JtagBrk bit in the JTAG_Control_Register[12].

ejtag_tms

Input

EJTAG Test Mode Select
Requires an external pull-up.
The ejtag_tms is sampled on the rising edge of jtag_tck.

Debug Signals

debug_cpu_dma_n

10

Low

Debug CPU versus DMA Negated

Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was
generated from the CPU.

De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction
was generated from DMA.

Alternate function: modebit[6].

debug_cpu_ack_n

10

Low

Debug CPU Acknowledge Negated
Indicates either a data acknowledge to the CPU or DMA.
Alternate function: modebit[4].

debug_cpu_ads_n

10

Low

Debug CPU Address/Data Strobe Negated

Assertion indicates that either a CPU or a DMA transaction is beginning and that the mem_data[31:4] bus
has the current block address.

Alternate function: modebit[5].

debug_cpu_i_d_n

10

Low

Debug CPU Instruction versus Data Negated

Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a
CPU or DMA data transaction.

De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a
CPU instruction transaction.

Alternate function: modebit[3].

79RC32334/332 User Reference Manual

Table 1.3 Pin Description for RC32332 (Part 6 of 6)

e Datasheetdicom

RC32334 Device Overview

Logic Diagram — RC32334

Logic Diagram — RC32334

cpu_masterclk
cpu_coldreset_n

cpu_nmi_n

CPU Core signals

cpu_int_n[5:4],[2:0]
cpu_dtrn

pci_cbe_n[3:0]
pci_ad[31:0]
pci_par
pci_frame_n
pci_trdy_n
pci_irdy_n
pci_stop_n
pei_idsel
pci_perr_n
pci_serr_n
pei_clk
pci_rst_n
pci_devsel_n
pci_req_n[2:0]

PCl Interface

pci_gnt_n[2:0]

pci_inta_n
pei_lock_n
pci_eeprom_mdi
pci_eeprom_mdo
pci_eeprom_cs
pci_eeprom_sk

[jtag_tck
@ jftag_tms
Q& | jagtd
E s :
S8 jtag_tdo
= jftag_trst_n

_debug_cpu_dma_n

=2 debug_cpu_ack_n
< debug_cpu_i_d_n
QO | debug cpu_ads_n
B [ond
85 | V.00
a5 cclol
Ve to core
VP
VP

V. IO

V¢ core |

RC32334
Logic
Symbol

mem_addr[25:2]
mem_data[31:0]

mem_cs_n[5:0]
mem_oe_n
mem_we_n[3:0]
mem_wait_n
mem_245_oe_n
mem_245_dt r_n
output_clk
spi_mosi
Spi_miso
spi_ss_n
spi_sck

sdram_addr[15:13]

sdram_addr[12]
sdram_addr[11:2]
sdram_ras_n
sdram_cas_n
sdram_we_n
sdram_cke

sdram_cs_n[3:0]

sdram_bemask_n[3:0]

sdram_245_oe_n

sdram_245_dt r n
sdram_s_n_[1:0]

dma_ready_n[1:0]

timer_tc_n[0]

uart_rx[1:0]]

uart_tx[1:0]

uart_cts_n[0]
uart_rts_n[0]
uart_dtr_n[0]
uart_dsr_n[0]

ejtag_dclk
ejtag_pcst[2:0]
ejtag_tms
ejtag_debugboot
ejtag_tpc

pio[15:0] J

Local System

SPI
Interface

SDRAM Signals

DMA
Interface

Timer

UART

EJTAG

PIO
Interface

Interface

Figure 1.5 Logic Diagram for RC32334

79RC32334/332 User Reference Manual

www NataGhestdleo

RC32334 Device Overview

Logic Diagram — RC32332

Logic Diagram — RC32332

CPU Core signals

PCl Interface

Debug

cpu_masterclk
cpu_coldreset_n
cpu_nmi_n

cpu_int_n[1:0]
cpu_dt rn

pci_cbe_n[3:0]
pci_ad[31:0]
pci_par
pci_frame_n
pci_trdy_n
pci_irdy_n
pci_stop_n
pci_idsel
pci_perr_n
pci_serr_n
pei_clk
pci_rst_n
pci_devsel_n
pci_req_n[0]
pci_req_n[2]
pci_gnt_n[0]
pci_gnt_n[2]

pci_inta_n
pci_lock_n
pci_eeprom_mdi
pci_eeprom_mdo
pci_eeprom_cs
pci_eeprom_sk

[jtag_tck
o | jtag_tms
Q & | jtag_tdi
| o
5 8| jtag_tdo
= | jtag_trstn

debug_cpu_dma_n
debug_cpu_ack_n
debug_cpu_i_d_n
|_debug_cpu_ads_n

[Gnd
E'g VCC to 110
23 | Vtocore
¥
oo VP
VP

VSS »
Ve o

V¢ core
—_—
EEE—

RC32332
Logic
Symbol

mem_addr{22:2]
mem_data[31:0]
mem_cs_n[5:0]
mem_oe_n
mem_we_n[3:0]
mem_wait_n
mem_245_oe_n
mem_245_dt r_n
output_clk

Spi_mosi
Spi_miso
spi_ss_n

spi_sck

sdram_addr[15:13]

sdram_addr[12]
sdram_addr[11:2]
sdram_ras_n
sdram_cas_n
sdram_we_n

sdram_cke
sdram_cs_n[3:0]

sdram_bemask_n[3:0]

sdram_245_oe_n

sdram_245_dt_r_n
sdram_s_n_[1:0]

dma_ready_n[0]
a

uart_rx[0]
uart_tx[0]

ejtag_dclk
ejtag_pcst[2:0]
ejtag_tms
ejtag_debugboot
ejtag_tpc

pio[7:0] i

Local System

SPI
Interface

<
=

UART

EJTAG

PIO
Interface

SDRAM Signals

Interface

Interface

Figure 1.6 Logic Diagram for RC32332

79RC32334/332 User Reference Manual

www NataGhestdleo

RC32334 Device Overview Typical RC32334 Memory Map

Notes Typical RC32334 Memory Map

The RC32334 divides the physical address range into 12 distinctive regions and decodes the address
generated by the CPU to determine which region is being accessed. The RC32334 integrated processor
allows rearrangement of the memory map for particular embedded applications such as systems with
SRAM main memory. Typical RC32334 systems use the following memory map.

. Port
Physical Address | Max. Size RC32334 Region Description
Range Size .9
Region

0000_0000 | OFFF_FFFF | 256MB ABCD | DRAMO,1,2,3 (16MB typical)
1000_0000 | 11FF_FFFF | 32MB E MEM/IO 2 (8MB typical)
1200_0000 | 13FF_FFFF | 32MB MEM/IO 3 (8MB typical)
1400_0000 | 15FF_FFFF | 32MB MEM/IO 4 (8MB typical)
1600_0000 | 17FF_FFFF | 32MB MEM/IO 5 (8MB typical)
1800_0000 | 1BFF_FFFF | 64MB RC32334 Internal Registers
1C00_0000 | 1FFF_FFFF | 64MB MEM/IO 0 (4MB typical)
2000_0000 | 23FF_FFFF | 64MB | MEM/IO 1 (8MB typical)

II| Q| M| m| m

4000_0000 | SFFF_FFFF | 512MB J PCI Memory Space 1 (256MB typical)

6000_0000 | 7FFF_FFFF | 512MB K PCI Memory Space 2 (256MB typical)

8000_0000 | FF1F_FFFF | 2034MB 0 Reserved, undecoded. If accesses are made to this
region, the RC32334 will return a bus error.

FF20_0000 | FF2F_FFFF | 1MB 0] Reserved for RC32334 EJTAG interface Probe Mem-
ory.

FF30_0000 | FFFF_FFFF | 13MB 0] Reserved for RC32334 on-chip EJTAG interface reg-
isters.

Table 1.4 RC32334 Typical Memory Map
1. Multiple memory regions may need to be placed within the larger RISCore 32300 port size regions.

Note: Typical values are values a programmer might use. They are not necessarily the default
values at reset.

RC32334 Internal Register Map Addresses and
Definitions

Important User’s Note: If required, the internal register addresses listed below can be changed by
the reset initialization mode—from base 1800_0000 to base 1900_0000. Non-boot mode, PCl-boot mode,

and Standard-boot mode sequence settings are provided in the Reset group of the RC32334 Pin Descrip-
tions, Table 1.2.

This section does not include the RC32300 CPU core internal registers. For more details on the
RC32300 CPU core registers, see Chapter 2, which describes the registers inside of the CPU core.

BIU Control Registers

The BIU Control registers are special interface registers used to control the bus access and bus error
functions of the interface unit.

79RC32334/332 User Reference Manual 1-21 _ June 4. 2002 1.

RC32334 Device Overview RC32334 Internal Register Map Addresses and Definitions

Notes
Base Reaister Function Offset Effective
Address 9 Address Address
BTA Register 00
18000000 Address Latch Timing Register 04 Base + Offset
Arbitration Register 08
BusError Control Register 10
1800_0000 BusError Address Register 14 Base + Offset
SysID Register 18

Table 1.5 Internal Address Map for BIU Control Registers

Base Address and Base Mask Registers

These registers are used to select the address to be decoded for memory banks 0,1, 2 or 3. The base
address registers determine the starting location of a particular memory chip select, and the mask registers
are used for address bit comparison and chip select activation. Functional descriptions of these registers
are provided in Chapters 9 and 11.

Base Register Function Offset Effective
Address Address Address
Memory Base Address Register for Bank 0 80
Memory Base Mask Register for Bank 0 84
Memory Base Address Register for Bank 1 88
Memory Base Mask Register for Bank 1 8C
DRAM Base Address Register for Bank 0 Co
DRAM Base Mask Register for Bank 0 C4
1800_0000 DRAM Base Address Register for Bank 1 c8 Base + Offset
DRAM Base Mask Register for Bank 1 CcC
DRAM Base Address Register for Bank 2 DO
DRAM Base Mask Register for Bank 2 D4
DRAM Base Address Register for Bank 3 D8
DRAM Base Mask Register for Bank 3 DC

Table 1.6 Internal Address Map for Memory and DRAM Base Address and Base Mask Registers

79RC32334/332 User Reference Manual 1-22 _ June 4. 2002 1.

RC32334 Device Overview

RC32334 Internal Register Map Addresses and Definitions

Notes Memory Control Registers

These registers provide control of the memory resource options, such as type, size, and wait-state
assertion for banks 0 through 5. Register definitions and descriptions are provided in Chapter 10, Memory

Controller.

Base Register Function Offset Effective
Address Address Address

Memory Control Register Bank 0 00

Memory Control Register Bank 1 04

1800_0200 Memory Control Register Bank 2 08 Base + Offset

Memory Control Register Bank 3 0C

Memory Control Register Bank 4 10

Memory Control Register Bank 5 14

Table 1.7 Internal Address Map for Memory Control Registers

DRAM Memory Controller Registers

These registers direct control of the DRAM resources. Resource specific definitions and descriptions are
included in Chapter 11, Synchronous DRAM Controller.

Base Reaister Function Offset Effective
Address 9 Address Address
SDRAM Control Register 00
1800_0300 Base + Offset
Reserved 10

Table 1.8 Internal Address Map for DRAM Memory Controller Registers

Expansion Interrupt Registers

These register groups manage the interrupts. Each grouping has 3 registers: interrupt pending, inter-
rupt mask and interrupt clear. The register function is the same from group to group; however, each inter-
rupt is group specific. Register definitions are provided in Chapter 14, Expansion Interrupt Controller.

79RC32334/332 User Reference Manual

Base Reaister Function Offset Effective
Address 9 Address Address
Expansion Interrupt Pending Register 0 00
18000500 Expansion Interrupt Mask Register 0 04 Base + Offset
Expansion Interrupt Clear Register 0 08
Expansion Interrupt Pending Register 1 10
1800_0500 Expansion Interrupt Mask Register 1 14 Base + Offset
Expansion Interrupt Clear Register 1 18
Expansion Interrupt Pending Register 2 20
18000500 Expansion Interrupt Mask Register 2 24 Base + Offset
Expansion Interrupt Clear Register 2 28

Table 1.9 Internal Address Mapping of Expansion Interrupt Registers (Part 1 of 2)

www NataGhestdleo

RC32334 Device Overview RC32334 Internal Register Map Addresses and Definitions

Notes Base Register Function Offset Effective
Address 9 Address Address

Expansion Interrupt Pending Register 3 30

18000500 Expansion Interrupt Mask Register 3 34 Base + Offset
Expansion Interrupt Clear Register 3 38
Expansion Interrupt Pending Register 4 40

1800_0500 Expansion Interrupt Mask Register 4 44 Base + Offset
Expansion Interrupt Clear Register 4 48
Expansion Interrupt Pending Register 5 50

1800_0500 Expansion Interrupt Mask Register 5 54 Base + Offset
Expansion Interrupt Clear Register 5 58
Expansion Interrupt Pending Register 6 60

18000500 Expansion Interrupt Mask Register 6 64 Base + Offset
Expansion Interrupt Clear Register 6 68
Expansion Interrupt Pending Register 7 70

18000500 Expansion Interrupt Mask Register 7 74 Base + Offset
Expansion Interrupt Clear Register 7 78
Expansion Interrupt Pending Register 8 80

18000500 Expansion Interrupt Mask Register 8 84 Base + Offset
Expansion Interrupt Clear Register 8 88
Expansion Interrupt Pending Register 9 90

1800_0500 Expansion Interrupt Mask Register 9 94 Base + Offset
Expansion Interrupt Clear Register 9 98
Expansion Interrupt Pending Register 10 A0

18000500 Expansion Interrupt Mask Register 10 A4 Base + Offset
Expansion Interrupt Clear Register 10 A8
Expansion Interrupt Pending Register 11 BO

18000500 Expansion Interrupt Mask Register 11 B4 Base + Offset
Expansion Interrupt Clear Register 11 B8
Expansion PCl Interrupt Pending Register 12 Co

1800_0500 Expansion PCI Interrupt Mask Register 12 C4 Base + Offset
Expansion PCI Interrupt Clear Register 12 C8
Expansion Interrupt Pending Register 13 DO

1800_0500 Expansion Interrupt Mask Register 13 D4 Base + Offset
Expansion Interrupt Clear Register 13 D8
Expansion Interrupt Pending Register 14 EO

18000500 Expansion Interrupt Mask Register 14 E4 Base + Offset
Expansion Interrupt Clear Register 14 E8

Table 1.9 Internal Address Mapping of Expansion Interrupt Registers (Part 2 of 2)

79RC32334/332 User Reference Manual 1-24 wove DataShest Al eom

RC32334 Device Overview RC32334 Internal Register Map Addresses and Definitions

Notes Programmable 1/O Registers

These registers allow /O programmability between internal peripheral and general purpose functions.
Register definitions and user operations are provided in Chapter 15, Programmable I/0 (P10) Controller.

Base Register Function Offset Effective

Address Address Address
PIO Data Register 0 00

18000600 PIO Direction Control Register 0 04 Base + Offset

PIO Effect Select Control Register 0 08
PIO New Feature Register 0 0C
1800_0610 PIO Data Register 1 00
PIO Direction Control Register 1 04
PIO Effect Select Control Register 1 08
PIO New Feature Register 1 0C

Table 1.10 Internal Address Mapping of Programmable 1/0 Registers

Timer Controller Registers

These registers provide user programmability between the RC32334’s real-time and time-slice clock
functions. Five dedicated timer functions are also programmed through the separate count, compare and
control registers. Register definitions and functional overview information is provided in Chapter 16, Timer

Controller.
Base Reaister Function Offset Effective
Address 9 Address Address

Timer Control Register 0 (32 bits) 00

18000700 Timer Count Register 0 04 Base + Offset
Timer Compare Register 0 08
Timer Control Register 1 (32-bits) 00

18000710 Timer Count Register 1 04 Base + Offset
Timer Compare Register 1 08
Timer Control Register 2 (32-bits) 00

18000720 Timer Count Register 2 04 Base + Offset
Timer Compare Register 2 08
Timer Control Register 3 for WatchDog (32-bits) 00

18000730 Timer Count Register 3 for WatchDog 04 Base + Offset
Timer Compare Register 3 for WatchDog 08
Timer Control Register 4 for CPU BusTimeOut 00
(BusError) (16-bits)

+

18000740 I er Count Register 4 for CPU BusTimeOut 04 | Base+ Offset

Timer Compare Register 4 for CPU BusTimeOut 08

Table 1.11 Internal Address Mapping of Timer Controller Registers (Part 1 of 2)

79RC32334/332 User Reference Manual 1-25 _ June 4. 2002 1.

RC32334 Device Overview RC32334 Internal Register Map Addresses and Definitions

Notes Base Register Function Offset Effective
Address 9 Address Address
Timer Control Register 5 for IP BusTimeout 00
(BusError) (16-bits)
18000750 Timer Count Register 5 for IP BusTimeout 04 Base + Offset
Timer Compare Register 5 for IP BusTimeout 08
Timer Control Register 6 for DramRefresh (16- 00
bits)
1800_0760 Timer Count Register 6 for DramRefresh 04 Base + Offset
Timer Compare Register 6 for DramRefresh 08
Timer Control Register 7 for WarmReset (8-bits) 00
18000770 Timer Count Register 7 for WarmReset 04 Base + Offset
Timer Compare Register 7 for WarmReset 08

Table 1.11 Internal Address Mapping of Timer Controller Registers (Part 2 of 2)

UART Control Registers

These registers enable UART functionality such as interrupt indication, data flow modes, and data
receive/transmit formats. Programming the PIO controller (see Chapter 15) enables the RC32334’s two
identical 16550 compatible UARTs. UART registers are defined and described in more detail in Chapter 17,
UART Controller.

Base Register Function Offset Effective
Address Address Address
UART 0
Receiver Buffer Register / Transmitter Holding Register, 00
DLAB =0
Interrupt Enable Register, DLAB = 0 04
Baud Divisor Latch, LS, DLAB =1 00
Baud Divisor Latch, MS, DLAB = 1 04
1800_0800 Interrupt Identity Register / Buffer Control Register 08 Base + Offset
Line Control Register 0C
MODEM Control Register 10
Line Status Register 14
MODEM Status Register 18
Scratch Register 1C

Table 1.12 Internal Address Mapping of UART 0 Registers

79RC32334/332 User Reference Manual 1-26 _ June 4. 2002 1.

RC32334 Device Overview RC32334 Internal Register Map Addresses and Definitions

Notes
Base Register Function Offset Effective
Address Address Address
UART 1
Receiver Buffer Register / Transmitter Holding Regis- 00
ter, DLAB =0
Interrupt Enable Register, DLAB = 0 04
Baud Divisor Latch, 8 LSB, DLAB = 1 00
Baud Divisor Latch, 8 MSB, DLAB =1 04
1800_0820 Interrupt Identity Register / Buffer Control Register 08 Base + Offset
Line Control Register 0C
MODEM Control Register 10
Line Status Register 14
MODEM Status Register 18
Scratch Register 1C
Table 1.13 Internal Address Mapping of UART 1 Registers
Note: Table 1.13 does not apply to the RC32332.
Serial Peripheral Interface Registers

These registers enable SPI functionality. For more detailed information, see Chapter 18, “Serial Periph-

eral Interface.”

Base Register Offset Effective
Address Address Address
1800_0900 Serial Peripheral Clock Divisor/Prescalar Register (SPCNT) 00 Base + Offset

Serial Peripheral Control Register (SPCNTL) 04
Serial Peripheral Status Register (SPSR) 08
Serial Peripheral Data I/0 Register (SPDR) 0C
Table 1.14 Internal Address Mapping of SPI Registers
DMA Control Registers
These registers determine channel usage, data transfer modes, and descriptor ownership of the four
general purpose DMA channels. As programmed, each channel can move data between the source and
destination ports, such as system memory, PCI, or I/O devices. Chapter 13 provides detailed programming
information for the DMA registers.
79RC32334/332 User Reference Manual 1-27

www NataGhestdleo

RC32334 Device Overview RC32334 Internal Register Map Addresses and Definitions

Notes
Base Reaister Function Offset Effective
Address 9 Address Address
DMA Channel 0
Ch0 Configuration Register 00
Ch0 Base Descriptor Address Register 04
Ch0 Current Address Register 08
1800_1400 - - Base + Offset
ChO Status/BlockSize Register 10
ChO Source Address Register 14
ChO Destination Address Register 18
Ch0 Next Descriptor Address Register 1C

Table 1.15 Internal Address Mapping of DMA Channel 0 Registers

Base Register Function Offset Effective
Address 9 Address Address

DMA Channel 1

Ch1 ConfigurationRegister 00
Ch1 Base Descriptor Address Register 04
Ch1 Current Address Register 08
1800_1440 - - Base + Offset
Ch1 Status/BlockSize Register 10
Ch1 Source Address Register 14
Ch1 Destination Address Register 18
Ch1 Next Descriptor Address Register 1C

Table 1.16 Internal Address Mapping of DMA Channel 1 Registers

Base Register Function Offset Effective
Address 9 Address Address

DMA Channel 2

Ch2 Configuration Register 00
Ch2 Base Descriptor Address Register 04
Ch2 Current Address Register 08
1800_1900 - - Base + Offset
Ch2 Status/BlockSize Register 10
Ch2 Source Address Register 14
Ch2 Destination Address Register 18
Ch2 Next Descriptor Address Register 1C

Table 1.17 Internal Address Mapping of DMA Channel 2 Registers

79RC32334/332 User Reference Manual 1-28 _ June 4. 2002 1.

RC32334 Device Overview RC32334 Internal Register Map Addresses and Definitions

Notes Base Reaister Function Offset Effective
Address 9 Address Address
DMA Channel 3
Ch3 Configuration Register 00
Ch3 Base Descriptor Address Register 04
Ch3 Current Address Register 08
1800_1940 - - Base + Offset
Ch3 Status/BlockSize Register 10
Ch3 Source Address Register 14
Ch3 Destination Address Register 18
Ch3 Next Descriptor Address Register 1C

Table 1.18 Internal Address Mapping of DMA Channel 3 Registers

PCI Interface Control Registers

These registers configure system functions or modes and provide access to local memory via the PCI
bus. More detailed register definitions and descriptions are provided in Chapter 12, PCl Interface Controller.

Base Register Function Offset Effective
Address Address Address
1800_0500 PCI Controller Interrupt Pending Register 11 B0 Base + Offset
1800_0500 PCI Controller Interrupt Mask Register 11 B4
1800_0500 PCI Controller Interrupt Clear Register 11 B8
1800_0500 CPU to PCI Mailbox Interrupt Pending Register 12 Co
1800_0500 CPU to PCI Mailbox Interrupt Mask Register 12 C4
1800_0500 CPU to PCI Mailbox Interrupt Clear Register 12 C8
1800_0500 PCI to CPU Mailbox Interrupt Pending Register 13 DO
1800_0500 PCl to CPU Mailbox Interrupt Mask Register 13 D4
1800_0500 PCI to CPU Mailbox Interrupt Clear Register 13 D8
1800_2000 New Feature Register 0AO
1800_2000 PCI Target Control Register 0A4
1800_2000 PCI Memory and I/O Space 1 Base Register 0BO
1800_2000 PCI Memory and I/O Space 2 Base Register 0B8
1800_2000 PCI Memory and /O Space 3 Base Register 0Co
1800_2000 PCI Memory and /O Space 4 Base Register 0C8
1800_2000 PCI Arbitration Register 0EO
1800_2000 PCI CPU Space1 Base Register OES8
1800_2000 PCI CPU Space 2 Base Register 0F4
1800_2000 PCI CPU Space 3 Base Register 100

Table 1.19 Internal Address Mapping of PCl Interface Control Registers (Part 1 of 2)

79RC32334/332 User Reference Manual 1-29 _ June 4. 2002 1.

RC32334 Device Overview

Notes

79RC32334/332 User Reference Manual

RC32334 Internal Register Map Addresses and Definitions

Base Register Function Offset Effective
Address Address Address
1800_2000 PCI CPU Space 4 Base Register 10C Base + Offset
1800_2000 PCI Configuration Address Register CF8
1800_2000 PCI Configuration Data Register CFC

Table 1.19 Internal Address Mapping of PCl Interface Control Registers (Part 2 of 2)

e Datasheetdicom

. Chapter2
RC32300 CPU Core

®
Notes Introduction

Targeted to a variety of software intensive embedded applications, the RC32334 is a member of the
Integrated Device Technology, Inc. (IDT) RISController series of Embedded Microprocessors. It is based on
the RC32300 CPU core. The RISCore 32300 CPU core continues IDT's tradition of high-performance
through high-speed pipelines, high-bandwidth caches and bus interface, MIPS application specific architec-
tural extensions.

The RC32334 supports a wide variety of embedded processor-based applications, such as communica-
tions equipment (low-end routers, gateways, switches, cellular base stations) and digital consumer systems
(internet appliances).

Performance Overview

The RC32334 brings RISCore 4000 family performance levels to lower cost systems. High performance
is preserved by retaining large on-chip two-way set-associative caches, a streamlined high-speed pipeline,
high-bandwidth and facilities such as early restart for data cache misses.

An array of development tools as well as integrated in-circuit emulation support facilitates rapid develop-
ment of RC32334-based systems, allowing a wide variety of customers to take advantage of the
processor’s high-performance capabilities while maintaining short time-to-market goals. Also, being
upwardly software compatible with the RISCore 3000 family, the RC32334 will serve in many of the same
applications. The RC32334 also supports applications that require integer digital signal processing (DSP)
functions.

RC32300 CPU Core Features
* High-performance embedded 32-bit RISCore 32300 microprocessor
Based on Enhanced MIPS-II RISC architecture
= Scalar 5-stage pipeline minimizes branch and load delays
* Enhanced MIPS-Il instruction set architecture
= MIPS-IV compatible conditional move instructions
= MIPS-IV superset PREF (prefetch) instruction
= Fast multiplier with atomic multiply-add, multiply-sub
Count leading zero/one instructions
* Large, efficient on-chip caches
Separate 8kB Instruction cache and 2kB Data cache
2-way set associative
Write-back and write-through support on a per page basis
Optional cache locking, with per line resolution, to facilitate deterministic response
Simultaneous instruction and data fetch in each clock cycle
* Flexible RC4000 compatible MMU with 32-page TLB
Variable page size
Enhanced write algorithm support
Variable number of locked entries
= No performance penalty for address translation
* Improved real-time support
Fast interrupt decode
¢ Low-power operation
Active power management: powers down inactive units
* Enhanced JTAG interface for system debug using external, low-cost in-circuit emulator (ICE) equip-
ment
79RC32334/332 User Reference Manual 2-1 W, DataShest 2eom

RC32300 CPU Core RC32300 CPU Overview

* On-chip debug port (compatible with EJTAG standard)

* MIPS architecture ensures applications software compatibility throughout the RISController series
of embedded processors, and availability of a broad range of complementary hardware and soft-
ware products from third parties.

Notes

RC32300 CPU Overview

The RC32300 CPU core has a level of integration designed for high-performance and high bandwidth
computing. Key elements of the CPU core are illustrated in the block diagram provided in Figure 2.1. An
overview on these features follows, with more detailed explanations provided in subsequent chapters.

MMU | RISCore4000 Compatible
System Control
Coprocessor (CP0)

RISCore 32300
Integer CPU Core

8kB I-Cache,
2-set, lockable

2kB D-Cache, 2-set,
lockable, write-back/ write-through

RC32300 CPU Bus Interface Unit
Clock
Generation
Unit I

Figure 2.1 RC32300 CPU Core Block

(e9ep33u] 39]) OVLF Paoueyus

CPU Registers

The RC32300 CPU core includes thirty-two general-purpose 32-bit registers. These registers are used
for scalar integer operations and address calculation.

The register file consists of two read ports and two write ports, and it is fully bypassed to minimize oper-
ation latency in the pipeline.

General Purpose Registers

31 0 Multiply and Divide Registers
r0
31 0
L HI I
r2 31 0
° LO I
[]
[]
[]
Program Counter
r29 31 0
130 PC I
r31

Figure 2.2 RC32300 Registers

Two of the CPU general purpose registers have the following assigned functions:

510 is hardwired to a value of zero and can be used as the target register for any instruction whose
result is to be discarded. r0 can also be used as a source when a zero value is required.

79RC32334/332 User Reference Manual 2-2 wove DataShest Al eom

RC32300 CPU Core RC32300 CPU Overview

Notes U 131 s used as an implicit return destination address register by the JAL and BAL series of instruc-
tions.
Also, two multiply/divide registers (HI/LO) store the product of integer multiply operations or the quotient
(in LO) and remainder (in HI) of integer divide operations. The RISCore 32300 CPU core does not have a
Program Status Word (PSW) register, so the function traditionally covered by PSW is handled by the Cause
and Status registers in the System Control Coprocessor (CPO). CPO also has a number of special purpose
registers that are used in conjunction with the memory management system and during exception
processing.
The RISCore 32300 implements the Enhanced MIPS-Il instruction set architecture (ISA) whose features
include:
Y PREF operation, with various hint subfields
D' Conditional move instructions
5" MAD, MUL and MSUB instructions incorporated in the integer multiply units, used to perform multi-
ply accumulate and multiply subtract operations
5 Count Leading Ones (CLO) and Count Leading Zeros (CLZ) instructions.
These features come together to make the controller well suited to applications requiring the use of
some DSP algorithms.
Configuration
During hardware reset, the RC32300’s byte ordering is configurable into either a big-endian or litle-
endian convention. When configured as a big-endian system, byte 0 is always the most significant (left-
most) byte in a word (see Figure 2.3). However, when configured as a little-endian system, byte 0 is always
the least significant (rightmost) byte in a word (see Figure 2.4).
Higher
Address Big-Endian Byte Ordering Word
or
31 24 | 23 16 | 15 Address
8 9 8
4 5 4
0 1 0
Lower * Most significant byte (MSB) is at lowest address
Address ** Word is addressed by byte address of MSB
Figure 2.3 Big-Endian Byte Ordering Convention
Higher
Address Little-Endian Byte Ordering Word
or
31 2% [16 | 15 Address
B A 8
7 6 4
3 2 0
kgc\gvreerss * Least significant byte (LSB) is at lowest address
**Word is addressed by byte address of LSB
Figure 2.4 Little-Endian Byte Ordering Convention
79RC32334/332 User Reference Manual 2-3

www NataGhestdleo

RC32300 CPU Core CPO Considerations

Notes CPO Considerations

CPO is responsible for address translation as well as cache attribute and exception management, and in
the MIPS architecture, CP0 functions are allowed to vary by implementation. The RC32334 implements an
RISCore 4000 family compatible CP0. Specific details on the CPO registers implemented by the RC32300
are provided in Chapter 6, CPU Exception Processing.

Memory Management Unit (MMU)

The RC32334’s MMU is modeled after the MMU found in the RISCore 4000 family and includes the
Translation Lookaside Buffer (TLB). This MMU offers the following advantages, relative to the traditional
RISCore 3000 family MMU:

5 Variable page size

U Enhanced Write Algorithm support

5 Mapping of a larger portion of the virtual address space
5 Variable number of locked entries

On-chip Instruction and Data Caches

The RC32300 CPU core incorporates separate instruction (I-cache) and data caches (D-cache) that can
be accessed in a single processor cycle. Each cache has its own 32-bit data path and can be accessed in
the same pipeline clock cycle. The RC32300 CPU core supports a cache-locking feature, which is imple-
mented on a “per-line basis,” enabling the system designer to maximize the system’s cache efficiency.

Power Reduction Mode

The RISCore 32300 is a static design and supports a WAIT instruction that is designed to signal the rest
of the chip that execution and clocking should be halted, reducing system power consumption during idle
periods.

Standby Mode Operation

Executing the WAIT instruction enables interrupts and enters Standby Mode. When the WAIT instruction
finishes the W pipe-stage, if the bus is currently idle, the internal clocks will shut down, thus freezing the
pipeline. The PLL, internal timer, and some of the input pins (cpu_nmi_n, cpu_int_n[5:4], [2:0],
cpu_coldreset_n) will continue to run. If the internal IP bus is not idle when the WAIT instruction finishes the
W pipe-stage, the WAIT is treated as a NOP. Once the CPU enters Standby Mode, any interrupt, including
the internally generated timer interrupt, will cause the CPU to exit Standby Mode.

79RC32334/332 User Reference Manual 2-4 _ June 4. 2002 1.

CPU Instruction Set
Overview

®

Introduction

oper’s Guide, Version 1.

in Figure 3.1, there are t

5 Jump (J-type)

addressing modes.

0, December 1998.

CPU Instruction Formats
Each CPU instruction consists of a single 32-bit opcode, aligned on a word (4-byte) boundary. As shown

hree CPU instruction formats:

D Immediate (I-type)

D' Register (R-type)

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architec-
ture: Immediate, Jump, and Register. For descriptions of the new instruction sets implemented in this
device, refer to Appendix A, RC32300 CPU Core Enhancements to MIPS Il ISA, in this manual. For more
details on a specific CPU core instruction, refer to the IDT MIPS Microprocessor Family Software Devel-

Limiting instruction format types to three simplifies instruction decoding (thus higher frequency opera-
tions) and allows the compiler to synthesize more complicated (and less frequently used) operations and

I-Type (Immediate)
31 26 25 21 20 16 15 0
op rs rt immediate
J-Type (Jump)
31 26 25 0
op target
R-Type (Register)
31 26 25 21 20 16 15 11 10 6 5 0
op rs rt rd sa | funct
Key to Figure:
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address displacement
target 26-bit jump target address

79RC32334/332 User Reference Manual

Figure 3.1 CPU Instruction Formats

L Jiiae 42002

CPU Instruction Set Overview Load and Store Instructions (I-type)

Notes

For all MIPS processors, system control is implemented as Coprocessor 0 (CP0), the System Control
Coprocessor. In the MIPS architecture, coprocessor instructions are implementation dependent. For
detailed descriptions of individual Coprocessor 0 instructions, refer to the IDT MIPS Microprocessor Family
Software Developer’s Guide.

Load and Store Instructions (I-type)

Load and store are immediate (I-type) instructions that move data between memory and the general
registers. The only addressing mode that load and store instructions directly support is base register plus
16-bit signed immediate offset.

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is
called a delayed load instruction. The instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the RC32334 processor, the instruction immediately following a load instruction can request the
contents of the loaded register; however, in such cases, hardware interlocks may insert additional real
cycles. Consequently, scheduling load delay slots can be desirable, both for performance and RC3000
processor family (e.g., R3051) compatibility. However, the scheduling of load delay slots is not absolutely
required.

Defining Access Types

Access type indicates the size of an RC32334 processor data item to be loaded or stored, set by the
load or store instruction opcode. Access types are defined in the IDT MIPS Microprocessor Family Software
Developer’s Guide.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte
in the addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a
little-endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within
the addressed doubleword, which is shown in Table 3.1. Only the combinations shown in this table are
permitted. Other combinations will cause address error exceptions.

Low Order Bytes Accessed
Address Bits
Access Type Big Endian Little Endian

Meemonie |2 | 1] 0
Word (3) 0 0 0
Triplebyte (2) 0 0 0
0 0 1
Halfword (1) 0 0 0
0 1 0
Byte (0) 0 0 0
0 0 1
0 1 0
0 1 1

79RC32334/332 User Reference Manual

CPU Instruction Set Overview Computational Instructions (R-type and I-type)

Notes Computational Instructions (R-type and I-type)

Computational instructions can be in either the register (R-type) or immediate (I-type) formats. In the R-
type format, both operands are registers; in the I-type format, one operand is a 16-bit immediate.

Computational instructions perform arithmetic, logical, shift, multiply, and divide operations on register
values and fit in the following four categories:
5 ALU Immediate instructions
U Three-Operand Register-Type instructions
D Shift instructions
5 Multiply and divide instructions

Operations with 32-bit Operands

Operands to 32-bit operand opcodes must be in sign-extended form. 32-bit operand opcodes include all
non-doubleword operations, such as: ADD, ADDU, SUB, SUBU, ADDI, SLL, SRL, SRA, SLLV, etc. The
result of operations that use incorrect sign-extended 32-bit values is unpredictable.

Cycle Timing for Multiply and Divide Instructions

If necessary, RC32334 hardware interlocks to allow complete execution of the multiply and divide
instructions. For example, MFHI and MFLO instructions are interlocked so that any attempt to read or
execute them prior to the completion of previously issued multiply or divide instructions will be delayed.

Table 3.2 lists the number of processor cycles (PCycles) required to resolve an interlock or stall between
various multiply or divide instructions and a subsequent MFHI or MFLO instruction. Specific details on the
MFHI or MFLO instructions are provided in the IDT MIPS Microprocessor Family Software Developer’s

Guide.
Opcode Operand Size | Latency' | Repeat? stall®

MULT/U, MAD/U, | 16-bit 3 2 0
MSUB/U 32-bit 4 3 0

16-bit 3 2 1
MUL 32-bit 4 3 2
DIV, DIVU any 36 36 0
CLz 32-bit 1 1 0
CLO 32-bit 1 1 0

Table 3.2 Performance Levels of MUL/DIV and New Instructions
g Latency refers to the number of cycles before a result is available.

2 Repeat refers to the number of cycles before an operation can be re- issued.
3 Stall refers to the number of cycles that the CPU delays the pipeline.

Jump & Branch Instructions (J-type and R-type)

Jump and Branch instructions change a program’s control flow. All jump and branch instructions occur
with a delay of one instruction: The instruction immediately following the jump or branch (known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instruc-
tions, both of which are J-type instructions. In the J-type format, the 26-bit target address shifts left 2 bits
and combines with the high-order 4 bits of the current program counter to form an absolute address.

79RC32334/332 User Reference Manual 3-3 _ June 4. 2002 1.

CPU Instruction Set Overview Special Instructions (R-type)

Notes Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or
Jump and Link Register instructions (both of which are R-type instructions that take the 32-bit or 64-bit byte
address contained in one of the general purpose registers).

Overview of Branch Instructions

A branch instruction is a jump to a specified memory location and has an architectural delay of one
instruction. All branch instruction target addresses are computed by adding the address of the instruction in
the delay slot to the 16-bit offset (shifts left 2 bits and is sign-extended to 32 bits).

When a branch is taken, the instruction immediately following the branch instruction, in the branch delay
slot, is executed before the branch to the target instruction takes place. There are two versions of Condi-
tional branches, and each one treats the instruction in the delay slot differently. The “branch” instructions
will execute the instruction in the delay slot, but the “branch likely” instructions do not. If a conditional
branch likely is not taken, the instruction in the delay slot is nullified. For regular conditional branches, the
delay slot is always executed.

Special Instructions (R-type)

Special instructions allow the software to initiate traps. Trap instructions cause exceptions conditionally
based upon the result of a comparison. These special instructions are always R-type. For more information
about special instructions, refer to the individual instruction as described in the IDT MIPS Microprocessor
Family Software Developer’s Guide.

Exception Instructions

Exception instructions are extensions to the MIPS ISA and cause an exception that will transfer control
to a software exception handler in the kernel. System call and breakpoint instructions cause exceptions
unconditionally. For more information about specific exception instructions, refer to the individual instruction
as described in the IDT MIPS Microprocessor Family Software Developer’s Guide.

Coprocessor Instructions (I-type)

Coprocessor instructions perform operations in their respective coprocessors. Coprocessor loads and
stores are |-type, and coprocessor computational instructions have coprocessor-dependent formats.

CPO instructions perform operations specifically on the System Control Coprocessor registers to manip-
ulate the memory management and exception handling facilities of the processor.

Summary of CPU Supported Instruction Sets

The tables that follow list instructions supported by the RC32300 CPU core. Load and Store Instructions
are listed in Table 3.3, Arithmetic Instructions (ALU Immediate) in Table 3.4, Arithmetic Instructions (3-
Operand, R-Type) in Table 3.5, Multiply, Divide and DSP Instructions are in Table 3.6, Jump and Branch
Instructions are in Table 3.7, Shift Instructions are in Table 3.8, Coprocessor Instructions are in Table 3.9,
Special Instructions are listed in Table 3.10, Exception and CPO Instructions are listed in Table 3.11 and

Table 3.12.
Opcode Description MIPS ISA Level
LB Load Byte I
LBU Load Byte Unsigned I
LH Load Halfword I
LHU Load Halfword Unsigned I
LW Load Word I
Table 3.3 Load and Store Instructions (Part 1 of 2)
79RC32334/332 User Reference Manual 3-4

www NataGhestdleo

CPU Instruction Set Overview Summary of CPU Supported Instruction Sets

Notes Opcode Description MIPS ISA Level
LwL Load Word Left I
LWR Load Word Right I
SB Store Byte I
SH Store Halfword |
SW Store Word |
SWL Store Word Left I
SWR Store Word Right |
LL Load Linked I
SC Store Conditional Il
SYNC Sync I
PREF Prefetch v

Table 3.3 Load and Store Instructions (Part 2 of 2)

Opcode Description MIPS ISA Level
ADDI Add Immediate |
ADDI Add Immediate Unsigned I
SLTI Set on Less Than Immediate I
SLTIU Set on Less Than Immediate Unsigned I
ANDI AND Immediate |
ORI OR Immediate [
XORI Exclusive OR Immediate |
LUI Load Upper Immediate I

Table 3.4 Arithmetic Instructions (ALU Immediate)

Opcode Description MIPS ISA Level
ADD Add I
ADDU Add Unsigned I
SUB Subtract I
SUBU Subtract Unsigned I
SLT Set on Less Than I
SLTU Set on Less Than Unsigned I
AND AND I
OR OR I
XOR Exclusive OR I
NOR NOR I
MOVN Move Conditional on Not Zero 1%
MOVZ Move Conditional on Zero v

Table 3.5 Arithmetic Instructions (3-Operand, R-Type)

79RC32334/332 User Reference Manual 3-5 _ June 4. 2002 1.

CPU Instruction Set Overview Summary of CPU Supported Instruction Sets

Notes Opcode Description MIPS ISA Level

MULT Multiply I

MULTU Multiply Unsigned I

DIV Divide I

DIVU Divide Unsigned I

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I

MUL Multiply with destination register writeback | RC32364, RC4650, RISCore 32300, RC64574/575
MAD Multiply Add RC32364, RC4650, RISCore 32300, RC64574/575
MADU Multiply Add Unsigned RC32364, RC4650, RISCore 32300, RC64574/575
MSuB Multiply Subtract RISCore 32300, RC32364, RC64574/575

MSUBU Multiply Subtract Unsigned RISCore 32300, RC32364, RC64574/575

CLZ Count Leading Zeros RISCore 32300, RC32364, RC64574/575

CLO Count Leading Ones RISCore 32300, RC32364, RC64574/575

Table 3.6 Multiply, Divide and DSP Instructions

Opcode Description MIPS ISA Level
J Jump I
JAL Jump And Link I
JR Jump Register I
JALR Jump And Link Register I
BEQ Branch on Equal I
BNE Branch on Not Equal I
BLEZ Branch on Less Than or Equal to Zero I
BGTZ Branch on Greater Than Zero I
BLTZ Branch on Less Than Zero I
BGEZ Branch on Greater Than or Equal to Zero I
BLTZAL Branch on Less Than Zero and Link I

BGEZAL Branch on Greater Than or Equal to Zero and Link I

BCzT Branch on Coprocessor z True I
BCzF Branch on Coprocessor z False I
BEQL Branch on Equal Likely I
BNEL Branch on Not Equal Likely I
BLEZL Branch on Less Than or Equal to Zero Likely I
BGTZL Branch on Greater Than Zero Likely I
BLTZL Branch on Less Than Zero Likely I

Table 3.7 Jump and Branch Instructions (Part 1 of 2)

79RC32334/332 User Reference Manual 3-6 _ June 4. 2002 1.

CPU Instruction Set Overview Summary of CPU Supported Instruction Sets

Notes Opcode Description MIPS ISA Level

BGEZL Branch on Greater Than or Equal to Zero Likely I
BLTZALL Branch on Less Than Zero And Link Likely I
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely I

BCzTL Branch on Coprocessor z True Likely I

BCzFL Branch on Coprocessor z False Likely I

Table 3.7 Jump and Branch Instructions (Part 2 of 2)

Opcode Description MIPS ISA Level
SLL Shift Left Logical I
SRL Shift Right Logical I
SRA Shift Right Arithmetic I
SLLV Shift Left Logical Variable |
SRLV Shift Right Logical Variable I
SRAV Shift Right Arithmetic Variable I

Table 3.8 Shift Instructions

Opcode Description MIPS ISA Level
LWCz Load Word to Coprocessor z |
SWCz Store Word from Coprocessor z I
MTCz Move To Coprocessor z |
MFCz Move From Coprocessor z I
CTCz Move Control To Coprocessor z I
CFCz Move Control From Coprocessor z I
COPz Coprocessor Operation z I

Table 3.9 Coprocessor Instructions

Opcode Description MIPS ISA Level

SYSCALL System Call I

BREAK Break I
DRET Debug Exception Return RC32364, RISCore 32300
SDBBP Software Debug Breakpoint RC32364, RISCore 32300

Table 3.10 Special Instructions

79RC32334/332 User Reference Manual 3-7 _ June 4. 2002 1.

CPU Instruction Set Overview

Summary of CPU Supported Instruction Sets

Notes Opcode Description MIPS ISA Level
TGE Trap if Greater Than or Equal I
TGEU Trap if Greater Than or Equal Unsigned I
TLT Trap if Less Than I
TLTU Trap if Less Than Unsigned Il
TEQ Trap if Equal I
TNE Trap if Not Equal I
TGEI Trap if Greater Than or Equal Immediate I
TGEIU Trap if Greater Than or Equal Immediate Unsigned Il
TLTI Trap if Less Than Immediate I
TLTIU Trap if Less Than Immediate Unsigned I
TEQI Trap if Equal Immediate I
TNEI Trap if Not Equal Immediate I
Table 3.11 Exception Instructions
Opcode Description MIPS ISA Level
MTCO Move To CPO I
MFCO Move From CP0O |
TLBR Read Indexed TLB Entry I
TLBWI Write Indexed TLB Entry I
TLBWR Write Random TLB Entry I
TLBP Probe TLB for Matching Entry I
CACHE Cache Operation RISCore 4000, RISCore 32300
ERET Exception Return RISCore 4000, RISCore 32300
WAIT Enter Standby mode RISCore 4000, RISCore 32300
Table 3.12 CPO Instructions
79RC32334/332 User Reference Manual 3-8

www NataGhestdleo

CPU Pipeline Architecture

®

Introduction

The RISCore 32300 uses a 5-stage instruction pipeline, similar to the RISCore 3000 and RISCore 4000
families. The simplicity of this pipeline enables the processor to achieve high frequency while minimizing
device complexity. The RISCore 32300 core supports limited out-of-order execution.

Notes

The RISCore 32300 pipeline also performs virtual-to-physical address translation in parallel with cache
access. Additional enhancements such as prefetch operations and two new instructions allow the RC32334
to be a lower cost and lower power device than super-scalar or super-pipelined processors.

The 5-stage instruction pipeline is illustrated in Figure 4.1.

lo ‘1I |2| ‘1R ‘ZR ‘1A |2A ‘1D ‘2D 1w 2w
I ‘1| ‘2| ‘1R|2R‘1A‘2A 1D 2D 1W‘2W‘
l, ‘1I |2| ‘1R‘2R|1A|2A|1D‘2D‘1W
Iy ‘1| ‘2| |1R|2R|1A‘2A‘1D
Iy |1| |2| |1R‘2R‘1A
‘ one cycle ‘
-
Key to Figure:
1R Instruction cache access 2R Instruction decode
11-21 Instruction virtual to physical address translation 1A-2A Integer add, logical, shift
2A-2D Data cache access and load align 1A Data virtual address calculation
1D-2D Data virtual to physical address translation 2A Store align
2R Register file read 1A Branch decision
2R Bypass calculation 2W Register file write

Figure 4.1 Instruction Pipeline Stages

CPU Pipeline Stages
This section describes each of the phases of the five pipeline stages. Each stage has 2 phases:
511 - Instruction Fetch, Phase one
D' 21 - Instruction Fetch, Phase two
U 1R- Register Fetch, Phase one

79RC32334/332 User Reference Manual 4-1 o Patashe

CPU Pipeline Architecture CPU Pipeline Stages

2R - Register Fetch, Phase two
1A - Execution, Phase one

2A - Execution, Phase two

1D - Data Fetch, Phase one
2D - Data Fetch, Phase two
1W - Write Back, Phase one
2W - Write Back, Phase two

Notes

o o oo o o 4a

11 - Instruction Fetch, Phase One
The instruction address translation begins during the 11 phase.

2| - Instruction Fetch, Phase Two

During the 2| phase, the instruction cache fetch begins and the instruction address translation
continues.

1R - Register Fetch, Phase One
During the 1R phase, the following occurs:
' The instruction cache fetch finishes.

U The instruction cache tag is checked against the physical page frame number obtained from the
address translation.

2R - Register Fetch, Phase Two
During the 2R phase, the following occurs:
' The instruction decoder decodes the instruction.
5 Any required operands are fetched from the register file.
' Make a decision to either issue or slip (for an interlock condition).
' For a branch, the branch address is calculated.

1A - Execution, Phase One
During the 1A phase, one of the following occurs:
5 Any result from the A or D stages are bypassed.
U The arithmetic logic unit (ALU) starts the integer arithmetic, logical or shift operation.
U The ALU calculates the data virtual address for load and store instructions.
U The ALU determines whether the branch condition is true.

2A - Execution, Phase Two
During the 2A phase, one of the following occurs:
U The integer arithmetic, logical or shift operation will complete.
' A data cache access will start.
D' Store data is shifted to the specified byte position(s).
' The data virtual to physical address translation will start.

1D - Data Fetch, Phase One
During the 1D phase, one of the following occurs:
"' The data cache access will continue.
U The data address translation completes.

79RC32334/332 User Reference Manual 4-2 _June 4. 2002 W

CPU Pipeline Architecture Branch Delay

Notes 2D - Data Fetch, Phase Two
During the 2D phase, the data cache access will finish and the data is then shifted down and extended.
The data cache tag is checked against the physical address for any data cache access.
1W - Write Back, Phase One
The processor uses this phase internally to resolve all exceptions in preparation for the register file
write.
2W - Write Back, Phase Two
For register-to-register and load instructions, the result is written back to the register file during the 2W
stage. Branch instructions perform no operation during this stage.
Figure 4.2 shows the activities occurring during each ALU pipeline stage, for load, store, and branch
instructions.
stage | 1 | a2 [R | R] a] oa] o] 2| w]| aw |
[1o ICA
IFet%h | ™ Imc
an
Decode RF
IDEC
ALU EX1 EX2 [we |
Load/Store pvA | bcap | bcaa | pcla
DTM DTC [ws
SA DCW
Branch BAC
Key to Figure:
ICD Instruction cache address decode ICA Instruction cache array access
IT™M Instruction translation match RF Register operand fetch
ITC Instruction tag check EX1 Operation stage 1
IDEC |Instruction decode WB Write back to register file
EX2 Operation stage 2 DCAD Data cache address decode
DVA Data virtual address calculation DCLA Data cache load align
DCAA Data cache array access DTM Data translation match
DTC Data tag check SA Store align
DCW Data cache write BAC Branch address calculation
Figure 4.2 Pipeline Activities
Branch Delay
The CPU pipeline has a branch delay of one cycle and a load delay of one cycle. The one-cycle branch
delay is a result of the branch decision logic operating during the 1A pipeline phase of the branch instruc-
tion. This allows the branch target address calculated in the previous phase to be used for the instruction
access in the following “11” phase.
79RC32334/332 User Reference Manual 4-3

e DataSheetdiieom

CPU Pipeline Architecture Load Delay

Notes The pipeline will begin the fetch of the branch path as well as the fall-through path in the cycle following
the delay slot. After the branch decision is made, the processor will continue with the fetch of either the
branch path (for a taken branch) or the fall-through path (for the non-taken branch).

Figure 4.3 illustrates the branch delay.

One Cycle One Cycle One Cycle One Cycle One Cycle

1 2l 1R 2R 1A 2A 1D 2D w 2w
*

1 2l 1R 2R 1A 2A 1D 2D 1w 2w
**

1l 2l 1R 2R 1A 2A 1D 2D 1w 2W

1 2l 1R 2R 1A 2A 1D 2D 1w 2W

Branch
Delay *Branch and fall-through address calculated
**Address selection made
Figure 4.3 CPU Pipeline Branch Delay
Load Delay

The completion of a load at the end of the 2D pipeline phase produces an operand that is available for
the 1A pipeline phase of the instruction following the load delay slot.

Figure 4.4 shows the load delay of one pipeline cycle.

| One Cycle | One Cycle | One Cycle | One Cycle | One Cycle |

|1| |2| |1R|2R|1A|2A|1D|2D\|1W|2W|

|1I|2I|1R|2R|1A|2A 1D|2D|1W|2W|
\
|1||2||1R|2R 1A|2A|1D|2D|1W|2W|

Load Delay

Figure 4.4 CPU Pipeline Load Delay

Interlock and Exception Handling

When cache misses or exceptions occur or when data dependencies are detected, smooth pipeline flow
is interrupted. These interruptions are either handled through hardware or software methods. Software-
managed interruptions are known as exceptions; hardware-handled interruptions—such as cache misses—
are referred to as interlocks and occur as either stalls or slips.

Resolving a stall requires halting the pipeline; slips require the back end of the pipeline to advance while
the front end of the pipeline is held static.

During all active instructions, exception and interlock conditions are checked for at each pipeline cycle.
Because each exception or interlock condition corresponds to a particular pipeline stage, a condition can be
traced back to the particular instruction in the exception/interlock stage. For instance, a Reserved Instruc-
tion (RI) exception is raised in the execution (A) stage.

79RC32334/332 User Reference Manual 4-4 _ June 4. 2002 1.

CPU Pipeline Architecture Interlock and Exception Handling

Exception Conditions

When an exception condition occurs, the relevant instruction and all instructions that follow are
cancelled. Accordingly, any stall conditions—and any later exception conditions that may have referenced
this instruction—are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

Notes

When an exceptional condition is detected for an instruction, the RC32334 kills it and all instructions that
follow. When this instruction reaches the W stage, the exception flag causes it to write various CPO regis-
ters with the exception state, change the current PC to the appropriate exception vector address, and clear
the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subse-
quent instructions from completing. Thus, the value in the EPC is sufficient to restart execution. It also
ensures that exceptions are taken in the order of execution; an instruction taking an exception may itself be
killed by an instruction further down the pipeline that takes an exception in a later cycle.

Figure 4.5 shows the exception detection procedure (for example, a reserved instruction exception).

Exc‘“ |2I ‘1R‘2R 1A|2A|1D|2D 1W‘2W|

y ‘1|‘2| \&|2R|1A|2AH1D‘2D|1W|2W|

2 W\|2l|1R|2R‘1A‘2A|1D|2D|1w|2w‘

13 Kill

W ol [[[[oa [0 [0 [o]

Exception Vector 1l ‘ 2 ‘ 1R | R | 1A ‘ 2A ‘ 1D ‘ 2D ‘ 0\ ‘2W |

Exception Vector Address

Figure 4.5 Exception Detection

Stall Conditions

Stalls are used to stop the pipeline for conditions detected after the R pipe-stage. When a stall occurs,
the processor will resolve the condition and then the pipeline will continue. Figure 4.6 illustrates a data

cache miss stall.
[o [w |w [w [w |

[[R [A w
Lt [r[afo [o fe[o [0 o [w]
Lo [rR[AaTAJefaafalo [w]
[+ [R[R J[R[R R [A][O [wW]

@ Detect Cache Miss
@ Start moving dirty cache line data to write buffer

Get first doubleword into cache and restart pipeline

Load remainder of cache line into cache

Figure 4.6 Data Cache Miss

79RC32334/332 User Reference Manual 4-5 _ June 4. 2002 1.

CPU Pipeline Architecture Interlock and Exception Handling

As shown, the data cache miss is detected in the D pipe stage. If the cache line to be replaced is dirty—

Notes
the W bit is set—the data is moved to the internal write buffer in the next cycle.

The first doubleword of data is returned to the cache in 3 and the pipeline will then restart. The
remainder of the cache line is returned in the subsequent cycles. The data to be written back will be
returned to memory some time after the entire new cache line is returned.

Slip Conditions

During the 2R and 1A pipe-stages, internal logic will determine whether it is possible to start the current
instruction in this cycle. If all of the source operands are available (either from the register file or via the
internal bypass logic) and all the hardware resources necessary to complete the instruction will be available
at the necessary time(s), then the instruction “issues”; otherwise, the instruction will “slip”.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline
(stages D and W) will advance normally during slips in an attempt to resolve the conflict. “NOPS” will be
inserted into the bubble in the pipeline. Instructions killed by branch likely instructions, ERET or exceptions
will not cause slips. Figure 4.7 shows an instruction cache miss.

CYCLE Issue Issue Slip Slip Slip Slip Issue Issue Issue

g
©
2
2 [A]o [w]
2
s [R[Alo [w]
o
NP | I [R[A[D [W]
*NOP [T JR [A]D] W]
*NOP | T R A[D [W]
*NOP | T [R]A[D [W]
| |§>I IRIRI%I%IDIWI
| R [D [w]

@ Detect Cache Miss

@ Get entire cache line into cache
@ Continue pipeline

*NOP - Inserted NOP instructions

Figure 4.7 Instruction Cache Miss

As shown in Figure 4.7, instruction cache misses are detected in the R stage and the pipeline slips in its
A stage. There can never be a write-back required for an instruction cache miss since dirty data can not
existin the | cache.

Writes are not allowed to the |-cache. Note that early restart is not employed for instruction cache
misses. The requested cache line will be loaded into the cache in its entirety and, after that, the pipeline will
restart.

79RC32334/332 User Reference Manual 4-6 _ June 4. 2002 1.

Memory Management

®
Notes Introduction

The Memory Management Unit (MMU) of the RC32334 is modeled after the MMU found in the R4000
families and generates typical translation lookaside buffer (TLB) exceptions such as TLB refill, TLB invalid,
and TLB modified to the Integer Unit and offers the following advantages (relative to the traditional 32-bit
R3000 style MMU):

5 Variable page size

U Enhanced Write Algorithm support

d Mapping of a larger portion of the virtual address space

5 Variable number of locked entries
Virtual-to-Physical Address Translation

Figure 5.1 illustrates the virtual-to-physical address translation of a 32-bit virtual address. The top
section of the drawing shows a virtual address with a 12-bit—or 4kbyte—page size labelled Offset. The
remaining 20 bits of the address represent the virtual page number (VPN) and index the 1M-entry page
table.

The lower section of the drawing shows a virtual address with a 24-bit—or 16Mbyte—page size labelled
Offset. The remaining 8 bits of the address represent the VPN and index a 256-entry memory-resident page
table.

Virtual Address with 1M (22°) 4-Kbyte pages
39 3231 20 28 20 bits =1M 12 11 0
8 — 20 12

N J
Virtual-to-physical- Offset passed
translation in TLB unchanged to

Bits 31, 30 and 29 of the physical memory
virtual address select user, super- 32-bit Physical Address
visor, or kernel address spaces. | 31 0
PFN | Offset I
Virtual-to- Offset passed
physical _transla- unchanged to physical
LB tion in TLB
memory.
- I
39 3231 2928 24 23 0
ASID VPN Offset
8 24
8 bits = 256 pages
Virtual Address with 256 (2°)16-Mbyte pages
Figure 5.1 Overview of a 32-bit Virtual Address Translation
79RC32334/332 User Reference Manual 5-1 wiw . Patashent denm

Memory Management TLB Management

Notes TLB Management

For fast virtual-to-physical address decoding, the RC32334 TLB is a fully associative on-chip memory
device that contains 16 entries, to provide mapping to 16 odd and even page pairs of sizes varying from 4
KBytes to 16 MBytes. Each entry logically occupies a portion of a 128-bit frame work. Each field of a TLB
entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers.

The RC32334’s TLB also contains information to control the cache coherency protocol for each page.
Specifically, each page has attribute bits to determine whether the coherency algorithm is uncached,
noncoherent write-back, or non-coherent write-through no write-allocate.

127 121 120 109 108 %
[MCAT MASK | MCAT |
7 12 13
95 777675 7271 64
| VPN2] - | AsD |
19 1 4 8

63 5857 3837 3534 33 32

[- | PFN | ¢ [p]V]-]
6 20 31 1

31 2625 65 32 1 0

= PFN | ¢ [p]v]-]
6 20 31 1 1

Figure 5.2 TLB Register Format

Field Description
MASK Page comparison mask
VPN2 Virtual Page Number divided by two (maps to two pages)
ASID Address Space ID
G Global. If this bit set, then ignore the ASID
PFN Page Frame Number. Upper bit of physical address
C Specifies the Cache Algorithm to be used, as shown below:
CValue Page Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Cacheable, noncoherent, write-through, write allocate
2 Uncached
3 Cacheable, noncoherent, write-back
4:7 Reserved
D Dirty bit. This bit serves as a “write protect” bit
Vv Valid bit. It set, TLB is valid. Otherwise a TLB Miss occurs
MCAT Memory Controller Attributes. Reserved in RC32334 and must be written as ‘0.

Table 5.1 TLB Register Field Descriptions

79RC32334/332 User Reference Manual 5-2 _ June 4. 2002 1.

Memory Management MMU Register Descriptions

MMU Register Descriptions

The CPO registers required to implement the RC32334 memory management unit are listed in Table
5.2. For each register, format illustrations and complete descriptions follow the table.

Notes

Number | Register Description

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB array (read only)

2 EntryLo0 Low half of TLB entry for even virtual page (VPN)

3 EntryLo1 Low half of TLB entry for odd virtual page (VPN)

4 Context Pointer to kernel virtual page table entry (PTE)

5 PageMask TLB Page Mask to support variable page size.

6 Wired Number or wired TLB entries

8 BadVaddr Bad Virtual Address

10 Entry Hi Holds the high-order bits of a TLB entry for TLB read and write oper-
ations and is accessed by the TLB Probe, TLB Write Random, TLB
Write Indexed, and TLB Read Indexed instructions.

Table 5.2 RC32334 MMU Registers

Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an entry in the TLB. The
high-order bit of the register shows the success or failure of a TLB Probe (TLBP) instruction. The Index
register also specifies the TLB entry affected by TLB Read (TLBR) or TLB Write Index (TLBWI) instructions.

Note that the RC32334 contains a 16 entry TLB, while the Index register contains the capability to point
to 64 TLB entries. In programming, the value written to the Index register must be in the valid range of the
number of entries of the current device.

RC32334 implements additional bits in anticipation of derivative products. Figure 5.3 shows the format
of the Index register; Table 5.3, which follows the figure, describes the contents of the Index register fields.

31 30 6 5 0
P 0 Index I
1 25 6

Figure 5.3 Index Register Format

Field Description
P Probe failure. Set to 1 when the previous TLBProbe (TLBP) instruction was unsuccessful.
Index Index to the TLB entry affected by the TLBRead and TLBWrite instructions
0 Reserved. Must be written as zeroes, returns zeroes when read.

Table 5.3 Index Register Field Descriptions

79RC32334/332 User Reference Manual 5-3 _ June 4. 2002 1.

Memory Management MMU Register Descriptions

Notes Random Register (1)

The Random register is a read-only register of which 4 bits index an entry in the TLB. This register
decrements as each instruction executes, and its values range between an upper and a lower bound, as
follows:

5 A lower bound is set by the number of TLB entries reserved for exclusive use by the operating sys-
tem (the contents of the Wired register).

5 An upper bound is set by the total number of TLB entries. Thus the upper bound is 15 (The TLB
entries are numbered from 0 to 15).

Note: The RC32334 implements this register differently from the 64-bit family of RISControllers.
The RC4000, RC5000, and RC645xx CPUs count both valid and invalid instructions. However,
the RC32334 counts only valid instructions.

The Random register specifies the entry in the TLB that is affected by the TLB Write Random instruc-
tion. The register does not need to be read for this purpose (it is implicit in the instruction itself); however,
the register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon system reset. This
register is also set to the upper bound when the Wired register is written. Figure 5.4 shows the format of the
Random register. Table 5.4 describes the contents of the Random register fields.

31 43 0

0 Random

28 4

Figure 5.4 Random Register Format

Field Description

Random TLB random index

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.4 Random Register Field Descriptions

EntryLoO (2), and EntryLo1 (3) Registers
The EntryLo register consists of two registers with identical formats:
5 EntryLo0 is used for even virtual pages.
. EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical page frame
number (PFN) of the TLB entry for even and odd pages, respectively, when performing TLB read and write
operations.

Figure 5.5 shows the format of this register. Table 5.5 provides descriptions for the fields of this register.

31 26 25 6 5 3

0 PFN C
6 20 3

1o |~
-l < |-
=10 |o
I

Figure 5.5 EntryLo0 and EntryLo1 Register Formats

79RC32334/332 User Reference Manual 5-4 _ June 4. 2002 1.

Memory Management MMU Register Descriptions

Notes Field Description

PEN Page frame number: the upper bits of the physical address.

C Specifies the TLB page coherency attribute.

D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is actually a write-
protect bit that software can use to prevent alteration of data.

Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS miss occurs.

G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during TLB lookup.

0 Reserved. Must be written as zeroes, returns zeroes when read.

Table 5.5 EntryLo0 and EntryLo1 Register Field Descriptions

The TLB page coherency attribute (C) bits specify whether references to the page should be cached. If
cached, the algorithm selects between several coherency attributes.

Table 5.6 lists the coherency attributes that can be selected by the C bits.

C Value Page Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
1 Cacheable, noncoherent, write-through, write allocate
2 Uncached
3 Cacheable, noncoherent, write-back
4:7 Reserved

Table 5.6 TLB Page Coherency Attributes

Context Register (4)

The Context register is a read/write register that contains the pointer to an entry in the page table entry
(PTE) array. This array is an operating system data structure that stores virtual-to-physical address transla-
tions. When there is a TLB miss, the CPU loads the TLB with the missing translation from the PTE array.

Normally, the operating system uses the Context register to address the current page map that resides
in the kernel-mapped segment. The Context register duplicates some of the information provided in the
BadVAddr register, but the information is arranged in a form that is more useful for a software TLB excep-

tion handler.
Figure 5.6 illustrates the format of the Context register. Table 5.7 provides the descriptions of the
Context register fields.
31 23 22 4 3 0
PTEBase BadVPN2 0
9 19 4
Figure 5.6 Context Register Format
Field Description

BadVPN2 | This field is written by hardware on a miss. It contains the virtual page number (VPN) pair of the most
recent virtual address that did not have a valid translation.

PTEBase | This field is a read/write field for use by the operating system. It is normally written with a value that allows
the operating system to use the Context register as a pointer into the current PTE array in memory.

Table 5.7 Context Register Field Descriptions

79RC32334/332 User Reference Manual 5-5 _ June 4. 2002 1.

Memory Management MMU Register Descriptions

Notes The 19-bit BadVPN?2 field contains bits 31:13 of the virtual address that caused the TLB miss. Bit 12 is
excluded because a single TLB entry maps to an even/odd page pair. For a 4-Kbyte page size, this format
can directly address the pair-table of 8-byte PTEs. For other page and PTE sizes, shifting and masking this
value produces the appropriate address.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a
comparison mask that sets the variable page size for each TLB entry, as shown in the following table.

TLB read and write operations use this register as either a source or a destination. When virtual
addresses are presented for translation into physical address, the corresponding bits in the TLB identify
which virtual address bits, among bits 24:13, are to be used in the comparison. When the Mask field is not
one of the values shown below, the operation of the TLB is undefined.

Bit
PageSize 22222/ 1[1][1]1]1]1]1
4|13|2|1|0 7 4 | 3
4 Kbytes 0 |0 (0O |0 (O [O |O [O |O (O |O (O
16 Kbytes 0 |0 (0O |0 (O [O |O (O |O (O |1 [1
64 Kbytes 0 |0 (0O |0 (O (O |O (O |1 (1 |1 [1
256 Kbytes 0 (0 (O |O |O |O {1 |1 |1 |1 [1 [1
1 Mbyte 0 (0 (0O |O |1 |1 {1 |1 |1 |1 |1 [1
4 Mbytes 0 (0 (1 |1 |1 |1 {1 |1 |1 |1 |1 |1
16 Mbytes S e e e I T A O A I
31 25 24 13 12 0
MCAT MASK MCAT |
7 12 13
Figure 5.7 PageMask Register Format
Field Description
Mask Page comparison mask
MCAT Memory controller attributes.
Table 5.8 PageMask Register Field Descriptions
Note: For the RC32334 the Memory Controller Attributes (MCAT) fields perform no user valid
function. For this device, these bit fields must be written as ‘0’.
Wired Register (6)

The Wired register is a read/write register that specifies the boundary between the wired and random
entries of the TLB, as shown in Figure 5.8. “Wired” entries are nonreplaceable entries, which cannot be
overwritten by a TLB write random operation. “Random” entries can be overwritten. Thus, the Wired
register specifies the smallest value taken by the Random register.

Note: The Index register is not affected by the Wired register. The Index register can still point to
and be used to overwrite either “Random” or “Wired” TLB entries.
79RC32334/332 User Reference Manual 5-6

www NataGhestdleo

Memory Management MMU Register Descriptions

Notes

TLB
15

!

Range of “Random” entries

< Wired l

Y Register
Range of “Wired” entries

- 0

Figure 5.8 Diagram Showing Ranges of Wired and Random Entries

The Wired register is set to 0 upon system reset. Writing to this register also sets the Random register to
the value of its upper bound (see Random register format in Figure 5.4 and Table 5.4). Figure 5.9 shows the
format of the Wired register, and Table 5.9 lists the contents of this register’s fields.

31 6 5 0
0 Wired I
26 6

Figure 5.9 Wired Register Format

Field Description
Wired TLB Wired boundary (the number of wired TLB entries)
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.9 Wired Register Field Descriptions

Note that the RISCore 32300 CPU core contains a 16 entry TLB and that the Wired register contains the
capability of indicating up to 64 TLB entries. In programming, the value written to the Wired register must be
within the valid range of the number of entries of the current device. For future versions of this core, the
RISCore 32300 CPU core implements additional bits.

Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the most recent virtual
address that caused one of the following exceptions:
' Address Error (for example, unaligned access)
TLB Invalid
TLB Modified
TLB Refill
Virtual Coherency Data Access

Virtual Coherency Instruction Fetch

O 0o o o o

The processor does not write to the BadVAddr register when the EXL bit in the Status register is set to 1.
Figure 5.10 shows the format of the BadVAddr register.

79RC32334/332 User Reference Manual 5-7 _ June 4. 2002 1.

Memory Management Kernel/User Operating Modes and Addressing

Notes
31 0
Bad Virtual Address
32
Figure 5.10 Bad Virtual Address Register (BadVAddr) Format
Note: The BadVAddr register does not retain information for bus errors, since bus errors are not
addressing errors.
EntryHi Register (10)
The EntryHi register holds the high-order bits of a TLB entry for TLB read and write operations and is
accessed by the TLB Probe, TLB Write Random, TLB Write Indexed, and TLB Read Indexed instructions.
When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi register is loaded
with the virtual page number pair (VPN2) and the ASID of the virtual address that did not have a matching
TLB entry. Table 5.10 shows the Entry Hi register format and lists the field content descriptions.
31 13 12 8 7 0
VPN2 | o0 | ASID |
19 5 8
Figure 5.11 EntryHi Register Format
Field Description
VPN2 Virtual page number divided by two (maps to two pages).
ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB; each
process has a distinct mapping of otherwise identical virtual page numbers.
0 Reserved. Must be written as zeroes, returns zeroes when read.
Table 5.10 EntryHi Register Field Content Descriptions
Kernel/User Operating Modes and Addressing
The RC32300 CPU core supports both the Kernel and User operating modes. The operating system
uses Kernel mode for privileged programs; User mode executes non-privileged programs. The CPU enters
Kernel mode whenever an exception occurs and remains in this mode until the ERET (Exception Return)
instruction is executed.
User Mode
The CPU is in User mode when the Status register has the following values:
S UM bitis 1
5 EXL bitis 0
Y ERL bitis 0
While in user mode, a single, uniform virtual address space of 2 Ghytes is available for the user’s
program. All references to this address space are mapped by the virtual address mapping mechanism
described earlier. The cacheability is controlled by “cache mode” bits in the TLB.
79RC32334/332 User Reference Manual 5-8

e Datasheetaicom

Memory Management Kernel/User Operating Modes and Addressing

Notes

RC32334 User Mode

Oxffff ffff
Address

Error

0x8000 0000
Ox7ffff fff

2GB

Translated useg

0x0000 0000

Figure 5.12 lllustration of RC32334 User Mode Address Space

Kernel Mode
The CPU is in Kernel mode when the status register contains any one of the following bit-settings:

5 UM bit is 0

5 EXL bitis 1

U ERL bitis 1

While in Kernel Mode, the virtual address space is partitioned into the following segments:
5 kuseg
This virtual address space is selected if the most significant bit of the virtual address is cleared.

This space covers the full 2 GBytes of the current user address space. The virtual address is
extended with the contents of the ASID field to form unique virtual addresses.

kseg0
This virtual address space is selected if the most significant three bits of virtual address are 100,.
References to kseg0 are not “mapped’; the physical address is calculated by subtracting

0x8000_0000 from the virtual address. Cacheability and coherency are controlled by the KOC field
of the Configuration Register.

kseg1

This virtual address space is selected if the most significant three bits of virtual address are 101,.
References to kseg1 are not mapped; the physical address is calculated by subtracting
0xa000_0000 from the virtual address. Caches are always disabled for accesses to this space, and
physical memory (or memory-mapped I/O device registers) are accessed directly.

kseg2

This virtual address space is selected if the most significant 8 bits of virtual address are from ¢04g to
fe4e. This space covers the upper 1008 MBytes of kernel virtual address space. The virtual address
is extended with the contents of the ASID field to form unique virtual addresses. These addresses
are translated to a physical address through the TLB.

On-chip/ICE Registers (if the configuration register bit 3 is set to 0)

The upper-most 16 MBytes of the virtual address is reserved for memory-mapped on-chip registers
and In-Circuit Emulator space. On-chip memory controller and peripheral have their register set
mapped into this address space.

If the configuration register bit 3 is set to 1, this space is considered as kseg?2.

79RC32334/332 User Reference Manual 5-9 _ June 4. 2002 1.

Memory Management Kernel/User Operating Modes and Addressing

Notes

Oxffff_ffff

0xff00_0000
Oxfeff_ffff

0xc000_0000
Oxbfff_ffff

0xa000_0000
0xOfff_ffff

0x8000_0000
Ox7fff_ffff

0x0000_0000

RC32334 Kernel Mode

16MB uncached,
unmapped

1008 MB

mapped, cached

512 MB
uncached, unmapped

512 MB
cached, unmapped

2GB
mapped, cached

On-chip
Registers/ICE

(if config [3] is0)

kseg2

kseg1

kseg0

kuseg

79RC32334/332 User Reference Manual

Figure 5.13 lllustration of RC32334 Kernel Mode Address Space

For complete field and content descriptions as well as virtual address locations for the Port Width and
Bus Turnaround control registers, refer to Chapter 8 of this manual.

e DataSheetdiieom

Chapter 6

CPU Exception Processing

®
Notes Introduction

The CPU exception process begins when the processor receives and detects exceptions from sources
such as address translation errors, arithmetic overflows, 1/O interrupts, and system calls.

Once an interrupt is detected, the processor suspends the normal instruction sequence and enters
Kernel mode (information on system operating modes is located in Chapter 5). The processor then disables
interrupts and forces execution of a software exception processor (known as a handler), which is located at
a fixed address.

The handler may save the context of the processor—including the program counter contents, the current
operating mode (User or Kernel mode), and the interrupt status (enabled or disabled)—so it can be restored
when the exception has been serviced.

The RC32300 CPU core supports the following basic exceptions, which are listed from the highest to the
lowest priority order:

Y Reset
9 In-Circuit Emulation
U Soft Reset
5 Nonmaskable Interrupt (NMI)
U Address Error caused by Instruction fetch
5 Watch exception caused by Instruction fetch
D' Cache Error caused by Instruction fetch
5 Bus Error caused by Instruction fetch
D Integer Overflow, Trap, System Call, Breakpoint, Reserved Instruction, Coprocessor Unusable
U Address Error caused by Data access
D' Cache Error caused by Data access
5 Watch exception caused by Data access
' Bus Error caused by Data access
5 Interrupt
Exception Processing Registers

Support for the basic exceptions listed above is implemented through the CPO exception processing
registers, which assist by retaining address, cause and status information.

For example, when an exception occurs, the CPU loads register 14—the Exception Program Counter
(EPC) register—with a location from which execution can restart after the exception has been handled. The
restart location loaded into the EPC register is either the address of the instruction that caused the excep-
tion or the address of the branch instruction immediately preceding the delay slot, if the instruction was
executing in a branch delay slot.

A list of basic CPO registers is given in Table 6.1. Following the table, a brief operational description of
each exception register is provided. Those listed as MMU registers are discussed further in Chapter 5,
“Memory Management.”

79RC32334/332 User Reference Manual 6-1 W, DataShest 2eom

CPU Exception Processing

Exception Processing Registers

Notes
Number | Register Description
0-8 . Used for MMU registers. (See Chapter 5 for register descriptions)
9 Count Timer Count
10 . Used for MMU. (See Chapter 5 for register descriptions)
11 Compare Timer Compare
12 Status Status Register
13 Cause Cause of last exception
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16 Config Configuration register
17 . Reserved
18 IWatch Instruction Breakpoint Virtual address
19 DWatch Data Breakpoint Virtual address
20-21 o Reserved
22 IEPC Imprecise Exception Program Counter
23 DEPC Debug Exception Program Counter
24 Debug Debug control/status register.
25 — Reserved
26 ECC Primary cache Parity
27 CacheErr Cache Error and Status register
28 TagLo Cache Tag register
29 _ Reserved
30 ErrorEPC Error Exception Program Counter
31 _ Reserved

Table 6.1 Basic CP0 Registers

Count Register (9)

The Count register is a read/write register that acts as a timer, incrementing at a constant rate—half the
maximum instruction issue rate—whether or not an instruction is executed, retired, or any forward progress
is made through the pipeline.

This register can be written to for either diagnostic purposes or system initialization; for example, to
synchronize processors. Figure 6.1 shows the format of the Count register.

31 0

Count
32

Figure 6.1 Count Register Format

79RC32334/332 User Reference Manual 6-2 _ June 4. 2002 1.

CPU Exception Processing Exception Processing Registers

Notes
The

Compare Register (11)

Compare register acts as a timer (also see the Count register), and it maintains a stable value that

does not change on its own.

When the value of the Count register equals the value of the Compare register, interrupt bit IP(7) in the
Cause register is set to initiate a timer interrupt, which causes an interrupt as soon as it's enabled.

Writing a value to the Compare register clears the timer interrupt. For diagnostic purposes, the Compare
register is both a read and write register. However, during normal operations, the Compare register is a
write only. The format of the compare register is shown in Figure 6.2.

31 0
Compare
32

0

Figure 6.2 Compare Register Format

Status Register (12)

The Status register (SR) is a read/write register that contains the operating mode, interrupt enabling,
and the diagnostic states of the processor. Figure 6.3 shows the format of the entire register. The following
bulleted items provide details on the more important Status register fields:

The 8-bit Interrupt Mask (IM) field controls the individual enabling of eight interrupt conditions. Inter-
rupts must be generally enabled before they can cause the exception (IE set), and the correspond-
ing bits are set in both the Interrupt Mask field of the Status register and the Interrupt Pending (IP)
field of the Cause register (for more information, refer to the Interrupt Pending (IP) field of the
Cause register).IM[1:0] are the masks for the two software interrupts and IM[7:2] correspond to
Int[5:0].

The 4-bit Coprocessor Usability (CU) field controls the usability of 4 possible coprocessors.
Regardless of the CUQ bit setting, CPO0 is always usable in Kernel mode. For all other cases, an
instruction for or access to an unusable coprocessor causes an exception.

The 9-bit Diagnostic Status (DS) field (Status[24:16]) is used for self-testing and checks the cache
and virtual memory system.

The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the machine. At system reset, the
processor can be configured as either little-endian or big-endian. This selection is always used in
Kernel and Supervisor modes, and also in User mode when the RE bit is 0. Setting the RE bit to 1
inverts the User mode endianness.

31

28 27 26 25

<

-

-«

24 23

2 2

DS
20

19

18

?

17 16 |15

8

7

cu
(Cu3:.Cu0)| 0 |ORE

DL | IL

BEV| 0 |[SR| 0 [O |CE|DE IM[7:0] 0 UM| 0 |ERL [EXL

4 1 11

11

T 1t 1 1 1 1 1 8 3 11 1 1 1

79RC32334/332 User Reference Manual

Figure 6.3 Status Register Format

Table 6.2 lists the descriptions for the Status register’s fields.

www NataGhestdleo

CPU Exception Processing Exception Processing Registers

Notes

Field Description

CuU Controls the usability of each of the four coprocessor unit numbers. CPO is always usable when in Kernel
mode, regardless of the setting of the CUj, bit.
1 — usable
0 — unusable

RE Reverse-Endian, valid in User mode.

DL Data Cache Lock enable. This bit enables the data cache lock function. If this bit is set during Data cache fill,

the cache line at that particular set will be locked. Please refer to the “Cache Operation” section for more detail
0 — disable Data cache locking
1 — enable Data cache locking

IL Instruction Cache Lock enable. This bit enables the instruction cache lock function. If this bit is set during
Instruction cache fill, the cache line at that particular set will be locked. Please refer to the “Cache Operation”
section for more detail

0 — disable Instruction cache locking

1 — enable Instruction cache locking

BEV Controls the location of TLB refill and general exception vectors.
0 — normal
1 — bootstrap

SR 1— Indicates a soft reset or NMI has occurred.

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see description of the
ECC register.

DE Specifies that cache parity errors cannot cause exceptions.

0 — parity remains enable
1 — disables parity

0 Reserved. Must be written as zeroes, and returns zeroes when read.

M Interrupt Mask: controls the enabling of each of the external, internal, and software interrupts. An interrupt is
taken if interrupts are enabled, and the corresponding bits are set in both the Interrupt Mask field of the Sta-
tus register and the Interrupt Pending field of the Cause register. IM[7:2] correspond to interrupts Int[5:0] and
IM[1:0] to the software interrupts.

0 — disabled

1 — enabled

UM User Mode bits
1 — User
0 — Kernel

ERL Error Level
0 — normal
1 — error

EXL Exception Level

0 — normal

1 — exception

Note: When going from 0 to 1, IE should be disabled (0) first. This would be done when preparing to return
from the exception handler, such as before executing the ERET instruction.

IE Interrupt Enable
0 — disable interrupts
1 — enables interrupts

Table 6.2 Status Register Field Descriptions

79RC32334/332 User Reference Manual 6-4 _ June 4. 2002 1.

CPU Exception Processing Exception Processing Registers

Notes Status Register Modes and Access States
Fields of the Status register set the modes and access states as described in the following sections:

Interrupts are enabled when all of the following conditions are true:
IE=1
EXL=0
ERL=0
If these conditions are met, the settings of the IP bits identify the interrupt.
Note: Setting the IE bit may be delayed by up to 3 cycles. If performing nested interrupts, re-
enable the |E bit first.
Data cache locking is enabled when all of the following conditions are true:
DL=1
EXL=0
ERL=0
If these conditions are met, the filled data cache line at the currently selected set will be locked.
Note: Setting the DL bit may be delayed by as many as 3 cycles.

Instruction cache locking is enabled when all of the following conditions are true:
IL=1
EXL=0
ERL=0
If these conditions are met, the filled instruction cache line at the currently selected set will be locked.
Note: Setting the IL bit may be delayed by as much as 3 cycles.
For User and Kernel modes, the following CPU Status register bit settings are required:

The processor is in User mode when the User Mode, Exception Level and Error Level bits are set as
follows:
UM=1AND
EXL=0AND
ERL=0
When the User Mode, Exception Level and Error Level bits are set as follows, the processor is in Kernel
mode:
UM=00R
EXL=10R
ERL=1
Access to the kernel address space is allowed when the processor is in Kernel mode.
Access to the user address space is allowed in any of the three operating modes.

At reset, the contents of the Status register are undefined, except for the following bits:
ERL=1
BEV=1

The SR bit distinguishes between Reset and Soft Reset (Nonmaskable Interrupt [NMI]).

Cause Register (13)

The 32-hit read/write Cause register describes the cause of the most recent exception. Figure 6.4 shows
the fields of this register, and Table 6.3 describes the contents of the Cause register fields. As listed in
Table 6.3, a 5-hit exception code (ExcCode) indicates the cause of the most recent exception. All bits in the
Cause register—with the exception of the IP(1:0) bits—are read-only. The IP(1:0) bits are used for software
interrupts.

79RC32334/332 User Reference Manual 6-5 _ June 4. 2002 1.

CPU Exception Processing Exception Processing Registers

Notes 3130 29 28 27 26 25 24 23 22 16 15 876 21 0
BD| 0| cE |0 |IPE[DW|IW| Iv 0 IP[7:0] of & 1o
1 1 2 1 1 1 1 1 7 8 1 5 2

Figure 6.4 Cause Register Format

Field Description
BD Indicates whether the last exception taken occurred in a branch delay slot.
1 — delay slot
0 — normal
CE Coprocessor unit number referenced when a Coprocessor Unusable exception is taken.
DW On a Watch exception, indicates that the DWatch register matched. On other exceptions this field is undefined.
W On a Watch exception, indicates that the IWatch register matched. On other exceptions this field is undefined.
I\ Enable the dedicated interrupt vector.

1 — interrupts use new exception vector (200)
0 — interrupts use dedicated common exception vector (180)

IP Indicates an interrupt is pending.
1 — interrupt pending
0 — no interrupt

ExcCode | Exception code field

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 6.3 Cause Register Field Descriptions

Exception Code Value | Mnemonic Description

0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 — Reserved

15:22 — Reserved
23 Watch Watch Exception

24:31 — Reserved

Table 6.4 Cause Register ExcCode Field

79RC32334/332 User Reference Manual 6-6 wove DataShest Al eom

CPU Exception Processing Exception Processing Registers

Notes Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the address from which
processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

D the virtual address of the instruction that was the direct cause of the exception, or

U the virtual address of the immediately preceding branch or jump instruction (when the instruction is
in a branch delay slot, and the Branch Delay bit in the Cause register is set).

5 For an imprecise exception, EPC contains the instruction of the address that recognized the excep-
tion and the address at which execution may be resumed.

When the EXL bit in the Status register is set to 1, the processor does not write to the EPC register.
Figure 6.5 shows the format of the EPC register.

31 0
EPC
. __|
32
Figure 6.5 EPC Register Format
Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information identifying the
implementation and revision level of the CPU and CPO0.

Figure 6.6 illustrates the format of the PRId register.

31 16 15 87 0
0 Imp Rev
16 8 8
Figure 6.6 PRId Register Format
Table 6.5 describes the contents of the PRId register fields.
Field Description
Imp Implementation number
RC32334: Imp = 0x18
Rev Revision number. Rw = 0
0 Reserved. Must be written as zeroes, returns zeroes when read.
Table 6.5 PRid Register Field Descriptions

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and the high-order
byte (bits 15:8) is interpreted as an implementation number.

The implementation number of the RC32334 processor is 0x18. The content of the high-order halfword
(bits 31:16) of the register is reserved and will return ‘0’ when read. The revision number is stored as a
value in the form y.x, where y is a major revision number in bits 7:4 and x is @ minor revision number in bits
3.0.

The revision number can distinguish some chip revisions; however, there is no guarantee that changes
to the chip will be reflected in the PRId register, or that changes to the revision number necessarily reflects
software-visible chip changes. For this reason, these values are not listed and software should not rely on
the revision number in the PRId register to characterize the chip. Certain attributes, such as cache size, are
independent of implementation number.

79RC32334/332 User Reference Manual 6-7

www NataGhestdleo

CPU Exception Processing Exception Processing Registers

Config Register (16)
The Config register specifies various configuration options selected on the RC32334 processor.

Notes

Some configuration options, as defined by Config bits 31:3, are set by the hardware during reset and are
included in the Config register as read-only status bits for software access. The KO field is the only read/
write field (as indicated by Config register bits 2:0) and is controlled by software. On reset, these fields are
undefined.

Figure 6.7 shows the format of the Config register.

31 30 28 27 24 23 22 181716 151413 1211 98 65 4 3 2
ICE| EC 0000 | 0 00000 110/BE[1|10 IC DC |IB|DB| DOM | KO

— ©

1 3 4 1 5 tT11111 3 3 11 1 3

Figure 6.7 Config Register Format

Table 6.6 describes the contents of the Config register fields.

Field Description

ICE In-Circuit Emulator existence

0 — No ICE hardware connected to the CPU

1 — ICE hardware connected to the CPU

These states are determined through an EJTAG Control Register bit.

EC External Clock:

Indicates the relationship of the execution core pipeline clock to the input system clock, as determined at
reset:

0 — system clock frequency multiplied by 2
1 — system clock frequency multiplied by 3
2 — system clock frequency multiplied by 4
3 — system clock frequency multiplied by 5
4 — system clock frequency multiplied by 6
5 — system clock frequency multiplied by 7
6 — system clock frequency multiplied by 8
7 Reserved

BE Big Endian Memory.

0 — Little endian

1 — Big endian

The endianness is determined at reset.

IC Primary |-cache Size (I-cache size = 2%+IC bytes). In the RC32334 controller, this is set to 8 Kbytes (IC = 4)
DC Primary D-cache Size (D-cache size = 2%0C bytes). In the RC32334 controller, this is set to 2 Kbytes
(bC=2)
1B Primary I-cache line size
0 — 16 bytes (4 Words)
DB Primary D-cache line size
0 — 16 bytes (4 Words)

DOM Disable On-chip register Mapping
0 — Use the upper-most 16MB of virtual address as memory-mapped on chip register.
1 — Use the upper-most 16MB of virtual address as kseg2.

KO kseg0 coherency algorithm (uses same encodings as EntryLo0 and EntryLo1 registers, as described in
Chapter 5, “Memory Management".)

Others | Reserved. Returns indicated values when read. Should be written with indicated values.

Table 6.6 Config Register Field Content Descriptions

79RC32334/332 User Reference Manual 6-8 _ June 4. 2002 1.

Exception Processing Registers

CPU Exception Processing

Notes

IWatch Register (18)

The IWatch register is a read/write register that specifies an Instruction virtual address that causes a
Watch exception. When VAddrs4 5 of an instruction fetch matches IvAddr of this register, and the | bit is set,
a Watch exception is taken. Matches that occur when EXL=1 or ERL=1 do not take the exception immedi-
ately and are instead postponed until both EXL and ERL are cleared. The priority of an IWatch exception is
just below an Instruction Address Error exception. Figure 6.8 shows the format of the IWatch register.

31 IWatch Register 21 0
IvAddr 0|l
30 11

Figure 6.8 IWatch Register Format

Table 6.7 describes the IWatch register fields

Field

Description

IvAddr

Instruction virtual address that causes a watch exception [bit 31:2].

0 ---> [Watch disable,
1 ---> |Watch enable.

0

reserved for future use.

Note: IWatch.| is cleared on Reset.

Table 6.7 Watch Register Field Description

DWatch Register (19)

The DWatch register is a read/write register that specifies the Data virtual address that caused a Watch
exception. When VAddrs, 3 of a load matches DvAddr of this register and the R bit is set, or when
VAddrs4 5 of a store matches DvAddr of this register and the W bit is set, a Data Watch exception is taken.

Matches that occur when EXL=1 or ERL=1 do not immediately take the exception but are instead post-
poned until both EXL and ERL are cleared. The priority of a DWatch exception is just below a Data Address
Error exception. DWatch exceptions do not occur on CACHE operations. The format of the DWatch register
is shown in Figure 6.9.

31 32 1 0
DvAddr RIw |0 I
29 11 1

Figure 6.9 DWatch Register Format

Table 6.8 lists the contents of the DWatch register’s fields.

79RC32334/332 User Reference Manual 6-9 _ June 4. 2002 1.

Field Description
DvAddr Data virtual address that causes a watch exception.
R 0 ---> DWatch disable for loads

1 ---> DWatch enable for loads.
w 0 ---> DWatch disable for stores

1 ---> DWatch enable for stores.
0 reserved for future use.

Note: DWatch.R and DWatch.W are cleared on Reset.

Table 6.8 DWatch Register Field Descriptions

CPU Exception Processing Exception Processing Registers

Notes

79RC32334/332 User Reference Manual 6-10

Debug Exception Program Counter (DebugEPC) Register (23)
This register contains the address of the instruction to resume after the ICE Debug exception is handled.

Debug Register (24)
This register contains status and control bits for the ICE debug operation.

Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes primary-cache data parity bits for
cache initialization, cache diagnostics, or cache error processing. (Tag parity is loaded from and stored to
the TagLo register). The ECC register is loaded by the Index Load Tag CACHE operation. The value of the
ECC register is:

5 written into the primary data cache on store instructions (instead of the computed parity) when the
CE bit of the Status register is set

D substituted for the computed instruction parity for the CACHE operation Fill

To force a cache parity value, use the Status CE bit and the ECC register. Figure 6.10 shows the format
of the ECC register.

31 8 7 0
0 ‘ ECC

24 8

Figure 6.10 ECC Register Format

Table 6.9 describes the contents of the ECC register fields

Field Description

ECC An 8-bit field specifying the parity bits read from or written to a primary cache.

0 Reserved. Must be written as zeroes and returns zeroes when read.

Table 6.9 ECC Register Field Descriptions

Cache Error (CacheErr) Register (27)
The 32-bit read-only CacheErr register processes parity errors in the primary cache. Parity errors cannot
be corrected automatically.

The CacheErr register holds cache index and status bits that indicate the source and nature of the error.
This register is loaded when a Cache Error exception is asserted. When a read response returns with bad
parity this exception is also asserted. Figure 6.11 shows the format of the CacheErr register.

31 30 29 28 27 26 25 24 23 22 21 3 2 0
ER‘EC‘ED‘ET‘ES‘EE‘EB‘ 0 ‘ 0]0 | Sldx Pldx

T1 11111 11 1 19 o 2

Figure 6.11 CacheErr Register

Table 6.10 provides descriptions on the contents of the CacheErr register fields.

Field Description

ER Indicates the type of reference as follows:
0 — instruction
1 — data

Table 6.10 Cache Error Register Field Descriptions (Part 1 of 2)

www NataGhestdleo

CPU Exception Processing Exception Processing Registers

Notes

Field Description
EC Cache level of the error
0 — primary
ED Indicates if a data field error occurred
0 — no error
1 — error
ET Indicates if a tag field error occurred
0 — no error
1 — error
ES Reserved
EE Reserved
EB Set if a data error occurred in addition to the instruction error (indicated by the remainder of the

bits). If so, this requires flushing the data cache after fixing the instruction error.
0 — no additional data error
1 — additional data error

Sldx Physical address 21:3 of the reference that encountered the error.

Pldx Virtual address 13:12 of the double word in error.
To be used with Sldx to construct a virtual index for the primary caches. Only the lower two bits
(bits 1 and 0) are vAddr; the high bit (bit 2) is zero.

0 Reserved. Must be written as zeroes and returns zeroes when read.

Table 6.10 Cache Error Register Field Descriptions (Part 2 of 2)

TagLo Register (28)

The TagLo register is a 32-bit read/write register that holds the primary cache tag and parity during

cache initialization, cache diagnostics, or cache error processing. The TaglLo register is written by the
CACHE and MTCO instructions. The P field of this register is ignored on Index Store Tag operations. Parity
is computed by the store operation.

Figure 6.12 shows the format of the TagLo register, for primary cache operations.

31 8 7 6 5 3 2 1 0
Taglo 0 PTagLo PState Rsvd LIF|P
1 23 2 3 T 11

Figure 6.12 TagLo Register Format

Table 6.11 lists the field definitions of the TagLo register.

Field Description

PTagLo | In the case of Data Cache, the PTagLo field specifies the physical address bits 31:9.

In the case of Instruction Cache (8kbytes), the PTagLo field specifies the physical address bits 31:11.
The 2 least significant bits are undefined.

PState | Specifies the primary cache state.

P

Specifies the primary tag even parity bit.

F

The FIFO bit used to implement FIFO refill of the cache. For software, there is no particular use of this bit.

Rsvd Reserved. Must be written as zeroes.

Lock bit used to implement cache line lock function.

79RC32334/332 User Reference Manual 6-11 _ June 4. 2002 1.

Table 6.11 TagLo Register Field Descriptions

CPU Exception Processing Processor Exceptions

Notes Value Cache State Attribute
0 Invalid
1 Shared
2 Clean Exclusive
3 Dirty Exclusive

Table 6.12 Primary Cache State Values

Error Exception Program Counter (Error EPC) Register (30)

The register is similar to the EPC register, except that ErrorEPC is used on parity error exceptions (EXL
set) and is also used to store the program counter (PC) on Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction processing can
resume after servicing an error. This address can be:
5 the virtual address of the instruction that caused the exception
5 the virtual address of the immediately preceding branch or jump instruction, when this address is in
a branch delay slot.
There is no branch delay slot indication for the ErrorEPC register.

Figure 6.13 shows the format of the ErrorEPC register.

31 0
ErrorEPC I
32

Figure 6.13 ErrorEPC Register

Processor Exceptions

This section describes the processor exceptions: the cause of each exception, its processing by the
hardware, and servicing by a handler (software). The types of exception, with exception processing opera-
tions, are described in the next section.

Exception Types
This section gives sample exception handler operations for the following exception types:
5 reset
soft reset
nonmaskable interrupt (NMI)
cache error
remaining processor exceptions
When the EXL bit in the Status register is 0, either User or Kernel operating mode is specified by the UM
bits in the Status register. When the EXL bit or the ERL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which means the system is in Kernel
mode. After saving the appropriate state, the exception handler typically resets the EXL bit back to 0. When
restoring the state and restarting, the handler sets the EXL bit back to 1, to inhibit subsequent interrupts.
Returning from an exception also resets the EXL bit to 0.

O
a
O
a

In the following sections, sample hardware processes for various exceptions, are shown together with
the servicing required by the handler (software).

79RC32334/332 User Reference Manual 6-12 _ June 4. 2002 1.

CPU Exception Processing Processor Exceptions

Notes General Exception Process
Figure 6.14 shows the process used for exceptions other than Reset, Soft Reset, NMI, and Cache Error.
T: Cause "BD|| 0 || CE || 0'?|| Causeys || O || ExcCode || 07
if SR4 = 0 then [* system in User mode with no current exception */
EPC "PC
endif
SR "SR31:9 || 1| SRO/ + set Exl */
if SRy, = 1 then I* What is the BEV bit setting */
PC " 0xBFCO0 0200 + vector [* access to uncached space */
else
PC " 0x8000 0000 + vector [* access to cached space */
endif

Figure 6.14 General Exception Process

Priority of Exceptions

Although more than one exception can occur for a single instruction, only the exception with the highest
priority will be reported. After the highest priority exceptions have been serviced, if lower priority exception
conditions remain, they will be signalled and serviced at that time.

The remainder of this chapter describes exceptions—in the order of their priority—as shown in

Table 6.13.
Exception Priority
1 | Reset (highest priority) 11 | Bus error — Instruction fetch
2 | Debug (ICE) 12 | Integer overflow, Trap, System Call, Breakpoint, Reserved

Instruction, Coprocessor Unusable, or Floating-Point Exception

Soft Reset 13 | Address error — Data access

Nonmaskable Interrupt (NMI) 14 | TLB refill — Data access

Imprecise Bus Error 15 | TLB invalid — Data access

TLB refill — Instruction fetch 17 | Cache error — Data access

TLB invalid — Instruction fetch 18 | Watch -- Data access

3
4
5
6 | Address error — Instruction fetch | 16 | TLB modified — Data write
7
8
9

Watch - Instruction fetch 19 | Bus error — Data access (precise)

10 | Cache error — Instruction fetch | 20 | Interrupt (lowest priority)

Table 6.13 Exception Priority Order (highest to lowest)

Generally speaking, the exceptions that will be described in the following sections are handled
(“processed”) by hardware; these exceptions are then serviced by software.

Exception Vector Locations
The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFCO 0000 (virtual
address), corresponding to kseg1.

The debug exception for In-Circuit Emulator (ICE) is vectored to location 0xFF20_0200 (virtual address),
corresponding to ICE space, if the ICE hardware is connected to the CPU (i.e. Configuration register ICE bit
is set). Otherwise, this exception is vectored to location 0xXBFC0_0480.

Addresses for all other exceptions are a combination of a vector offset and a base address. The base
address is determined by the BEV bit of the Status register, as shown in Table 6.16. Table 6.14 lists the
vector offset that is added to the base address to create the exception address.

79RC32334/332 User Reference Manual 6-13 _ June 4. 2002 1.

CPU Exception Processing Processor Exceptions

Notes BEV Normal Exception Base Cache Error Base
0 0x8000 0000 0xA000 0000
1 0xBFC0 0200 0xBFC0 0200

Table 6.14 Base Address Vector Offset

As shown in Table 6.15, when BEV = 0, the vector base for the Cache Error exception changes from
kseg0 (0x8000 0000) to kseg1 (0xA000 0000).

When BEV = 1, the vector base for the Cache Error exception is 0xBFC00200. This is an uncached and
unmapped space, allowing the exception to bypass the cache and TLB.

Exception RC32334 Processor Vector Offset
TLB refill, EXL =0 0x000
Cache Error 0x100
Interrupt1 0x200
Others 0x180

Table 6.15 List of RC32334 Exception vectors
1-1f cause.IV = 1. Otherwise interrupts use general vector offset.

Exception BEV | EXL v ICE RC32334 Processor Vector
Reset, Soft Reset, NMI X X X X 0xBFC0 0000
Debug (ICE) X X X 1 0xFF20 0200
Debug (ICE) X X X 0 0xBFCO0 0480
TLB refill 1 0 X X 0xBFCO0 0200
TLB refill 1 1 X X 0xBFCO0 0380
TLB refill 0 0 X X 0x8000 0000
TLB refill 0 1 X X 0x8000 0180
Cache Error 1 X X X 0xBFCO0 0300
Cache Error 0 X X X 0xA000 0100
Interrupt 1 X 1 X 0xBFCO 0400
Interrupt 1 X 0 X 0xBFCO0 0380
Interrupt 0 X 1 X 0x8000 0200
Interrupt 0 X 0 X 0x8000 0180
Others 1 X X X 0xBFCO0 0380
Others 0 X X X 0x8000 0180
Note: X means don't care

Table 6.16 RC32334 Exception Vectors

Reset Exception
Cause: The Reset exception occurs when the cpu_coldreset_n signal is asserted and then deasserted.
Processing: The CPU provides a special exception vector for this exception of: 0xBFCO 0000

The Reset vector resides in unmapped and uncached CPU address space, so the hardware need not
initialize the TLB or the cache to process this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined state.

Maskable: No

79RC32334/332 User Reference Manual 6-14 _ June 4. 2002 1.

CPU Exception Processing Processor Exceptions

Notes The contents of all registers in the CPU are undefined when this exception occurs, except for the
following register fields:

U In the Status register, SR is cleared to 0, and ERL and BEV are set to 1. All other bits are unde-
fined.

5 The Random register is initialized to the value of its upper bound.
5 The Wired register is initialized to 0.
5 Iwatch.l,Dwatch.W and Dwatch.R are cleared.
U Some of the Config Register bits are initialized from the boot-time mode stream.
The Reset exception is serviced by:
H initializing all processor registers, coprocessor registers, caches, and the memory system
. performing diagnostic tests
H bootstrapping the operating system

The Reset exception process is as shown in Figure 6.15.

T: undefined
Random " TLBENTRIES-1
Wired " 0
Config <- ICE || EC || EP || 00000000 || BE || 110|| 100 || 0100/ 0]| 0 || 000
ErrorEPC " PC
SR "SRy193 | 110110 | SRygs || 11 SRyg/* ERL™1, BEV ™1+
PC " 0xBFCO0 0000

Figure 6.15 Process of the Reset Exception

Debug Exception
Cause: The Debug exception occurs either when the ICE Breakpoint signal is asserted from the ICE
hardware or when the processor executes the SDBBP instruction.
Processing: The CPU provides a special exception vectors for this exception at:
Y 0xFF20 0200 ifthe ICE hardware is connected to the CPU.
D 0xBFCO 0480 ifthe ICE hardware is not connected to the CPU.
The Debug exception vectors reside in unmapped and uncached CPU address space, so the hardware

need not initialize the TLB or the cache to process this exception. It also means the processor can fetch and
execute instructions while the caches and virtual memory are in an undefined state.

Servicing: The Debug exception is serviced by the ICE software, to assist the user in a system level
debug.

Maskable: No

Soft Reset Exception

Cause: The Soft Reset exception occurs in response to the Reset* input signal (internal to CPU core),
and execution begins at the Reset vector when Reset* is deasserted.

Processing: The Reset exception vector is used for this exception, located within unmapped and
uncached address space so that the cache and TLB need not be initialized to process this exception. When
a Soft Reset occurs, the SR bit of the Status register is set to distinguish this exception from a Reset excep-
tion.

The primary purpose of the Soft Reset exception is to reinitialize the processor after a fatal error during
normal operations. Unlike an NMI, all cache and bus state machines are reset by this exception.

Like Reset, Soft Reset can be used on the processor in any state. The caches, TLB, and normal excep-
tion vectors need not be properly initialized.

79RC32334/332 User Reference Manual 6-15 _ June 4. 2002 1.

CPU Exception Processing Processor Exceptions

Notes When this exception occurs, the contents of all registers are preserved except for;

U ErrorEPC register, which contains the restart PC
U ERL bit of the Status register, which is set to 1

' SR bit of the Status register, which is set to 1

D BEV bit of the Status register, which is set to 1

Because the Soft Reset can abort cache and bus operations, cache and memory state is undefined
when this exception occurs.

Servicing: The Soft Reset exception is serviced by saving the current processor state for diagnostic
purposes, and reinitializing for the Reset exception.

Maskable: No
The Soft Reset and NMI exception processes are as shown in Figure 6.16.

T: ErrorEPC " PC
SR"SR31:03 [| 1110 11 SR4g:3]| 1| SRy /* BEV"1, SR "1, ERL " 1%/
PC " 0xBFCO0 0000

Figure 6.16 Process of the Soft Reset and NMI Exceptions

Nonmaskable Interrupt (NMI) Exception

Cause: The Nonmaskable Interrupt (NMI) exception occurs in response to the asserting edge of the
NMI pin. Unlike all other interrupts, this interrupt is not maskable; it occurs regardless of the settings of the
EXL, ERL, and the IE bits in the Status register.

Processing: The Reset exception vector is used for this exception. This vector is located within
unmapped and uncached address space so that the cache and TLB need not be initialized to process an
NMI interrupt. When an NMI exception occurs, the SR bit of the Status register is set to differentiate this
exception from a Reset exception. Because an NMI can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction boundaries. The
state of the caches and memory system are preserved by this exception.

To terminate a pending read that has hung the best approach is to return a bus error. However, if you
wish to use a CPU exception to indicate a hung read, Soft Reset is preferable to NMI.
When this exception occurs, the contents of all registers are preserved except for the following:
5 ErrorEPC register, which contains the restart PC
U ERL bit of the Status register, which is set to 1
U SR bit of the Status register, which is set to 1
U BEV bit of the Status register, which is set to 1

Servicing: The NMI exception is serviced by saving the current processor state for diagnostic purposes,
and reinitializing the system for the Reset exception.

Maskable: No.

Address Error Exception
Cause: The Address Error exception occurs when an attempt is made to execute one of the following:
5 Joad, fetch, or store a word that is not aligned on a word boundary (except for use of special instruc-
tion)
5 Joad or store a halfword that is not aligned on a halfword boundary
D reference the kernel address space from User mode

79RC32334/332 User Reference Manual 6-16 _ June 4. 2002 1.

CPU Exception Processing TLB Exceptions

Notes Processing: The common exception vector is used for the address error exception. If the AdEL or
AdES code in the Cause register is set, this indicates how the instruction (shown by the EPC register and
the BD bit in the Cause register) caused the exception: through an instruction reference, a load operation,
or a store operation.

When this exception occurs, the BadVAddr register retains the virtual address that was not properly
aligned or had referenced protected address space. The contents of the VPN field of the Context and
EntryHi registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless this instruc-
tion is in a branch delay slot. If it is in a branch delay slot, the EPC register contains the address of the
preceding branch instruction and the BD bit of the Cause register is set as indication.

Servicing: Typically, the process executing at the time is handed a segmentation violation signal. This
error is usually fatal to the process incurring the exception. To resume execution, the EPC register or the
load/store target address must be altered so that the unaligned reference instruction does not re-execute;
this is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before returning.

If an unaligned reference instruction is in a branch delay slot, interpretation of the branch instruction is
required to resume execution.

Maskable: No

TLB Exceptions

This section explains the TLB Exceptions. Three types of TLB exceptions can occur:

5 TLB Refill occurs when there is no TLB entry that matches an attempted reference to a mapped
address space.

U TLB Invalid occurs when a virtual address reference matches a TLB entry that is marked invalid.

U TLB Modified occurs when a store operation virtual address reference to memory matches a TLB
entry which is marked valid but is not dirty (the entry is not writable).

For specifics on the exceptions listed here, refer to the appropriate subsection.

TLB Refill Exception

Cause: The TLB refill exception occurs when there is no TLB entry to match a reference to a mapped
address space.

Processing: This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register.
This code indicates whether the instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction referenced load operation or by a store operation.

When this exception occurs, the BadVAddr, Context, and EntryHi registers hold the virtual address that
failed the address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally suggests a valid location in which to place the replacement TLB
entry.

The contents of the EntryLo registers are undefined. The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing: To service this exception, the content of the Context register is used as a virtual address to
fetch memory locations containing the physical page frame and access control bits for a pair of TLB entries.
The two entries are placed into the EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are
written into the TLB, typically with a TLBWR instruction.

It is possible that the virtual address used to obtain the physical address and access control information
is on a page that is not resident in the TLB. This condition is processed by allowing a TLB refill exception in
the TLB refill handler. This second exception goes to the common exception vector because the EXL bit of
the Status register is set.

Maskable: No.

79RC32334/332 User Reference Manual 6-17 _ June 4. 2002 1.

CPU Exception Processing TLB Exceptions

Notes TLB Invalid Exception

Cause: The TLB invalid exception occurs when a virtual address reference matches a TLB entry that is
marked invalid (TLB valid bit cleared).

Processing: The common exception vector is used for this exception. The TLBL or TLBS code in the
ExcCode field of the Cause register is set, which indicates whether the instruction—shown by the EPC
register and BD bit in the Cause register—caused the miss by an instruction referenced load operation or
by a store operation.

When this exception occurs, the BadVAddr, Context, and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in which to put the replacement TLB
entry. The contents of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the exception unless this instruc-
tion is in a branch delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing: A TLB entry is typically marked invalid when one of the following is true:

5 a virtual address does not exist

D the virtual address exists, but is not in main memory (a page fault)

D a trap is desired on any reference to the page (for example, to maintain a reference bit or
during debug)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP (TLB Probe),
and replaced by an entry with that entry’s Valid bit set.

Maskable: No.

TLB Modified Exception

Cause: The TLB modified exception occurs when a store operation virtual address reference to memory
matches a TLB entry that is marked valid but is not dirty and therefore is not writable.

Processing: The common exception vector is used for this exception, and the Mod code in the Cause
register is set. When the TLB Modified Exception occurs, the BadVAddr, Context, and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register also contains the ASID from
which the translation fault occurred. The contents of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the exception unless that instruc-
tion is in a branch delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing: The kernel uses the failed virtual address or virtual page number to identify the corre-
sponding access control information. The page identified may or may not permit write accesses; if writes
are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in its own data
structures. The TLBP instruction places the index of the TLB entry that must be altered into the Index
register. The EntryLo register is loaded with a word containing the physical page frame and access control
bits (with the D bit set), and the EntryHi and EntryLo registers are written into the TLB.

Maskable: No

Cache Error Exception
Cause: The Cache Error exception occurs when a primary cache parity error is detected.

Processing: The processor sets the ERL bit in the Status register, saves the exception restart address
in ErrorEPC register, and then transfers to a special vector in uncached space:
U I the BEV bit = 0, the vector is 0xA000 0100.
D If the BEV bit = 1, the vector is 0xBFC0 0300.

79RC32334/332 User Reference Manual 6-18 _ June 4. 2002 1.

CPU Exception Processing TLB Exceptions

Notes No other registers are changed.

Servicing: All errors should be logged. To correct cache parity errors, the system uses the CACHE
instruction to invalidate the cache block, overwrites the old data through a cache miss, and resumes execu-
tion with an ERET. Other errors are not correctable and are likely to be fatal to the current process.

Maskable: Yes, by the DE bit of the Status register.

The Cache Error exception process is as shown in Figure 6.17.

T: ErrorEPC " PC

CacheErr "ER || EC || ED || ET || ES || EE || EB || 0%
SR"SR313 1 1ISR1g /* Set ERL */
if SRy, = 1 then /* What is the BEV bit setting */

PC " 0xBFCO0 0200 + 0x100 I* access boot-PROM area */
else

PC " 0xA000 0000 + 0x100 [* access main memory area */
endif

Figure 6.17 Process of the Cache Error Exception
Bus Error Exception

Cause: A Bus Error exception is raised by board-level circuitry for events such as bus time-out, back-
plane bus parity errors, and invalid physical memory addresses or access types. A Bus Error exception will
occur only when a cache miss refill or uncached reference occurs synchronously. A Bus Error exception
resulting from a buffered write transaction must be reported using the general interrupt mechanism.

Processing: The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in
the ExcCode field of the Cause register is set, signifying whether the instruction (as indicated by the EPC
register and BD bit in the Cause register) caused the exception by an instruction referenced load operation
or store operation.

The EPC register contains the address of the instruction that caused the exception, unless it is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Servicing: The physical address at which the fault occurred can be computed from information avail-
able in the CPO registers.

If the IBE code in the Cause register is set (indicating an instruction fetch reference), the virtual address
is contained in the EPC register. If the DBE code is set (indicating a load or store reference), then the
instruction that caused the exception is located at the virtual address contained in the EPC register (or 4+
the contents of the EPC register if the BD bit of the Cause register is set).

Note: The IPE bit should be checked first. If this bit is set, refer to the servicing section for the
Imprecise Bus Error Exception.

The virtual address of the load and store reference can then be obtained by interpreting the instruction.
The physical address can be obtained by using the TLBP instruction and reading the EntryLo register to
compute the physical page number. The process that is executing at the time of this exception is handed a
bus error signal, which is usually fatal.

Maskable: No.

Integer Overflow Exception

Cause: An Integer Overflow exception occurs when an ADD, ADDI, SUB', or instruction results in a 2's
complement overflow.

Processing: The common exception vector is used for this exception, and the OV code in the Cause
register is set.

1 See Appendix A for instruction description.
79RC32334/332 User Reference Manual 6-19

www NataGhestdleo

CPU Exception Processing TLB Exceptions

Notes The EPC register contains the address of the instruction that caused the exception unless the instruction
is in a branch delay slot, in which case the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing: The process executing at the time of the exception is handed a floating-point exception/
integer overflow signal. This error is usually fatal to the current process.

Maskable: No.

Trap Exception

Cause: The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI,
TLTUI, TEQI, or TNEI" instruction results in a TRUE condition.

Processing: The common exception vector is used for this exception, and the Tr code in the Cause
register is set.

The EPC register contains the address of the instruction causing the exception unless the instruction is
in a branch delay slot, in which case the EPC register contains the address of the preceding branch instruc-
tion and the BD bit of the Cause register is set.

Servicing: The process executing at the time of a Trap exception is handed a floating-point exception/
integer overflow signal. This error is usually fatal.

Maskable: No.

System Call Exception
Cause: The execution of the SYSCALL instruction causes a System Call exception to occur.

Processing: The common exception vector is used for this exception, and the Sys code in the Cause
register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set; otherwise,
this bit is cleared.

Servicing: When this exception occurs, control is transferred to the applicable system routine. To
resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute;
this is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before returning. If a
SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond the scope of this
description, may be required.

Maskable: No.

Breakpoint Exception
Cause: A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction.

Processing: The common exception vector is used for this exception, and the Bp code in the Cause
register is set. The EPC register contains the address of the BREAK instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch instruction. If the
BREAK instruction is in a branch delay slot, the BD bit of the Status register is set, otherwise the bit is
cleared.

Servicing: When the Breakpoint exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the unused bits of the BREAK instruction (bits
25:6), and loading the contents of the instruction whose address the EPC register contains. A value of 4
must be added to the contents of the EPC register (EPC register + 4) to locate the instruction if it resides in
a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-
execute. This is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before

79RC32334/332 User Reference Manual 6-20 _ June 4. 2002 1.

CPU Exception Processing TLB Exceptions

Notes returning. If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction is required
to resume execution.

Maskable: No.

Reserved Instruction Exception
Cause: The Reserved Instruction exception occurs when one of the following conditions occurs:
D an attempt is made to execute an instruction with an undefined major opcode (bits 31:26)
5" an attempt is made to execute a SPECIAL instruction with an undefined minor opcode (bits 5:0)
5 an attempt is made to execute a REGIMM instruction with an undefined minor opcode (bits 20:16)
D an attempt is made to execute a 64-bit operation

Processing: The common exception vector is used for this exception, and the R/ code in the Cause
register is set. The EPC register contains the address of the reserved instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch instruction.

Servicing: No instructions in the RC32300 CPU core are interpreted. The process executing at the time
of this exception is handed an illegal instruction/reserved operand fault signal. This error is usually fatal.

Maskable: No.

Coprocessor Unusable Exception

Cause: The Coprocessor Unusable exception occurs when an attempt is made to execute a copro-
cessor instruction for either:

D a corresponding coprocessor unit that has not been marked usable, or

5 CPO instructions, when the unit has not been marked usable and the process executes in User
mode.

Processing: The common exception vector is used for this exception, and the CPU code in the Cause
register is set. The contents of the Coprocessor Usage Error field of the coprocessor Control register indi-
cate which of the four coprocessors was referenced. The EPC register contains the address of the unus-
able coprocessor instruction unless it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing: The coprocessor unit to which an attempted reference was made is identified by the Copro-
cessor Usage Error field, which results in one of the following situations:

5 Ifthe process is entitled access to the coprocessor, the coprocessor is marked usable and the cor-
responding user state is restored to the coprocessor.

5 Ifthe process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,
interpretation of the coprocessor instruction is possible.

D Ifthe BD bit is set in the Cause register, the branch instruction must be interpreted; then the copro-
cessor instruction can be emulated and execution resumed with the EPC register advanced past
the coprocessor instruction.

5 Ifthe process is not entitled access to the coprocessor, the process executing at the time is handed
an illegal instruction/privileged instruction fault signal. This error is usually fatal.

Maskable: No.

Interrupt Exception

Cause: The Interrupt exception occurs when one of the eight interrupt conditions is asserted. The signif-
icance of these interrupts is dependent upon the specific system implementation.

Processing: The RC32334 may use the common exception vector or a dedicated vector for this excep-
tion, determined by the Cause Register IV bit. The Int code in the Cause register is set. The IP field of the
Cause register indicates current interrupt requests. It is possible that more than one of the bits can be
simultaneously set (or even no bits may be set if the interrupt is asserted and then deasserted before this
register is read).

79RC32334/332 User Reference Manual 6-21 _ June 4. 2002 1.

CPU Exception Processing TLB Exceptions

Notes Servicing: If the interrupt is caused by one of the two software-generated exceptions (SW1 or SW0),
the interrupt condition is cleared by setting the corresponding Cause register bit to 0. If the interrupt is hard-
ware-generated, the interrupt condition is cleared by correcting the condition causing the interrupt pin to be
asserted.

Maskable: Yes. Each of the eight interrupts can be masked by clearing the corresponding bit in the Int-
Mask field of the Status register, and all of the eight interrupts can be masked at once by clearing the /E bit
of the Status register.

Note: Due to the write buffer, a store to an external device will not necessarily occur until after
completion of other instructions in the pipeline. Thus, the user must ensure that the store occurs
before the return from exception (ERET) instruction is executed; otherwise, the interrupt may be
serviced again, although there should be no interrupt pending. The Sync instruction can be used
to achieve this.

DWatch Exception

Cause: DWatch is a read-write register that specifies a data virtual address that causes a Watch excep-
tion. This exception occurs either when the program does a load and the target address matches DWatch
and DWatch.R is set or when the program does a store and the target address matches DWatch and
DWatch.W is set.

Processing: The common exception vector is used for this exception. The Watch code of the Cause
register is set with the DW bit set.

Servicing: This exception is typically used during system debug. Servicing is system-specific.

Maskable: No. Enabled or disabled through bits in the DWatch register (19). Refer to Table 6.8 for
settings and descriptions.

IWatch Exception

Cause: IWatch is a read-write register that specifies an instruction virtual address that causes a Watch
exception. The exception occurs when the program address matches the IWatch Register, and IWatch.| is
set.

Processing: The common exception vector is used for this exception. The Watch code of the Cause
register is set with the W bit set.

Servicing: Typically, this exception is used during system debug. Servicing is system-specific.

Maskable: No. Enabled or disabled through bits in the IWatch register (18). Refer to Table 6.7 for
settings and descriptions.

Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the exceptions described in Table 6.13 as well as
guidelines for their handlers.

Figure Description
Figure 6.18 General exceptions and their exception handler (HW)
Figure 6.19 General exceptions and their exception handler (SW)
Figure 6.20 TLB miss exception and their exception handler (HW)
Figure 6.21 TLB refill exception servicing guideline (SW)
Figure 6.22 Cache error exception and its handler
Figure 6.23 Reset, soft reset and NMI exceptions, and a guideline to their handler.

Table 6.17 List of Exception Handling Flowchart Types
In general, exceptions are handled by hardware (HW) and serviced by software (SW).

79RC32334/332 User Reference Manual 6 -22 _ June 4. 2002 1.

CPU Exception Processing

TLB Exceptions

Notes

79RC32334/332 User Reference Manual

Comments

Enhi «— VPN2, ASID
*EnHi, Context are set only for

Context «— VPN2
Set Cause Register TLB- Invalid, Modified,
EXCCode, CE & Refill exceptions

Instr. in

Yes
Br.Dly. Slot?

A
Cause 31 (BD) <1 Cause 31 (BD) « 0
Check if exception within
another exception
Y
EXL =
(SR1) > .
BadVA is set only for
=0 TLB- Invalid, Modified,
Refill- and VCED/I exceptions
Set BadVA Set BadVA I\Ilzote: ngt set if Bus Error
xception
EPC « (PC-4) EPC « PC
Y Processor forced to Kernel Mode,
EXL < 1:0 interrupt s disabled

=0 (normal) =1 (bootstrap)

Y
PC « 0xBFC0 0200
+180*

Y

PC « 0x8000 0000
+180*
(unmapped, cached)

(unmapped, uncached)

I -
-

To General Exception Servicing Guidelines

Exceptions other than Reset, Soft Reset, NMI, CacheErr or first-level TLB miss
Note: Interrupts can be masked by IE or IMs

* 200 for interrupts if Cause.IV is set.

Figure 6.18 General Exception Handling (HW)

6 - 23 ‘www DataShestAll cop

CPU Exception Processing TLB Exceptions

Notes
Comments
MFCO « * Unmapped vector so TLBMod, TLBInv,
Context TLB Refill exceptions not possible
EPC
Status * EXL=1 so Interrupt exceptions disabled
Cause <
* OS/System to avoid all other exceptions
*Only CacheErr, Reset, Soft Reset, NMI
exceptions possible.
MTCO «
(Set Status Bits:)
KSU « 00
E)I(IE _<1— 0 (optional - only to enable Interrupts while keeping Kernel Mode)
* * After EXL=0, all exceptions allowed.
Check CAUSE REG. & Jump to (except interrupt if masked by IE or IM
appropriate Service Code and Cachekrr if masked by DE)
Service Code
EXL=1
MTCO «
EPC
STATUS
¢ * ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction which is
ERET in the ERET's branch delay slot
*PC « EPC; EXL <0
*LLbit« 0
Figure 6.19 General Exception Servicing Guideline (SW)
79RC32334/332 User Reference Manual 6-24

e Datasheetdicom

CPU Exception Processing TLB Exceptions

Notes

Yes

nstr. in
Br.Dly. Slot?

A
Enhi <— VPN2, ASID Enhi <— VPN2, ASID
Context «— VPN2 Context < VPN2
Set Cause Reg. Set Cause Reg.

EXCCode, CE and
Cause bit 31 (BD) «— 1

EXCCode, CE and
Cause bit 31 (BD) < 0

Check to see if exception is within
another exception

EXL =1

(SR bit 1)

=0
Y

Set BadVA

EPC « (PC - 4)

Set BadVA
EPC <« PC

L.

Points to Refill Exception

=0 (normal)

’

\
Vec. Off. = 0x000

Vec. Off. = 0x180

Processor forced to Kernel Mode &
interrupt disabled

BEV
(SR bit 22)

=1 (bootstrap)

Points to General Exception

Y Y
PC « 0x8000 0000 PC «— 0xBFC0 0200
+ Vec.Off. + Vec.Off

(unmapped, cached)

(unmapped, uncached)

\J
A

To TLB Exception Servicing Guidelines

Figure 6.20 TLB Refill Exception Handling (HW)

79RC32334/332 User Reference Manual 6-25

e Datasheetdicom

CPU Exception Processing TLB Exceptions

Notes

Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions
not possible

MFCO «

* EXL=1 so Interrupt exceptions disabled
CONTEXT
* 0S/System to avoid all other exceptions

*Only CacheErr, Reset, Soft Reset, NMI
exceptions possible.

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

) * There could be a TLB miss again during the mapping
Service Code < of the data or instruction address. The processor will

jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
ERET < in the ERET’s branch delay slot

*PC <« EPC,EXL<«0

* LLbit < 0

Figure 6.21 TLB Refill Exception Servicing Guideline (SW)

79RC32334/332 User Reference Manual 6 - 26 _ June 4. 2002 1.

CPU Exception Processing TLB Exceptions

Notes

Note: Can be masked/disabled by DE (SR16) bit = 1

Set CacheErr Reg.

Y

Instr. in
Br. Dly. Slot?

Yes

ErrEPC « (PC-4) ErEPC «— PC

Y

Y
ERL 1

Cache Error Exception Handling (HW)

=0 (normal) =1 (bootstrap)

Y Y

PC « 0xA000 0000 PC « 0xBFC0 0200
+100 +100

(unmapped, uncached) (unmapped, uncached)

Comments

* Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled
* 0S/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI
exceptions possible.

{* ERET is not allowed in the branch delay slot of

Service Code

another Jump Instruction

* Processor does not execute the instruction which is
in the ERET'’s branch delay slot

*PC « ErorEPC; ERL «- 0
* LLbit <~ 0

Servicing Guidelines (SW)

ERET

Figure 6.22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)

79RC32334/332 User Reference Manual 6 - 27 _ June 4. 2002 1.

CPU Exception Processing TLB Exceptions

Notes
Soft Reset or NMI Exception Reset Exception
— Status: Random «— TLBENTRIES - 1
% Wired «— 0
= BEV <1 Config < Update(31:6)]] Undef(5:0)
£ SRt Status:
2 ERL « 1 :
T BEV « 1
.E SR« 0
< ERL « 1
o
>
]
=
Z el
o >
2
& Y
5 ErrorEPC «— PC
n
@
(7]
b4
PC «— 0xBFCO0 0000
Y

ves NMI?

. Note: There is no indication from the
= = processor to differentiate between
z2 No NMIG Soft Reset o
P’ there must be a system level indication.
5 £
e Y Y
(O] 1
x3 , =0
59 NMI Service Code | Status bit 20
= (SR)

@8
[7] =
£s 1
@ Y Y
y Soft Reset Service Code Reset Service Code
ERET
(Optional)
Figure 6.23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing Guidelines (SW)
79RC32334/332 User Reference Manual 6 - 28

e DataSheetdiieom

Chapter 7

Cache Organization,

IDT Operation, and Coherency

Introduction

Caches are small, high speed memories used to buffer the central processing unit from slower, larger
storage devices such as those found in main memory. Caches are used to store the data or instructions that
a program is currently using while the majority of the data remains in the slower memory, thus providing
quick, temporary storage.

In the logical memory hierarchy, caches reside between the CPU and main memory. The increased
memory access speed made possible through caches is usually transparent to the programmer.

Each functional block shown in Figure 7.1 has the capacity to hold more data than the block above it.
For example, physical main memory has a larger capacity than the primary cache. However, each func-
tional block requires longer access times than any block above it; therefore, it takes longer to access data in
main memory than in the CPU on-chip registers.

RC32334 CPU "
o
k7]
Registers Registers §’
I-cache D-cache 8
8
. (&)
Primary Cache
Faster Access Increasing Data
Time Capacity

=

Main Memory I 2 A
(]
=
w
Disk, CD-ROM, ©
Tape, efc. £
E

\j

Figure 7.1 Logical Hierarchy of Memory

Cache Operation Overview

To support high-performance RISC designs, the primary cache is made up of an Instruction cache
(holds instructions) and a Data cache (holds data). This arrangement allows the processor simultaneous
access to both instructions and data, thereby doubling the effective cache-memory bandwidth.

In general, during cache operations, the processor accesses cache-resident instructions/data when the
on-chip cache controller detects valid information in the cache by an address match. Figure 7.4 shows the
primary cache lookup sequence.

If valid instruction or data is present, the processor retrieves it from cache memory and is then known as
a primary-cache hit. If the instruction/data is not present, a cache miss has occurred. The cache line must
then be retrieved from slower main memory.

79RC32334/332 User Reference Manual 7-1 miﬁmﬁﬁ‘hﬁ&ﬁm@ﬁﬂm

Cache Organization, Operation, and Coherency RC32334 Cache Description

Notes For a cache hit, the processor retrieves the instruction/data from the (high-speed) primary cache and the
operation continues. In the case of a cache miss, the processor can restart the pipeline after the first
doubleword is retrieved (the one at the miss address) and continues the cache line refill in parallel.

It is possible for the same data to simultaneously be in main memory and primary cache. The data is
kept consistent through the use of either a write-back or a write-through methodology. For a write-back
cache, the modified data is not written back to memory until the cache line is replaced. In a write-through
cache, the data is written to memory as the cached data is modified (with a possible delay due to the write
buffer).

RC32334 Cache Description

Details of the RC32334’s cache memory are provided in the remainder of this chapter. Throughout this
text, the following terminology will be used:

' The primary cache may also be referred to as the P-cache
5 The primary data cache may also be referred to as the D-cache
' The primary instruction cache may also be referred to as the I-cache.

These terms will also be used interchangeably throughout the manual.

RC32334 Cache Attributes
Table 7.1 highlights the user attributes of the RC32334 caches.

Attribute Instruction Data
size 8kB 2kB
organization 2-way set-associative | 2-way set associative
line size 16 Bytes 16 Bytes
read unit 32-bits 32-bits
write policy n.a. write-back or write-through, as specified in CPO.
line transfer order sub-block order sub-block order
miss restart after transfer of | entire line miss word
Cache-locking per line per line
parity per-word per-byte

Table 7.1 RC32334 Cache Attributes

Cache Organization and Accessibility

This section describes the organization of the primary cache, including the manner in which it is
mapped, the addressing used to index the cache, and composition of the cache lines. The primary instruc-
tion and data caches are indexed with a virtual address (VA).1

Organization of the Primary Instruction Cache (I-Cache)

Each line of primary I-cache data (although the field actually contains an instruction, it is referred to as
data to distinguish it from the tag field) has an associated 25-bit tag that contains a 21-bit physical address,
a single valid bit, a single parity bit, a lock bit, and the FIFO replacement bit. Word parity is used on |-cache
data.

! Because the size of one set of primary caches is 8KB for ICache and 2KB for DCache, the virtual offset equals
the physical offset. Logically, however, the cache index is pre-translation and thus considered virtual.

79RC32334/332 User Reference Manual 7-2 _ June 4. 2002 1.

Cache Organization, Operation, and Coherency Cache Organization and Accessibility

Notes The primary |-cache of the RC32334 processor has the following characteristics:

(]

Two-way set associative

Indexed with a virtual address

Checked with a physical tag

Organized with 4-word (16-byte) cache line
Lockable on a per-line basis.

O o o o

Figure 7.2 shows the format of a primary I-cache register, and Table 7.2 lists field content descriptions.

24 23 2 21 2 0
L{P|V]|F PTag
1 1 1 1 21

Figure 7.2 Primary |-Cache Line Format

Field Description
PTag Physical tag (bits 31:11 of the physical address)
F FIFO Replacement Bit. Complemented on refill
v Valid bit
P Even parity for the PTag and V fields
L Lock bit
DataP Even parity; 1 parity bit per word of data
Data Cache data

Table 7.2 Primary I-Cache Line Field Descriptions

Note: The Physical tag field contains 21 bits (bit [31:11]) of the physical address to support the
smaller I-cache size of 4KB (2KB per set) in the future. For the current version of 3200 core with
8KB of I-cache, just bits [31:12] are valid, bit 11 is ignored.

Organization of the Primary Data Cache (D-Cache)

Each line of primary D-cache data has an associated 30-bit tag that contains a 23-bit physical address,
2-bit cache line state, a write-back bit, a parity bit for the physical address and cache state fields, a parity bit
for the write-back bit, the FIFO replacement bit, and a lock bit.

The primary D-cache of the RC32334 processor has the following characteristics:

5 Write-back or write-through on a per-page basis
Two-way set associative
Indexed with a virtual address
Checked with a physical tag
Organized with 4-word (16-byte) cache line
Lockable on a per-line basis.

O o o o o

79RC32334/332 User Reference Manual 7-3 _ June 4. 2002 1.

Cache Organization, Operation, and Coherency Cache Organization and Accessibility

Notes Figure 7.3 shows the format of a primary D-cache line; Table 7.3 provides the field content descriptions.
21 26 25 24 23 22 0
L|P CS F PTag
11 2 1 23
37 3% 3 32 31 0
‘ W | W DataP Data
L DataP Data
DataP Data
DataP Data

4 32

Figure 7.3 Primary D-Cache Line Format

Field Description
PTag Physical tag (bits 31:9 of the physical address)
F FIFO Replacement Bit
CS Primary cache state:

0 = Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive

P Even parity for the PTag and CS fields

L Lock bit

W Write-back bit (set if cache line has been written)
W Write-back bit (set if cache line has been written)
DataP Even parity for the data; 1-bit per byte

Data Cache data

Table 7.3 Primary D-Cache Line Field Description

Note: The physical tag field contains 23 bits (bits [31:9]) of the physical address to support the
smallest D-cache size of 1KB (512B per set) in the future. For the current version of 3200 core
with 2KB of D-cache, just bits [31:10] are valid, bit 9 is ignored.

In the RC32334, the W (write-back) bit—not the cache state—indicates whether or not the primary cache
contains modified data that must be written back to memory.

Note: There is no hardware support for cache coherency. The only cache states used are Dirty
Exclusive and Invalid.

79RC32334/332 User Reference Manual 7-4 _ June 4. 2002 1.

Cache Organization, Operation, and Coherency Accessing the Primary Caches

Notes
> Data o Data
Translation Lookaside = =
Buffer(TLB)

Present?

ASID Match?

Valid?

?

TLB |l\fiss
Cache Hit

<@
Data

Figure 7.4 Conceptual Primary Cache Lookup Sequence
Accessing the Primary Caches
Figure 7.5 shows the virtual address (VA) index into the primary caches. For the RC32334 the instruc-
tion cache is 8kB and the data cache is 2kB.
Data
Tags
Tag line VA(9:4)
- I I Data line
VA(9:4) > I
State Tag |7
\
W W P Data
Figure 7.5 Primary Cache Data and Tag Organization
79RC32334/332 User Reference Manual 7-5

e Datasheetaicom

Cache Organization, Operation, and Coherency Primary Cache States

Notes Primary Cache States

The terms below are used to describe the state of a cache line™:

U Exclusive: a cache line that is present in exactly one cache in the system is exclusive. This is
always the case for the RC32334. All cache lines are in an exclusive state.

H Dirty: a cache line that contains data that has changed since it was loaded from memory is dirty.
D' Clean: a cache line that contains data that has not changed since it was loaded from memory is
clean.

U Shared: a cache line that is present in more than one cache in the system. The RC32334 does not
provide for hardware cache coherency. This state will not occur during normal operations.

The RC32334 supports the four cache states shown in Table 7.4. Under normal operations, the only
states that will occur in the RC32334, are the Dirty Exclusive and Invalid states.

Note: Although valid data is in the Dirty Exclusive state, it may still be consistent with memory.
One must look at the dirty bit, W, to determine if the cache line is to be written back to memory
when it is replaced.

Each primary cache line in the RC32334 system is in one of the states described in Table 7.4.

Cache Line State Description

Invalid A cache line that does not contain valid information must be marked invalid, and cannot be
used. A cache line in any other state than invalid is assumed to contain valid information.

Shared A cache line that is present in more than one cache in the system is shared. This state will
not occur for normal operations.

Clean Exclusive A clean exclusive cache line contains valid information and this cache line is not present in
any other cache. The cache line is consistent with memory and is not owned by the proces-
sor (see “Cache Line Ownership” on page 7-6 in this chapter). This state will not occur for
normal operations.

Dirty Exclusive A dirty exclusive cache line contains valid information and is not present in any other
cache. The cache line may or may not be consistent with memory and is owned by the pro-
cessor (see “Cache Line Ownership” on page 7-6 in this chapter). Use the W bit to deter-
mine if the line must be written back on replacement.

Table 7.4 Primary Cache States

Primary Cache States
Each primary data cache line is normally in one of the following states:
5 invalid
. dirty exclusive.
Each primary instruction cache line is in one of the following states:
5 invalid
5 valid

Cache Line Ownership

The processor is the owner of a cache line when it is in the dirty exclusive state, and is responsible for
the contents of that line. There can only be one owner for each cache line.
The ownership of a cache line is set and maintained through the rules described below.

5 A processor assumes ownership of the cache line if the state of the primary cache line is dirty
exclusive.

1- A cache line is the smallest unit of information that can be fetched from memory to be filled into the cache. A
primary cache line is 16 bytes (4 words) in length and is represented by a single tag. Upon a cache miss in the
primary cache, the missing cache line is loaded from main memory into the primary cache.

79RC32334/332 User Reference Manual 7-6 _ June 4. 2002 1.

Cache Organization, Operation, and Coherency Cache Write Policy

Notes 5 A processor that owns a cache line is responsible for writing the cache line back to memory if the
line is replaced during the execution of a Write-back or Write-back Invalidate cache instruction if the
line is in a write-back page. The Cache instruction is explained in Appendix A.

. Memory always owns clean cache lines
' The processor gives up ownership of a cache line when the state of the cache line changes to
invalid.

Therefore, based on these rules and that any valid data cache line is in the Dirty Exclusive state (under
normal operating conditions), the processor is considered to be the owner of the cache line.

Cache Write Policy

The RC32334 caches use the same write algorithms defined for the RC4700. These algorithms are
specified by the “C” bits! of a TLB entry or through the KO field of the status register.

The RC32334 processor manages its primary data cache by using either a write-back or a write-through
policy selected on a per-page basis through the TLB. In a write-back cache, the data is not written back to
memory until the cache line is replaced.

A write-through policy means the store data is written to the cache and to memory. Due to the write
buffer, the write of the data to memory may not occur at the same time as the write to cache.

For a write-back entry, if the cache line is valid and has been modified (the W bit is set), the processor
writes this cache line back to memory when the line is replaced, either in the course of satisfying a cache
miss or during the execution of a Write-back or Write-back Invalidate CACHE instruction.

For a write-through entry, whenever a store hits in the cache line, the data is also written to memory via
the write buffer. The store will not set or clear the W bit for a write-through cache line. This is to allow a
different virtual address that maps to the same physical address and with a write-back policy to still set the
W bit.

For a miss to a write-through line, the action taken will be determined by the write-allocation policy. For a
write-allocate entry, the cache line is first retrieved from memory and the store will then continue. A no write-
allocate entry will just post the write to the system interface, via the write buffer, in the same manner as an
uncached write.

Store Buffer

To implement the write-back cache, the store instructions to cacheable memory operation must include
a read/write sequence to the cache; the read first determines whether the line is cache resident; the subse-
quent write updates the appropriate bytes, dirty bit, and parity bits.

To allow back-to-back data cache access, the RC32334 implements the same store buffer concept
included with IDT's 64-bit RISController. This avoids extra stalls after store instructions to complete the
read-modify-write sequence required to update the cache line.

Cache Replacement Policy
The RC32334 uses the following algorithm to select a cache line from the available sets for replace-
ment:
If both lines are invalid, select set A.
If only one set is marked invalid, select that set.
If one set is locked, select the other set.
If both sets are locked, select set AZ.

If both sets are valid and unlocked, select the line which has been in the cache the longest. Each
cache line contains a “FIFO” bit to help determine which line was least recently replaced.

O 0o o o o

! See Table 5.1 in Chapter 5 of this manual for bit values and attribute assignment.
2. This is an erroneous condition; however, the RC32334 handles this case deterministically.

79RC32334/332 User Reference Manual 7-7 _ June 4. 2002 1.

Cache Organization, Operation, and Coherency Cache Initialization

Notes Cache Initialization

The RC32334 includes 2kB of 2-way set associative data cache that corresponds to an address range
between 0x000 and 0x7fc. The cache index offset for set A is 0x000, while the cache index offset for set B
is 0x1000. To avoid any cache initialization problems, please select one of the following two initialization
methods:

1. Initialize index location 0x000-0x3fc for set A and then 0x1000-0x13fc for set B.

or
2. |Initialize as if the data cache were at least 8k large.

The |-cache tag should also be initialized using "cache op" instruction with the index location 0x0000-
0xOFFC for set A, and then 0x1000-0x1FFC for set B.

Cache Locking

The RC32334 also supports a cache-locking feature that can be used to lock critical sections of code
and/or data into on-chip caches to guarantee quick access.

A portion of a cache is said to be locked when a particular piece of code or data is loaded into a cache
location that will not be selected later for refill by other data. The locking feature of the RC32334 is on a per-
line basis; that is, the kernel may set status register control bits that allow individual cache lines to be locked
in the cache.

Locked cache lines can be changed by any of the following operations or conditions:
' cache operations
5 store operations to cached virtual address
5 if they become valid.

When to use Cache Locking
Cache locking is useful in the following cases:

5" a portion of code must reside in cache permanently (for example, time-critical exception vectors) for
real-time performance

Da given section of code is executed frequently and can fit inside a portion of the instruction cache

5" a given section of data is accessed frequently and can fit inside the data cache (for example, tables
containing routing information in an embedded network application).

In the RC32334, both the Instruction and Data cache are two-way set associative, with set A and set B.
By setting the DL or IL bit in the Status register of CPO, a refilled cache line of a selected set, at that time,
can be locked in the appropriate cache; therefore, a future fill into this cache line will always use the other
set. Furthermore, if one set of a cache line has already been locked, the second attempt to lock this cache
line will be ignored.

As previously noted, a Data store operation to locked data will update the D-cache contents; locking
merely prevents the cache line contents from being replaced by the contents of a different physical location.
The locked cache line can be unlocked by using a Cache operation to invalidate that line. Anytime the valid
bit of a cache line is cleared, the lock bit is cleared simultaneously. The basic algorithm presented here
consists of the following three steps.

1. Set the appropriate cache-lock enable bit(s).

2. Load the critical code/data into the cache(s).

3. Clear the appropriate cache lock enable bit(s).

Example: Data Cache Locking

For this example, assume an application in which a table must be kept in cache. After completing the
initialization of data structures, etc., in the start-up code, the DL bit in the Status register can be set to
enable the cache line locking, perform reads through cached addresses to load the data into the data
cache, and then—to prevent further cache locking— clear the DL bit. A sample code fragment for the Data
Cache Locking operation follows:

79RC32334/332 User Reference Manual 7-8 _ June 4. 2002 1.

Cache Organization, Operation, and Coherency Cache Locking

.set noreorder
jal flush_cache /* Flush the cache */
mfcO0 a0, CO SR /* Get old SR value */
li al,SR SET DL /*SR_SET DL = 0x00100000 */

Notes

or a0, a0, al

mtc0 a0, CO_SR /* Set the Lock bit for data cache */
nop

nop

nop /* 3 nops: safety against CP0O hazard */

la t0, critical table /* This table should always bein cache */
li tl,table size /* Size of table in bytes */
i t2,0 /* Number of bytes read into cache */

I: 1w a0, 0(t0)

addiu 2,4

bneq t2,tl, 1b /* Loop back till done */
addiu t0, 4 /* bump read address */

mfcO0 a0, CO_SR /* Get old SR value */
li al,SR_ CLR DL /* SR _CLR_DL = Oxffefffff */
and a0, a0, al
mtc0 a0, CO_SR /* Clear the Lock bit for data cache */
nop
nop

nop /* 3 nops: safety against CP0O hazard */

Example: Instruction Cache Locking

For this example, assume an application in which a critical function must be kept in cache. Also assume
that the size of the function is known. (If not known, the size can be determined by generating a disas-
sembly of the object file.)

After completing the initialization of data structures, etc., in the start-up code, the IL bit of the Status
register can be set to enable cache line locking, perform the FILL operation in the CACHE instruction that
will fill the instruction cache with the critical function, and then—to prevent further cache locking—clear the
IL bit.

A sample code fragment for the Instruction Cache Locking operation follows:
.set noreorder
jal flush_cache /* Flush the cache */
la t0, 1f /* Get address of label “1” */
li t1, 0xA0000000
or t0, t0, t1
jrto /* Uncached execution from now onwards */

nop

1: lat0, func_start addr /* Start address of critical code */

79RC32334/332 User Reference Manual 7-9 _ June 4. 2002 1.

Cache Organization, Operation, and Coherency Cache Locking

Notes li tl, func_size /* Critical code size */

i 2,0 /* Number of words read into cache */
mfc0 a0, CO_SR /* Get old SR value */
li al, SR_SET IL /* SR_SET _IL = 0x00080000 */
or a0, a0, al

mtc0 a0, CO_SR /* Set Lock bit for instruction cache */
nop
nop
nop

2: cache Fill I, 0(t0) /* Fill Operation */
addiu 2,4
bneq t2,tl,2b /* Loop back till done */
addiu 0,4 /* bump read address */
mfc0 a0, CO_SR /* Get old SR value */
li al, SR_CLR_IL /* SR_CLR_IL = Oxfff7ffff */
and a0, a0, al
mtcO0 a0, CO_SR /* Clear Lock bit for instruction cache */
nop
nop
nop
nop
nop /* 5 nops: safety against CP0 hazard */

la v0, 3f

jr v0

nop

3: /* Resume execution in mode as linked */

79RC32334/332 User Reference Manual 7-10

e DataSheetdiieom

RC32334 Internal Bus

®

Introduction

manual as the RC32300 CPU bus.

internal address map of the RC32334.

Internal 32-bit data bus

Internal bus arbitration modes
Internal chip select generation

O o oo o o

Block Diagram

Internal command/data protocol
Internal generic read/write and burst read/write protocols

List of Features for RC32300 CPU Bus
Internal 32-bit physical addressing

The RC32334 is an integrated processor which is logically an integration of two discrete existing IDT
devices; the RC32364 standalone CPU and the RC32134 system controller. The bus that connects the two
discrete devices together, is replaced internally in the RC32334 integrated processor, referred to in this

Although this bus in not visible external to the RC32334, there are certain registers that need to be
configured by the user. This chapter discusses these aspects.

Generally, the RC32300 CPU bus features a multiplexed address/data bus and a number of associated
control signals. A device controller module latches and decodes the address information originating from
the RC32300 CPU core to determine which memory, 1/O or peripheral module is being accessed, per the

RC32300
CPU CORE

RC3200 CPU BUS

v |

CPU CORE
I/F

ADDRESS
LATCHING

RESET, ACK,
BUSERR,
TRANSCEIVER
CONTROL

ADD
MUX/
DEMUX

I

ADDRESS
GEN

—p mem_addr[25:2]

CONTROL
REGISTERS

y

v

IP BUS
ARBITRATION

ADDRESS
DECODE

IP MASTER/
SLAVE MODULE

-t

.

v 3

IPBus

79RC32334/332 User Reference Manual 8-1

Figure 8.1 IP Bus Bridge Block Diagram

Ly 6, 28020 0

RC32334 Internal Bus Functional Overview

Notes

Functional Overview

The RC32334's internal bus bridge provides a translation from the RC32300 CPU BIU interface control/
address bus to the internal IP bus. The RC32334’s internal IP bus is a synchronous command oriented bus
that connects multiple DMA masters and all of the peripheral slaves. The bridge also provides address
decoding and generates all address lines to the external memory and I/O peripherals. The internal bus
bridge contains the following three main components:

U Address module
U Data module
0" Control module.

Address Module

The Address module of the internal bus bridge translates either the RC32300 CPU core generated
addresses or addresses generated by internal modules (DMA Controller, PCI Interface) to the primary
address lines, for use by the external Memory system and I/O peripherals. The Address module also gener-
ates decoding for all external chip and internal module chip selects.

Address Incrementer

The system address that is used to interface to external memory such as PROM or DRAM is incre-
mented after each word (32-bit) access. RC32300 CPU core initiated reads must be incremented with
subblock ordering, which is shown in Figure 8.2. Other accesses—including those generated from the DMA
Controller and PCI bridge interface as well as all writes—increment addresses with linear ordering.

quadword
A

doubleword

Order of retrieval 2 3 0 1

‘ w0 | w1 ‘ w2 ‘ w3 ‘
WO . w3
taken third

taken second

w1

taken fourth w2
taken first

Figure 8.2 Subblock Ordered Data Retrieval

The RC32334 makes a system simplification and assumes that all accesses are 32-bit. Thus, both the
8- and 16-bit PROMs must connect Addr3:2], BE_n[1], and BE_n[0] directly to the RC32334 if
mem_addr[3.2] are used, in accordance with the table within Table 1.2, Pin Descriptions. The RC32334 will
inadvertently increment (in subblock order) mem_addr(3:2] on each CPU byte access. For more informa-
tion, refer to the Using 8- or 16-bit Boot PROMSs section of Chapter 10 for more information.

Address MUX

The RC32334 uses the first set of address lines (mem_addr{25:2]) to provide the address to external
memory (ROM, EPROM, SRAM) and | /O peripherals. SDRAM, the address lines (mem_addr{15:2])
provide the DRAM row and DRAM column addresses. An address mux is implemented to map the address
of the transaction on the proper address lines. More details on the address mapping convention for these
operations are provided in the Memory Controller section in Chapter 10 and the Synchronous DRAM
Controller section in Chapter 11.

79RC32334/332 User Reference Manual L

www NataGhestdleo

RC32334 Internal Bus Data Module

Notes Address Decode

Address Decode takes the internally latched address and generates both external chip selects and
internal module chip selects, based on the memory map. Some of the external chip selects are fixed to a
particular physical address range. The address range of the other external chip selects is software
programmable via the Memory Base Address Registers, Memory Base Mask Registers, DRAM Base
Address Registers, and DRAM Base Mask Registers. These registers are described in the Memory-10 and
DRAM chapters of this manual. Also, the Reset initialization requires that the Address Latch Timing
Register be setup to optimize timing by choosing a 1 clock or 2 clock address decode, as described later in
this chapter.

During the first clock of a transaction, the RC32334 decodes the address and compares it to the base
address registers/constants from SDRAM, MEMORY, PClI, other peripherals, and controller register banks.
Furthermore, on transactions selecting memory spaces within the SDRAM and MEMORY controllers, each
compare bit is masked to determine whether that bit is involved in the compare. The mask operation allows
multiple banks of memory to be in a linear contiguous address space.

Note: InFigure 8.3 through 8.5, cpu_ale_n and cpu_ad[31:0] signals are internal to the RC32334
and are shown for reference only. They are generated by the RC32300 CPU core.

idle addr/decode bus cycle idle
cpu_masterclk ‘—_;‘—_;‘ ¥ §
cpu_ale_n |/
cpu_ad[310] NN addr) data]
mem_cs_n[0] \ /|
mem_oe_n \ |

Figure 8.3 Address Latch Time with Fast Decode Setting

idle addr decode bus cycle idle
cpu_masterclk f \ 1 ¥ F ¥ \ o
cpu_ale_n L/ \
cpu_ad[31:0] (NG addr — data y]
mem_cs_n|[0] /|
mem_oe_n \ /A

Figure 8.4 Address Latch Time with Slow Decode Setting

Data Module

During read or write transactions to external memory and peripherals generated by the internal
RC32300 CPU core, the RC32334 bus generates all control and address signals. Thus, the RC32334
provides sufficient control signals to enable data driven from memory.

CPU Read/Write Operations

During the data phase of a write operation, the RC32334 is the master of the bus and drives the data on
cpu_ad[31:0] bus (see timing in Figure 8.5). However, during the data phase of a read operation, external
memory or |/O becomes bus master and drives the data on the mem_data[31:0] which is latched internally
inside the RC32334 onto the cpu_ad[31:0] bus.

79RC32334/332 User Reference Manual 8-3 _ June 4. 2002 1.

RC32334 Internal Bus DMA Read/Write Operations

Notes

cpu_masterclk

cpu_ale_n

cpu_ad[31:0]

e ——

Figure 8.5 RC32334 cpu_ad[31:0] Data Phase

mem_oe_n

DMA Read/Write Operations

During DMA operations, or when the PCI bus is accessing main memory, the RC32300 CPU core is not
involved in the transaction and the RC32334 is master of the internal cpu_ad[31:0] bus. During DMA write
operations, the RC32334 drives the address and the control signal to the memory and I/O peripherals and
drives the data on the mem_data[31:0] bus. During DMA read operations, the RC32334 drives the address
and control signals to the memory or 1/O peripherals, which in turn returns the data to the RC32334 by
driving the mem_data[31:0] bus.

Arbitration

The RC32300 CPU core is the default bus master on the internal cpu_ad[31:0] bus. A RC32334 on-chip
peripheral module requests the bus from the CPU core when DMA operations occur, or when the PCI
bridge reads or writes to the main memory. The RC32334 implements an internal arbiter to arbitrate for the
cpu_ad[31:0] bus in the following two options:

1. Fixed (CPU, (0,1,2,3,PCI))

2. Round robin after each grant: (CPU,(0,1,2,3,PCl)), (CPU,(1,2,3,PCI,0)),
(CPU,(2,3,PCI,0,1)),...

The cpu_ad[31:0] bus protocol enables the CPU core to request the bus after it has been granted by de-
asserting the busgnt_n signal (an internal signal not visible to devices and external to the RC32334). Thus,
between any two DMA accesses, the CPU will typically issue an access. However, if a DMA request is
pending, the CPU will always give the bus up after its present transaction completes.

Memory Port Sizing

The RC32334 divides the physical memory space into 12 regions. The port width of each region can be
configured in the RC32334’s Port-Width Control register. Physical memory space in the RC32334 is divided
into 12 distinctive regions (typical mapping of the physical regions is shown in Table 1.4).

The port-width sizes of the DRAM (A,B,C,D) and PCI (J & K) regions are always 32-bit; however, the
port-width sizes of the memory and I/O regions (H & I) are programmable through the Port-Width field of the
Memory Controller register, as described later in this chapter.

Bus Turnaround (BTA) Register

The RC32364 BIU core includes a BTA register that specifies, per memory region, the number of clock
cycles the CPU core will wait before issuing a new transaction after completing a read operation. A similar
BTA feature is included in the RC32334 peripheral controller.

This BTA feature allows slow-to-disable-data devices such as EPROM to share a data bus with other
devices. RC32334 does not allow a transaction to follow a read in less than the BTA value setup per
address block. Similar to the RC32300 CPU core BTA Register, all RC32334 BTA settings in the peripheral
controller are set to their maximum of ‘3’ at reset. The software operating system kernel should program
this register immediately as part of the power-up/reset boot sequence. A field description table (Table 8.8)
and format diagram (Figure 8.8) for this register are provided in the Register Descriptions section of this
chapter.

79RC32334/332 User Reference Manual 8-4 _ June 4. 2002 1.

RC32334 Internal Bus Watchdog Timer

Notes Watchdog Timer

As part of the Timer module, a Watchdog timer is included that works as a safeguard mechanism to
assist in detecting runaway software. The Watchdog timer will issue an internal cpu_reset_n (warm reset) to
the CPU core if the Watchdog Timer rolls over. When the RC32334 issues a warm reset, it does not affect
the RC32334 reset boot-mode settings.

Normally, the software operating system kernel must occasionally reset the Timer Count Register (to
0x0000_0000) so that the rollover does not occur. In Standard-boot mode, the WatchDog Timer func-
tion is enabled at reset. If the OS kernel chooses not to implement this function, the boot code must, at a
minimum, disable this function by writing to the BusError Control Register of the IP Bridge. A WatchDog
Timer Status bit indicates if the last reset was caused by the WatchDog Timer. In PCl-boot mode, the
WatchDog Timer is disabled at reset.

Bus Time-Out Counters

Two 16-bit software programmable bus time-out counters are also provided, each with its own compar-
ator: software programmable abort, including externally generated wait-states. There is a software
programmable enable/disable bit. In addition to the abort, an internal interrupt is generated. A bus time-out
terminates the present data of a memory transaction, causing buserror_n and ack_n (both signals internal
to the RC32334 interconnecting the System Controller to the CPU) to be returned. The bus time-out setting
is typically calculated from the maximum burst length of the RC32334 at 4 words using its slowest transac-
tion. Typically, an 8-bit boot EPROM burst transfer of 4 words (16 bytes) is the longest possible transfer.
When a bus time-out occurs, the present physical address is latched into the Bus Error Register.

Bus Error Timers

The RC32334 includes two bus error timers. The first is used for RC32364 BIU core bus time-outs and
will time-out if the CPU bus is held too long. Because the present implementation of RC32334 always gets
the CPU bus when an IP access is in process, a CPU bus time-out also causes an internal IP bus time-out.

For systems that must distinguish between CPU and IP accesses, an optional IP bus time-out timer is
provided. This timer will only assert if the IP bus is held too long, regardless of the CPU bus time-out. Most
systems will not need to use this timer and can reassign the timer for general purpose usage. If used, the IP
bus time-out timer is typically set to 1 more than the CPU bus time-out, so that the two cases can be distin-
guished by the bus error status bits.

Register Descriptions

Address Register
FFFF_E200 CPU Port Width Register
FFFF_E204 CPU BTA Register
FFFF_E208 CPU BusError Address Register

Table 8.1 CPU Bus Interface Control Registers

Address Register
1800_0000 BTA Register
1800_0004 Address Latch Timing Register
1800_0008 Arbitration Register

Table 8.2 CPU to IP Register Addresses and Descriptions (Part 1 of 2)

79RC32334/332 User Reference Manual 8-5 _ June 4. 2002 1.

RC32334 Internal Bus Interface Control Registers

Notes Address Register
1800_0010 BusError Control Register
1800_0014 BusError Address Register
1800_0018 SysID Register

Table 8.2 CPU to IP Register Addresses and Descriptions (Part 2 of 2)

Interface Control Registers

The following three interface control registers are used in the RC32334:

5 The CPU Port-Width Control register controls attributes of the various memory systems and is used
to interface the RC32334 to varying width memory regions.

5 The CPU Bus Turnaround (BTA) control register controls the bus turnaround cycle(s) for the various
memory systems. The RC32334 divides the physical address space into various sub-regions, each
of which features independently programmable bus turnaround cycle(s).

U The CPU Bus Error Address Register holds the physical address of the transfer that signalled the
most recent bus error.

CPU Port-Width Control Register: Virtual Address OxFFFF_E200

The RC32334 divides the physical address space into various sub-regions, each of which features inde-
pendently programmable port widths. At reset, all memory widths are set to the width of the boot prom. Soft-
ware may then re-program the widths of various regions to meet the actual system implementation.

Using the Port Width Control register allows software to be fully independent of the actual system imple-
mentation; software may then treat all references as if the memory was 32-bits wide and relies on the
RC32334 to manage the bus interaction with the actual memory system to satisfy this model.

The format of the CPU Port Width Control register is shown in Figure 8.6. Table 8.3 lists the register’s
fields and content descriptions.

Note: Region G should always be programmed to 32-bit port width during boot code initialization
before the System Controller Registers are used.

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 15 14 13 12 11 10
0 | Region A |Region B |Region C ‘Region D ‘ Region E | Region F |Region G ‘Region H ‘Region | ‘RegionJ
2 2 2 2 2 2 2 2 2 2 2
9 87 65 4.3 21 0

Region K | RegionL [Region M | RegionN | Region O
2 2 2 2 2

Figure 8.6 Format of CPU Port Width Control Register

Field Description

0 Reserved

RegionA Width of region RegionA

RegionB Width of region RegionB

RegionC | Width of region RegionC

RegionD | Width of region RegionD

RegionE Width of region RegionE

Table 8.3 Port Width Control Register Field Definition (Part 1 of 2)

79RC32334/332 User Reference Manual 8-6 _ June 4. 2002 1.

RC32334 Internal Bus Interface Control Registers

Notes Field Description

RegionF Width of region RegionF

RegionG | Width of region RegionG

RegionH | Width of region RegionH

Regionl Width of region Regionl

RegionJ Width of region RegionJ

RegionK | Width of region RegionK

RegionL Width of region RegionL

RegionM | Width of region RegionM

RegionN | Width of region RegionN

RegionO | Width of region RegionO

Table 8.3 Port Width Control Register Field Definition (Part 2 of 2)
Width fields are encoded as shown in Table 8.4.

Width(1) (MSB) | Width(0) (LSB) Port Width
0 0 8 bits
0 1 16 bits
1 0 32 bits
1 1 Reserved

Table 8.4 Encoding of 8-, 16-, and 32-bit Port Widths

The address ranges served by each named region are listed in Table 8.5. The memory space is divided
as follows:

U The 512MB of kseg0/1 are divided into eight 64MB sub-regions, each of which can have indepen-
dent widths. Thus, four widths can be reached cacheably, and four widths can be reached uncache-
ably. The cache management algorithm for kseg0 is specified in the kO field of the status register.

' The remaining memory space—3.5GB—is divided into seven equal sections of 512MB, each of
which can have independent widths. In addition, the cache attributes of each page within the region
can be controlled using the TLB.

Region Name | Physical Address (31:26) Comments
RegionA 0000 00 64MB
RegionB 0000 01 64MB
RegionC 0000 10 64MB
RegionD 0000 11 64MB
RegionE 0001 00 64MB
RegionF 0001 01 64MB
RegionG 000110 64MB
RegionH 0001 11 64MB
Regionl 001x xx 512MB
RegionJ 010x xx 512MB
RegionK 011x xx 512MB

Table 8.5 Memory Region Address Ranges (Part 1 of 2)

79RC32334/332 User Reference Manual 8-7 _ June 4. 2002 1.

RC32334 Internal Bus Interface Control Registers

Notes Region Name | Physical Address (31:26) Comments
RegionL 100x xx 512MB
RegionM 101x xx 512MB
RegionN 110x xx 512MB
RegionO 111% xx 512MB

Table 8.5 Memory Region Address Ranges (Part 2 of 2)

CPU Bus Turnaround (BTA) Control Register: Virtual Address
OxFFFF_E204

At reset, all memory sub-regions will be programmed to the maximum of 3 turnaround cycles, and soft-
ware may then re-program this register to achieve maximum system performance.

The format of the BTA register is shown in Figure 8.7. This register’s fields and content descriptions are
listed in Table 8.6.

Note: Region G should always be programmed to a BTA=1 during boot code initialization. In
general, most Regions can use BTA=1. Note that the T recovery cycle, shown in Figure 8.9, is
used by the RC32334 to pre-charge the mem_data bus during CPU-generated accesses. Thus,
the BTA=0 setting should never be used unless proper bus isolation techniques are utilized, such
as with Q-logic transceivers.

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 15 14 13 12 11 10
‘ 0 | 0 ’RegionA ‘RegionB |Regi0nC ‘RegionD ‘RegionE ‘RegionF ‘RegionG |RegionH ‘Regionl |RegionJ I
1 1 2 2 2 2 2 2 2 2 2 2
9 87 65 43 2 1 0

Region K | RegionL |Region M | Region N | Region O
2 2 2 2 2

Figure 8.7 CPU Bus Turnaround (BTA) Control Register Format

Field Definition

0 Reserved

0 Reserved

RegionA Turnaround cycle(s) of region RegionA
RegionB Turnaround cycle(s) of region RegionB
RegionC Turnaround cycle(s) of region RegionC
RegionD Turnaround cycle(s) of region RegionD
RegionE Turnaround cycle(s) of region RegionE
RegionF Turnaround cycle(s) of region RegionF
RegionG Turnaround cycle(s) of region RegionG
RegionH Turnaround cycle(s) of region RegionH
Regionl Turnaround cycle(s) of region Regionl
RegionJ Turnaround cycle(s) of region RegionJ
RegionK Turnaround cycle(s) of region RegionK

Table 8.6 CPU Bus Turnaround (BTA) Control Register Field Descriptions (Part 1 of 2)

79RC32334/332 User Reference Manual 8-8 _ June 4. 2002 1.

RC32334 Internal Bus Interface Control Registers

Notes Field Definition
RegionL Turnaround cycle(s) of region RegionL
RegionM Turnaround cycle(s) of region RegionM
RegionN Turnaround cycle(s) of region RegionN
RegionO Turnaround cycle(s) of region RegionO

Table 8.6 CPU Bus Turnaround (BTA) Control Register Field Descriptions (Part 2 of 2)

The turnaround cycle(s) is encoded as shown in Table 8.7. After a read access, it indicates the minimum
number of Turnaround clock cycles that must occur before the next read or write access can occur. Figure
8.9 shows the timing of the BTA cycle. Note the clock cycle denoted by the Tt symbol indicates the

minimum number of Turnaround cycles that must occur after a read access.

TA(1) (MSB) | TA(O) (LSB) | Turnaround cycle(s)
0 0 0 cycle
0 1 1 cycle
1 0 2 cycles
1 1 3 cycles

Table 8.7 Width Encoding of Bus Turnaround Cycles

CPU Bus Error Address Register (Read Only): Virtual Address
OxFFFF_E208

This is a read only register that holds the address that caused the bus error. Any attempts to write to this
register will not change its value, which is not defined before the Bus Error is sampled.

BTA Control Register

Note: Although this register exists, it is not functional. Refer to the RC32334/RC32332 Device
Errata, located at www.idt.com, for additional information.

Bus turnaround time refers to that period of time after a read transaction ends before the next transac-
tion can begin. This time period allows the memory, or its transceiver just read, to tri-state its data from the
AD bus before the next address is driven out by the CPU as shown in Figure 8.9 on page 8-11.

On the RC32334, the BTA register is used within DMA transactions, whenever a read occurs, and does
not allow a transaction to follow a read in less than the BTA value setup per address block. At reset, all
memory subregions are programmed to the maximum of 3 turnaround cycles, and software should then
reprogram this register to achieve maximum system performance. A setting of ‘1’ is typical.

After a DMA descriptor burst read, no Bus Turnaround (BTA) clocks are inserted and a CPU address
may appear on the mem_data [] bus as soon as 2 clocks after the DMA descriptor read.

Note: Region G, which sets the BTA for the RC32334 internal register space, must be
programmed to a setting of “1” or greater.

The format of the BTA control register is shown in Figure 8.8. This register’s fields and content descrip-
tions are listed in Figure 8.8. The regions shown correspond to the BTA regions described in the RC32334’s
BTA register.

79RC32334/332 User Reference Manual 8-9 _ June 4. 2002 1.

RC32334 Internal Bus Interface Control Registers

Notes
31 30 29 28 271 2625 24 23 22 21 20 19 18 17 16
0 0 Region A Region B Region C Region D Region E Region F Region G I
15 14 13 12 11 10 9 8 7 6 5 43 21 0
Region H Region | Region J Region K Region L Region M Region N Region O I

Figure 8.8 Bus Turnaround (BTA) Control Register Format

Field Definition

0 Reserved

0 Reserved

Region A Turnaround cycle(s) of region Region A
Region B Turnaround cycle(s) of region Region B
Region C Turnaround cycle(s) of region Region C
Region D Turnaround cycle(s) of region Region D
Region E Turnaround cycle(s) of region Region E
Region F Turnaround cycle(s) of region Region F
Region G Turnaround cycle(s) of region Region G
Region H Turnaround cycle(s) of region Region H
Region | Turnaround cycle(s) of region Region |
Region J Turnaround cycle(s) of region Region J
Region K Turnaround cycle(s) of region Region K
Region L Turnaround cycle(s) of region Region L
Region M Turnaround cycle(s) of region Region M
Region N Turnaround cycle(s) of region Region N
Region O Turnaround cycle(s) of region Region O

Table 8.8 Bus Turnaround (BTA) Control Register Field Descriptions
1tis mandatory to program region G for at least 1 cycle turnaround.

The turnaround cycle(s) is encoded as shown in Table 8.9. Figure 8.9 shows the timing of the BTA cycle.

TA(1) (MSB) TA(O) (LSB) Turnaround cycle(s)
0 0 0 cycle
0 1 1 cycle
1 0 2 cycles
1 1 3 cycles (default)

Table 8.9 Width Encoding of Bus Turnaround Cycles

79RC32334/332 User Reference Manual 8-10 _ June 4. 2002 1.

RC32334 Internal Bus Address Latch Timing Register

Notes
T data TTA Trecovery | T addr T data

cpu_masterclk /__//__ 5;_ __/—_//__/ \
cpu_ad[31:0] Data %' Addr Data

cpu_ack_n

cpu_last_n

cpu_cip_n

Figure 8.9 Timing of Bus Turnaround Cycle(s) (Example of 1 Cycle BTA)

These are internal signals and are shown here for reference purposes only.

Address Latch Timing Register

The Address Latch Timing Register delays initial address decode from the RC32300 CPU core BIU by 1
clock until the first rising clock edge after the internal cpu_ale asserts. This mode pipelines the address
decode such that 50MHz and faster systems have ample setup time to properly select a register/memory
before a synchronous clock edge. At reset, the default is to take the delay. Thus systems that are running at
less than 50MHz must reprogram the Memory Controller Address Latch Timing bit to “decode address” so
that performance is increased. The address latch times with fast and slow decode settings are shown in

Figures 8.3 and 8.4.
31 3 2 1 0
Reserved DRAM Controller Memory Controller IP Controller
Address Latch Timing | Address Latch Timing Address Timing
Figure 8.10 Address Latch Timing Register
Bit Field Name Description

31:3 | Reserved

2 DRAM Controller -
Address Latch Timing Setting | Bus Frequency

1 Delay address decode by 1 clock for sys-
tems running at > 67 MHz

0 Don't delay address decode by 1 clock, for
systems running at < 67 MHz (default)

1 Memory Controller - —
Address Latch Timing Setting | Description
1 Delay address decode by 1 clock, for sys-
tems running at > 50 MHz (default)
0 Decode address on falling edge of ALE, for
systems running at < 50 MHz
0 IP Register Controller Reserved to 1 to delay the address decode by 1 clock.
Address Latch Timing

Table 8.10 Address Latch Timing Bit Field Descriptions

79RC32334/332 User Reference Manual b I | _ June 4. 2002 1.

RC32334 Internal Bus Address Latch Timing Register

Notes Arbitration Register

The Arbitration register is used to select the arbitration method used for prioritizing access to the CPU
bus by the CPU core, the PCI bridge and the DMA controller channels. For the specific details of this oper-
ation, refer to the DMA Controllers section in Chapter 13.

31 1 0

Round Robin vs.
Reserved .
Fixed

Figure 8.11 Arbitration Register Field

Value Description

1 Round Robin arbitration

0 Fixed Priority arbitration (default)

Table 8.11 Arbitration Field Values and Action Description

BusError Control Register

The Bus Error register stores the current address of any transaction—Read, Write, CPU generated,
DMA generated, or PCI generated. Bus errors occur if a bus time-out occurs and no memory space is
selected. For CPU generated transactions, the RC32334 will assert the buserr_n to the CPU and will termi-
nate the transaction. The fields of the BusError register are shown in Figure 8.12. The function of each field
is listed in Table 8.12.

Note: If the PCl-boot mode is selected at reset time, the CPU BusError, IP BusError, and
Watchdog bits are disabled.

31 8 7 6 5 4 3 2 1 0

Reserved | BUsET | WatchDog | WatchDog %PU Buts IP BusTimeout | CPU Source | IP Source Rd/Wr Bus
"0" Exception| Enable Status é:]naeb-lcéu Enable Status Status Time-out Status

Figure 8.12 BusError Control Register Fields

BusError Address Register

RC32334’s BusError Address Register (see Figure 8.13) is similar to the RC32334 on-chip CPU Bus
Error Address Register, and for CPU generated transactions, the value should be the same in both regis-
ters. The RC32334 Bus Error Register is also used on DMA operations and bus time-out errors. The Inter-
rupt Pending Register is used to first determine whether an error occurred as a result of a bus error (non-
decoded address) or a bus time-out (acknowledge never returned). The default value of this register is
0x0000_0000.

Note: On bus errors, if the CPU transaction was a read, a bus exception is generated in addition
to an interrupt. If the CPU transaction was a write, an interrupt is generated but no bus exception
is taken. This behavior occurs because the CPU write buffer cannot re-align the original store
instruction issuance with the bus error.

31 0
Bus Error Address '

Figure 8.13 BusError Address Register

79RC32334/332 User Reference Manual 8-12 _ June 4. 2002 1.

RC32334 Internal Bus

Address Latch Timing Register

Notes Bits

Field Name

Description

31:8

Reserved to "0"

For future compatibility, must be written as "0".

BusError Read
Exception Dis-
able

On a BusError, if this bit is low, a physical bus error and an interrupt (if enabled) to the
CPU is generated on CPU accesses, thus terminating the CPU access. Also, on a phys-
ical bus error, CPU reads take an exception/interrupt, while CPU writes take an interrupt.
If this bit is high, then neither a bus error nor a bus error read exception is generated, the
access is terminated, and an interrupt (if enabled) is generated.

Value | Description
1 Disabled
0 Enabled (default)
6 WatchDog When WatchDog Enable is enabled, when the WatchDog Timer reaches its compare
Enable count and overflows, a warm reset will be generated to the CPU core. To prevent the
WatchDog Timer from generating a reset, RC32334 systems must have enough OS ker-
nel support to occasionally zero out the WatchDog Timer Count Register or to Disable
the WatchDog function from resetting the CPU.
Value | Description
1 Enabled (default)
0 Disabled
5 WatchDog Reset | When a Warm Reset is caused by the WatchDog Timer overflowing, the WatchDog
Status Reset Status Bit Field is set to'1’. The status bit may be reset by a software write to the
register changing that bit value as a ‘0’.
Value | Description
1 WatchDog Reset occurred
0 WatchDog Reset has not occurred (default)
4 CPU BusError If the CPU BusError Enable is set, then if the CPU BusError Timer reaches its compare
Enable count and thus overflows, a BusError and an interrupt (if enabled) will be generated to

the CPU core. This BusError is caused either by the CPU core taking too long or by the
CPU core generating an undecodable address. See the BusError Exception Disable (bit
7) for more information.

Value | Description
1 Enabled (default)
0 Disabled

79RC32334/332 User Reference Manual 8-13 _ June 4. 2002 1.

Table 8.12 BusError Control Register Field Descriptions (Part 1 of 2)

RC32334 Internal Bus Address Latch Timing Register

Notes Bits | Field Name Description
3 IP BusTimeOut | If the IP BusError Enable is set, then if the CPU BusError Timer reaches its compare
Enable count and thus overflows, an IP BusError and an interrupt (if enabled) will be generated

to the IP Bus and if an on-chip peripheral module or the CPU core owns the CPU bus, a
BusError will be generated to the CPU core. This BusError is caused either by DMA tak-
ing too long or by DMA generating an undecodable address. See the BusError Excep-
tion Disable (bit 7) for more information. Note that the IP Bus TimeOut value (in nsec)
must be greater than the PCI Retry TimeOut multiplied by the TRDY TimeOut value (in
NSec).

Value | Description
1 Enabled (default)
0 Disabled

2 CPU Source If a CPU BusError is caused by the CPU BusError Timer overflowing, then the CPU
BusError Status Bit Field is set. The status bit may be unset by a software write to the
register with that bit value as a ‘0.

Value | Description
1 CPU BusError occurred from a CPU transaction
0 CPU BuskError did not occur (default)
1 IP Source If an IP BusError is caused by the IP BusError Timer overflowing, then the IP BusError

Status Bit Field is set. The status bit may be unset by a software write to the register with
that bit value as a ‘0". In the present RC32334 implementation, a CPU bus error also
sets the IP BusError Status bit.

Value | Description

1 IP BusError occurred from an IP transaction 5 MHz
0 IP BusError did not occur (default)

0 Read/write Type

Value | Description

1 BusError occurred on a read

0 BusError occurred on a write (default)

Table 8.12 BusError Control Register Field Descriptions (Part 2 of 2)

SysID Register

The SysID Register can be used by boot OS software to recognize the type of System Controller being
used and to initialize it accordingly.The SysID is unique to each type of IDT System Controller. It can be
used to differentiate between a system consisting of the discrete RC32364 CPU and RC32134 System
Controller parts versus the fully integrated RC32334 part. The SysID Register can also be used to differen-
tiate between any hardware silicon revision upgrade improvements that might occur in the future. For soft-
ware users, the SysID is similar and can be used in conjunction with the CPU Core CP0 Processor Revision
ID Register (PRId). For hardware and hardware debug systems, the SysID is also similar in concept and
can be used in conjunction with the JTAG DEVICE ID register and the EJTAG DEVICEID register.

31 20 19 8 7 4 3 0
Vendor ID Implementation ID / Part ID Major Revision Minor Revision

Figure 8.14 SysID Register Fields

79RC32334/332 User Reference Manual 8-14 _ June 4. 2002 1.

RC32334 Internal Bus Address Latch Timing Register

Notes - - —
Bits Field Name Description
31:20 | Vendor ID Vendor is IDT (0x000)
19:8 | Implementation ID/Part ID Part ID is RC32334 (0x002)
Part ID is RC32332 (0x004)
74 Major Revision Major revision:
Rev Z silicon is (0x0)
Rev Y silicon is (0x1)
Reserved for future major revisions (0x2—O0xF)
3:0 Minor Revision Minor manufacturing revision number within a major revision.
Base minor revision (0x0)
1st minor revision (0x1)
Reserved for future minor revisions (0x2—O0xF)
Table 8.13 SysID Register Field Descriptions
79RC32334/332 User Reference Manual 8-15

e DataSheetdiieom

RC32334 Internal Bus Address Latch Timing Register

Notes

79RC32334/332 User Reference Manual 8-16 - dune 4. 2002 .

Chapter 9

External Local Bus Interface

®

Introduction

As described at the beginning of Chapter 8, the RC32334 integrated processor is a logical integration of
two components, a stand-alone CPU core previously implemented in the RC32364 device and a
companion RC32134 system controller. This chapter describes the bus (called local bus) that is used to
connect external devices to the RC32334. The local bus includes the following:

d Separate Address and Data busses
5 Control Signals (Chip Selects, Wait Signal, efc.)
5 Debug Signals for Logic Analyses

‘ boundary scan cells
boot vector muxing,
mem_we_n muxing < - mem_addr]]
tgeclj;gecnonal multiplexer P pci bus
. L Ly L
§ ©
jtag_tms, c {} D 3 mem control
jtag control t ! &%i sdram control
dma control
cpu_masterclk g System Controller > - pio control
% L] i L1 S spi controlI
5 uart control
cpu_coldreset n 4 [} s timer ad bus I:' 3 timer control
cpu_reset_n
cpu bus control $> mem_datd]
E PLL ad bus D
jtag_t
gjtag_tms B ETAG| cpuy I:l
‘ boundary scan cells ‘
Figure 9.1 External Local Bus Interface Unit Block Diagram
Operation

The RC32334 Local Bus Interface Unit combines the internal busses from the CPU core and from the

System Controller. The local address bus, mem_addr[25:2]1, is formed by the internal system controller
latching the address on the RC32300 and then redriving it out. It also shifts the address signals appropri-

1-n the RC32332, this local address bus is mem_addr[22:2].

79RC32334/332 User Reference Manual 9-1 Wrﬁ a Lha

External Local Bus Interface Variable Port-Width Interface

ately during SDRAM RAS cycles. mem_addr[1:0] are formed by multiplexing the CPU address signals [1:0]
onto the mem_we_n signals. The RC32334 Local Bus Interface Unit also combines the internal data
busses from the CPU and from the System Controller via a transceiver. The transceiver implementation
does not carry internally tristated components, but uses multiplexing instead. Similarly, common signals
between the CPU and System Controller internal components are combined.

Notes

Other output only signals, such as cpu_dt_r_n, can be an output from both the CPU and the System
Controller. During CPU controlled cycles, it is driven from the CPU, and during System Controller controlled
cycles, it is driven from the System Controller. During idle bus cycles, cpu_dt_r_n tristates on the local bus
and thus requires an external pull-up resistor.

Similarly, jtag_tdo, the JTAG Output drives data from the System Controller Boundary Scan Register
when the appropriate JTAG command is scanned via jtag_tms and drives data from the CPU EJTAG when
the appropriate EJTAG command is scanned via ejtag_tms. The use of jtag_tdo assumes that both JTAG
and EJTAG are not programmed simultaneously.

The reset boot mode vectors are formed by multiplexing inputs onto the appropriate CPU and System
Controller inputs during cold reset.

Variable Port-Width Interface

The RC32334 supports a variable port-width interface. The technique used to determine the port width
is a start-up and software mechanism that assigns attributes to a region of physical (not virtual) memory.
The RC32334 reset-mode initialization interface supports the setting of the boot-prom port width.

To simplify design, the RC32334 elects to use the same data lines, for a given width of memory, regard-

less of memory byte-ordering (endianness1). Table 9.1 lists which byte lanes are used and Table 9.2, Table
9.3, and Table 9.4 list the data transfer sequences for 8-, 16-, and 32-bit port widths.

79RC32334/332 User Reference Manual 9-2 _ June 4. 2002 1.

Port Width Data Lines
8-bit D(7:0)
16-bit D(15:0)
32-bit D(31:0)

Table 9.1 Port Width Assignments to Data Lines

Port Width | Transfer Size | Byte Address | Endianness | Data Lines

8-bit 1 byte 0,1,2,3 Big D(7:0)

8-bit 2 bytes 0,2 Big D(7:0) 2 times
8-bit 3 bytes 0,1 Big D(7:0) 3 times
8-bit 4 bytes 0 Big D(7:0) 4 times
8-bit 16 bytes 0 Big D(7:0) 16 times
8-bit 1 byte 0,1,2,3 Little D(7:0)

8-bit 2 bytes 1,3 Little D(7:0) 2 times
8-bit 3 bytes 3,2 Little D(7:0) 3 times
8-bit 4 bytes 3 Little D(7:0) 4 times
8-bit 16 bytes 3 Little D(7:0) 16 times

Table 9.2 Data Transfer Sequences for 8-bit Port Width

1. Little/big-endian byte ordering conventions are discussed in Chapter 1 of this manual.

External Local Bus Interface Variable Port-Width Interface

Notes

79RC32334/332 User Reference Manual 9-3 wove DataShest Al eom

Port Width | Transfer Size | Byte Address | Endianness | Data Lines
16-bit 1 byte 0,2 Big D(15:8)
16-bit 1 byte 1,3 Big D(7:0)
16-bit 1 byte 0,2 Little D(7:0)
16-bit 1 byte 1,3 Little D(15:8)
16-bit 2 bytes 0,2 Big D(15:0)
16-bit 2 bytes 0,2 Little D(15:0)
16-bit 3 bytes 0 Big D(15:0), D(15:8)
16-bit 3 bytes 1 Big D(7:0), D(15:0)
16-bit 3 bytes 0 Little D(15:0), D(7:0)
16-bit 3 bytes 1 Little D(15:8), D(15:0)
16-bit 4 bytes 0 Big D(15:0) 2 times
16-bit 4 bytes 0 Little D(15:0) 2 times
16-bit 16 bytes 0 Big D(15:0) 8 times
16-bit 16 bytes 0 Little D(15:0) 8 times
Table 9.3 Data Transfer Sequences for 16-bit Port Width
Port Width | Transfer Size | Byte Address | Endianness | Data Lines
32-bit 1 byte 0 Big D(31:24)
32-bit 1 byte 1 Big D(23:16)
32-bit 1 byte 2 Big D(15:8)
32-bit 1 byte 3 Big D(7:0)
32-bit 1 byte 0 Little D(7:0)
32-bit 1 byte 1 Little D(15:8)
32-bit 1 byte 2 Little D(23:16)
32-bit 1 byte 3 Little D(31:24)
32-bit 2 bytes 0 Big D(31:16)
32-bit 2 bytes 2 Big D(15:0)
32-bit 2 bytes 0 Little D(15:0)
32-bit 2 bytes 2 Little D(31:16)
32-bit 3 bytes 0 Big D(31:8)
32-bit 3 bytes 1 Big D(23:0)
32-bit 3 bytes 0 Little D(23:0)
32-bit 3 bytes 1 Little D(31:8)
32-bit 4 bytes 0 Big D(31:0)
32-bit 4 bytes 0 Little D(31:0)
32-bit 16 bytes 0 Big D(31:0) 4 times
32-bit 16 bytes 0 Little D(31:0) 4 times

Table 9.4 Data Transfer Sequences for 32-bit Port Width

External Local Bus Interface Debug Signals

Notes Debug Signals

The RC32334 provides a set of debug signals for logic analyzer use. The four signals
debug_cpu_ads_n, debug_cpu_ack_n, debug_cpu_dma_n and debug_cpu_i_d_n are used as reset mode
bits during the assertion of cpu_coldreset_n as shown in Figure 19.9. These four signals begin driving from
the RC32334 after cpu_coldreset_n de-asserts. debug_cpu_ads_n, debug_cpu_ack_n and
debug_cpu_dma_n become valid 2 clocks after cpu_coldreset_n de-asserts. debug_i_d_n does not

become valid until the first debug_ads_n asserts. o

During a bus transaction, debug_cpu_ads_n will assert low for 1.0 clock. debug_cpu_ads_n asserts for
both CPU generated transactions and for DMA generated transactions. Whenever debug_cpu_ads_n
asserts, debug_cpu_dma_n will indicate the source of the transaction as being from the CPU or from DMA
and whether the source is for an instruction or for data via the debug_cpu_i_d_n signal. During all DMA,
debug_cpu_i_d_n will always indicate data as being the source.

Also when debug_cpu_ads_n asserts, mem_data[31:4] bus will contain the physical address of the
quad-word block where the transaction is occurring. If the transaction is from DMA, then mem_data[3:2] will
also indicate the word address from which the transaction is occurring.

If the transaction is from the CPU, then the mem_addr[3:2] lines must be used to determine the word
address. Depending on the Address Latch Timing Register and Memory versus SDRAM CAS cycle occur-
ring, the earliest strobe point for mem_addr{3:2] may vary. If an 08-bit wide or 16-bit wide transaction is
performed via the Memory Controller, then address bits 1 and/or 0 may be taken off of mem_we_n bus.

After debug_cpu_ads_n asserts, 1.0 clock later and throughout the transaction, cpu_dt_r_n indicates
whether the transaction is a write or when asserted, a read. Note that cpu_dt_r_n may assert earlier than
1.0 clock after debug_cpu_ads_n, especially during a CPU transaction, but definitely not during a DMA
transaction.

Finally, after the appropriate number of internal wait-states has occurred, debug_cpu_ack_n will assert
to indicate that data is being latched on a read, or that data is finished being transmitted on a write. Note
that on a burst transaction, debug_cpu_ack_n will assert for each datum.

79RC32334/332 User Reference Manual 9-4 _ June 4. 2002 1.

External Local Bus Interface Debug Signals

Notes

cpu_masterclk

debug_cpu_ads_n

debug_cpu_dma_n

debug_cpu_i_d_n

mem_addr[25:2]<<2

mem_data[31:4]<<4

debug_cpu_ack_n

mem_cs_n[0]

mem_oe_n

mem_we_n[3:0]

cpu_dt rn

mem_245_oe_n

mem_wait_n

1 2 3 4 5 6
+ ketSU
+ [tHLD
I ¥ ¥ I
_.|Td020, _,|Td020
Tdoh20 +doh20
\ L/
_,|Td020, _.|Td020,
Teloh20 Feoh20
\ CPU or DMA /
_,|Td020, _.|Td020,
Tdeh20 : : Fdoh20
\ instruction or data /
X 40000 X |
__ 40000 ———+ read data X |
|, Tdo20, _,| Tdo20,
Tdoh20 Fdeh20
\ /
\ /
1111 X 1111 X 1111 X |
Tdo3, _,|Tdo3,
\Tdoh3 /Fdeha——
\ /

Figure 9.2 Debug Signals During a Read

In Figure 9.2, the debug signals are shown for a single word read, starting with the assertion of
debug_cpu_ads_n. A 32-bit wide Memory Read of 1 word is shown. Note that the exact number of clocks
between debug_cpu_ads_n and mem_cs_n[x] (sdram_cs_n[x]) may vary depending on such factors as the
Address Latch Delay Setting and on the exact source of a CPU/DMA transaction.

79RC32334/332 User Reference Manual

www NataGhestdleo

External Local Bus Interface Debug Signals

1 3 4 5 6 7
HtSU
[—{tHLD
cpu_masterclk \ \ \ \ \ \ |
Tdo20, [—{Tdo20,
debug_cpu_ads_n —\Tdoh20 [Tdohi20
|| Tdo20, _.Eggﬁ?m
debug_cpu_dma_n| \'201<Y CPU or DMA /
o] | T -
debug_cpu_i_d_n| \'207< | | instryction or data | | | | | At
mem_addr[25:2]<<2 X | 40000 | | | | X |
mem_data[31:4]<<4 X 40000 X rite data X
—» Tdo20, Tdo20,
Tdoh20 _-}Tdu'““
debug_cpu_ack_n
mem_cs_n[0] \
mem_oe_n
mem_we_n[3:0] 1111 X 000 X 1111
Tdo3, Tdoh3 |—»{Tdo3, Tdoh3
cpu_dt_r_n / \
mem_245_oe_n \ /
mem_wait_n

Figure 9.3 Debug Signals During a Write.

In Figure 9.3, the debug signals are shown for a single word write, starting with the assertion of
debug_cpu_ads_n. A 32-bit wide Memory Write of 1 word is shown. Note that the exact number of clocks
between debug_cpu_ads_n and mem_cs_n[x] (sdram_cs_n[x]) may vary depending on such factors as the
Address Latch Delay Setting and on the exact source of a CPU/DMA transaction.

79RC32334/332 User Reference Manual 9-6 _ June 4. 2002 1.

Chapter 10

Memory Controller

®

Notes Introduction

The RC32334 Memory Controller provides the control signals, address lines, and wait-state engine for
interfacing RC32334 integrated processor to standard SRAM, PROM, FLASH and I/O. It also includes the
boot-PROM interface. Six individual chip selects are also available, providing direct support of 8-, 16-, and
32-bit wide memory and I/Os.

The first two chip selects have highly configurable address ranges, allowing the selection of support for
various memory types and widths. The last 4 chip selects have fixed address ranges. The RC32334 can
interface directly to 8-/16-/32-bit boot-PROM width support, and has extra write protection for FLASH as
well as a programmable number of wait-states for various speeds of memory and I/Os. For systems that
require fast signalling with large loads, RC32334 also has controls for optional external data transceivers.

List of Features
* Six chip selects

— 2 highly configurable address range decodersf 64KB to 64MB’ each, anywhere within 4GB
— 4 fixed address range decoders, 32 MB each
- 8+/16-/32-bit Memory and I/O support

Selectable SRAM, two different I/Os, and Dual-Port protocol modes
Programmable number of wait-states

Single word read/write and burst read/write support

External wait-state pin for debug Emulator Memory or Dual-Port memory
FLASH default write protection

Controls optional FCT245 transceiver

8/16/32-bit boot-Prom support

O o ooogoo g

Block Diagram
This functional block diagram represents the Memory and I/0 Control unit of the RC32334.

IP_BUS BIU RC32300 CPU CORE BUS
datain[31:0] dataout[31:0] biu_mem sd[] cip n,wr n, dtr n ack n
| A | lassn] " A "7
v v
| IP SLAVE INTERFACE RC32300 CPU CORE BUS INTERFACE
T =
2| 2
3 £ cip_n
] g MUX/DEMUX
o o ARBITER
54 3
- - |
i k n,
data_in[] data_out[] %_C nT ¢

| CONTROL_REGl SRAM STATE MACHINE

IOl STATE MACHINE
WATSTATE IOM STATE MACHINE
COUNTER DPM STATE MACHINE

MEMORY_BLOCK &

MEMORY_BLOCK_WITH_IP

mem_wait_n

increment_addr_n
mem_cs[], mem_oe_n, mem_rd_n, mem_wr_n[3:0]

Figure 10.1 Block Diagram of RC32334 Memory Controller

1-To 8MB each for the RC32332.

79RC32334/332 User Reference Manual 10 -1 . PataShert ddieo m

Memory Controller Functional Overview

Notes Functional Overview

The RC32334 Memory Controller controls six memory or I/O peripheral regions. Each region has an
associated chip select line (mem_cs_n[5:0]), but shares the rest of the control and address signals. To meet
the system’s needs, each memory and I/O region can be independently configured. Configuration options
available for each bank are:

* Address range (CS 0 and 1 only)

* Memory type

* Port width

* Wait-states and access speed, during read and write operations

Each of these configuration options is enabled through the corresponding set of registers for each bank,
which, at reset, will default to the user’s previously software defined base configuration.

Memory Controller Operation

The Memory controller is activated when the CPU, DMA controller, or the PCI bridge issues a read or
write transaction that is within the range of any of the six memory and I/O regions.

Integrated Processor Generated Transactions

When the controller issues a read or a write operation to an external memory or 1/O peripheral, the
memory controller looks at the address compares it with the address range of the six regions. If the address
matches, the memory controller supplies the address bus, the various control signals, as well as the chip
select for that region.

The appropriate configuration of the various registers enables the memory controller to assert the
appropriate control signal and end the transaction at the specified time. The memory controller allows the
controller to perform single or burst (up to 4 words) transfers from/to the memory and I/0 peripherals for the
read and write transfers.

Burst read transactions from the controller use a subblock ordering method, as shown in Figure 10.2. A
subblock ordered transaction allows the system to define the order in which the data elements are
retrieved.

Start Address[3:0] Burst Sequence
(0,4,8,0
(4,0,C, 8)
(8,C0,4)
(C 8,4,0)

O®bhoO

Figure 10.2 Subblock Ordered Burst Read Sequences

DMA Controller or PCI Bridge Generated Transactions

When the controller issues a read or a write operation to an external memory or I/O peripheral, the
memory controller looks at the address and compares it with the address range of the six regions. If the
address matches, the memory controller supplies the address bus with the various control signals as well
as the chip select for that region. In this case, the data transfer occurs between the RC32334 and the
external memory or I/O peripherals.

The RC32334 generates all control signals, per configuration of the various registers, and will also end
the transaction at the specified time. During read transactions, the RC32334 samples the mem_data[31:0]
bus to latch the data into the DMA or PCI FIFO. During write transactions, the RC32334 drives the data on
the mem_data[31:0] bus from the DMA or PCI FIFO. From either the DMA controller or PCI bridge, the

memory controller will support both read and write single and burst transactions .

!- Burst transactions from DMA are linearly addressed.

79RC32334/332 User Reference Manual 10-2 _ June 4. 2002 1.

Memory Controller Using 8- or 16-bit Boot PROMs

Chip Selects
The Memory Controller contains 6 separate memory spaces, each having its own mem_cs_n output pin.
The first two highly configurable mem_cs spaces occupy from 64K to 4GB of address space of which 64MB

is externally addressable (due to the 26" address lines). The second through the fourth fixed memory chip
select spaces occupy 32 MB of address space, all of which is externally addressable (due to the 26 address

Iines).2 If the DMA or PCI bridge is not used to access a particular memory bank, an optional external
FCT373 transparent latch can be used to extend the number of address bits for CPU accesses.

Notes

The address spaces that mem_cs_n[0] and mem_cs_n1[] decode are programmable. The Memory
Controller uses the programmed information in the Base Address Registers, along with the size (64K to
8MB) of the given area as programmed in the Page Mask Registers, to setup the mem_cs spaces for banks
Oand 1.

This information is used to compare with the address asserted by the controller-BIU, DMA controller, or
PCI bridge, to determine if that particular mem_cs_n area is being accessed for the current read or write
operation. Each area supports single reads, burst reads, single writes, and burst writes. The port size of the
data path (8, 16, 32-bit, or interleaved) of each area is also programmable through the appropriate control
register.

Transceiver Control Interface

The Memory Controller provides transceiver output enables and write enables that are suitable for direct
bus connection, or FCT245 transceivers. The selection of the type of memory is software programmable.
FCT245s can be used for other banks, if the Boot PROM is also behind the FCT245s. The following are
recommendations for system use:

* Transceivers and buffering in small to large systems
In small systems, no glue logic is required. If the number of memory devices is eight or less, then
address buffering is not required. If the number of memory and 10 banks is eight or less, then data
transceivers are also not required. In medium systems using more than eight memory chips, the
address bus from RC32334 should be buffered using FCT244s. In general, the data bus does not
need transceivers as often as the address bus needs buffering. Typically, for 8-bit chip devices, in
each bank, there are four chips per address signal, but only one chip per data signal, yielding a 4-
to-1 ratio. Typically, only the largest systems have more than eight banks of devices, at which
point data transceivers are recommended.

¢ Using slow-to-turn-off EPROMs in small to large systems
In small systems using slow-to-turn-off-data EPROM or 10, the EPROM or 10 data bus, for each
bank, can be transceivered using FCT245s connected to mem_cs_n[5:0] and
mem_245_dt_r_n(dir). Alternatively, the RC32334 bus turnaround (BTA) feature can be used to
delay transactions after reads. In medium systems using slow-to-turn-off-data EPROM or IO, the
EPROM and IO data bus can be transceivered, using a single bank of FCT245s connected to
mem_245_oe_n(oe) and mem_245_dt_r_n(dir). In large systems using multiple banks of EPROM

or 10, the EPROM or IO data bus for each bank can be transceivered using FCT245s connected to
mem_cs_n[] and mem_245_dt_r_n(dir).

Using 8- or 16-bit Boot PROMs

When using 8- or 16-bit boot PROMs,® the PROMs must use mem_addr[3:2] and mem_we_n[3:0] to
provide the LSB system memory address bits. In the 16-bit case, the dynamic byte enables are provided via
the RC32334’s mem_we_n[3] and mem_we_n[0] signals. In the 8-bit case, the byte enable is provided by
the RC32334's mem_we_n[0] signal.

123 address lines for the RC32332.

2 The RC32334 has 26 address lines addressing a maximum 2% (64) MB. The RC32332 has 23 address lines
addressing a maximum 2% (8) MB.

3 Note that 8-bit and 16-bit PROMs cannot use the RC32334 DMA to transfer data.

79RC32334/332 User Reference Manual 10-3 _ June 4. 2002 1.

Memory Controller Wait-State Generator (WSG)

Notes Note that the RC32334 coprocessor Port Width Control Register should be initialized by the boot PROM
software for the non-boot regions of memory such as 32-bit wide DRAM regions.
V::i::h m'::‘_s‘:?enj:[s:ﬂ mem_we_n[2] | mem_we_n[1] mem_we_n[0]
DMA (32-bit) | mem_we_n[3] mem_we_n[2] mem_we_n[1] mem_we_n[0]
32-bit mem_we_n[3] mem_we_n[2] mem_we_n[1] mem_we_n[0]
16-bit Byte High Write Enable | mem_addr[1] Not Used (Driven Low) | Byte Low Write Enable
8-bit Not Used (Driven High) | mem_addr{1] mem_addr{0] Byte Write Enable

Table 10.1 8- and 16-bit LSB Addresses and Write-Enable Connections

Wait-State Generator (WSG)

The WSG controls the speed of memory accesses to and from the internal Bus Interface Unit (BIU)
controller, which includes the start time of a memory transaction until the first data are sent or received and
the time between consecutive data on burst transactions. The signal called mem_wait_n can be used to
override the WSG'’s programmed settings. When mem_wait_n is asserted, however, the actual action
performed by the WSG depends upon when it is asserted, relative to the transaction. The mem_wait_n
signal is also useful for accessing memories such as Dual-Port-type memory and other off-card memory
where the acknowledge (Ack) signal must be connected to the mem_wait_n.

Address Decoding

Memory spaces are selectable up to 64MB! per channel. The first two Memory-I/O Channels have soft-

ware selectability as to where and how much memory space the channel uses?. The remaining channels
have fixed-size memory spaces. Within RC32334, the internal design is such that the address decoding
and its registers is actually done with the RC32334-to-IP Bridge hardware. For readability reasons, the
memory decode functionality is described in this chapter.

User Notes:

1. MEM/IO 0 space is used for reset boot ROMs typically starting at Ox 1f cO_0000, and thus is
limited to a linear 4M from the boot reset address. If the ROM is wrapped around after 4M, then the
lower portion of the address range can also be accessed.

2. MEM/IO spaces larger than 64MB require an external address latch, and in that case, can only be
accessed via the controller (and not DMA or PCI).

3. MEM/IO spaces within the same controller physical region must have the same port width and BTA
settings; for example, MEM/IO 2&3 and MEM/IO 4&5.

4. MEMI/IO 1 space in this example uses an addressable region that may not be accessible in future
RC32334 derivatives. If such a derivative is on the user’s road map, MEM/IO 1 should be assigned
to another area of memory, i.e., from Ox1f 00_0000.

! 8MB for the RC32332.

2 Note that MEM/IO spaces within the same region must have the same port width and BTA settings, for example
MEM/IO 2&3, and MEM/IO 48&5. Also, future channels may split the 0x1600_0000 to Ox 17FF_FFFF memory
space into several more sections. Users can easily externally decode a chip select to expand the number of
selectable devices, and through the use of an external decoder—such as a F138/F139 logic device—using the
MSB system memory address bits, extra chip selects can be provided to like size/speed devices.

79RC32334/332 User Reference Manual 10-4

www NataGhestdl oo

Memory Type and Port-Width Size Support

Memory Controller

Notes
RC32334
Physical Address | Max. Region Redion Description
Range Size | RC32300 CPU Core 9 P

0000_0000 |OFFF_FFFF |256MB AB,CD DRAM 0,1,2,3 (16MB typical)

1000_0000 |11FF_FFFF |32MB E MEM/IO 2 (8MB typical)

1200_0000 |13FF_FFFF |32MB E MEM/IO 3 (8MB typical)

1400_0000 | 15FF_FFFF |32MB F MEM/IO 4 (8MB typical)

1600_0000 |17FF_FFFF |32MB F MEM/IO 5 (8MB typical)

1800_0000 |1BFF_FFFF |64MB G RC32334 Internal Registers

1C00_0000 |1FFF_FFFF |64MB H MEM/IO 0 (4MB typical)

2000_0000 |23FF_FFFF |64MB | MEM/IO 1 (8MB typical)

4000_0000 |5FFF_FFFF |512MB J PCI Memory Space 1 (256MB typical)

6000_0000 |7FFF_FFFF |512MB K PCI Memory Space 2 (256MB typical)

8000_0000 |FF1F_FFFF 0 Reserved, undecoded. If accesses are
made to this region, the RC32334 will
return a bus error.
Reserved for RC32334 on-chip EJTAG

FF20_0000 |FF2F_0000 |1MB 0] Interface. The RC32334 does not decode
this address and a bus error will be
returned if accessed.

Table 10.3:

Table 10.2 RC32334 Typical Memory Map

Memory Type and Port-Width Size Support

Encoding the memory-type field with the values listed in Table 10.3 determines the bus interface timing
to be supported by the memory controller. The Port Size field values listed in Table 10.4 determine the width
of the memory or I/O port. One of the four memory types described below must be selected, as shown in

* FLASH/SRAM This is the default memory type. The read data is primarily controlled by the
mem_oe_n signal which enables the read data back onto the mem_data[] bus on a continuous
basis. Write data is primarily controlled by the chip select, mem_cs_n|[x], which is used as the write
strobe.

* 10l (Intel-Type I/0) This I/O type uses separate read and write strobes to signal valid data. Custom-
arily, this I/O type uses single word accesses.

* |OM (Motorola-Type I/O) This I/O type uses a common data strobe, mem_cs_n[] and uses

79RC32334/332 User Reference Manual 10-5 _ June 4. 2002 1.

mem_oe_n or mem_we_n[] as write/read_n or read/write_n status lines. Customarily, this I/O type
uses single word accesses.

DPM (Dual-Port Memory) The read data is primarily controlled by the mem_oe_n signal which
enables the read data back onto the mem_data[] bus on a continuous basis. Write data is primarily
controlled by the write enables, mem_we_n[3:0], which are used as the write strobes. The external
wait-state pin, mem_wait_n when asserted, resets the internal Wait-State generator back to its ini-
tial value, such that when mem_wait_n is de-asserted, the internal wait-state count start over giving
a full length transaction from that point in time.

Note: The Write Protect field and the Port Width Size field of the Memory control Register for
each bank must be setup before any writes to that bank occur. The Write Protect field defaults to
protected, thus it must be unset to first issue a write. During write protection, the chip select
remains de-asserted.

Memory Controller Port-Width Size

Notes When choosing a Dual-Port Memory, the semaphore or interrupt version can be useful for data buffer
streams. If the busy version is used, the external mem_wait_n signal (see Table 10.11 for signal definitions)
can be used for busy-signal support by using the Dual-Port Memory Type. In the Dual-Port Memory Type, if
the busy pin is asserted, then the Memory Controller’s wait-state counter resets to 0.

During the first clock, the busy pin is always ignored; thus, for seamless integration, a Dual-Port Memory
part—where busy_n becomes valid between 1 and 2 clocks—must be selected. If a slower part were to be
selected, application specific wait-state programming and external delay logic would be necessary, to mask
out the indeterminate busy flag for the first few clocks.

Value Action

11 Dual Port
Note: If the Dual-Port mode is selected, all other memory types will ignore the mem_wait_n pin.
This prevents inadvertent lockups from matching addresses during non-Dual-Port transactions.

10 M-type 1/0 = Motorola type 1/0
01 I-Type 1/0 = Intel type 1/O
00 Flash/SRAM (default)

Table 10.3 Memory Type Field Values and Actions
Dual-Port Memory type differs from Flash/SRAM Memory type in that:
* mem_wait_n is handled differently
* writes use mem_we_n[3:0] controlled writes instead of mem_cs_n[x] controlled writes

Dual-Port Memory Type reads drive the address, chip select, and output at the same time. Burst read
transfers alter the address on subsequent data. Thus, if the external Dual-Port Memory is fast enough, true
zero wait-state burst reads will be able to occur. Dual-Port Memory type writes also drive the address, data
and chip select, but delay the assertion of mem_we_n[]. After the programmed number of wait-states,
mem_we_n[] is de-asserted and the address, data, and chip select are held for 1 clock. As such, burst
writes require a minimum of 3 clocks for each data burst.

Port-Width Size

Non-Interleaving, non-expandable 32-/16-/8-bit support for Bank 0 or Bank 1 can be 16- or 8-bit, but it
might not be physically contiguous with Bank 0, unless it is at least 64Kx8. Note that in the former case, the
TLB and the RC32334 integrated processor can be used to make physical memory virtually contiguous for
linearly addressed software applications.

In the SRAM mode, 16-bit ports require that the Write Enable pins mem_we_n[3] and mem_we_n[0] be
connected to the most and least significant bytes, respectively. Also, in the 16-bit mode, SRAM mode multi-
byte writes will delay the subsequent assertion of mem_cs_n[] by one clock from the normal 32-bit or 8-bit
cases, to allow the mem_we_n[3:0] signals to setup during burst writes.

As in the case of Dual-Port Memory, 8-bit ports may require that the Write Enable pin of the memory
device be connected to the RC32334 pin, mem_we_n[0]. When in this mode, the memory controller asserts
mem_we_n[0] on writes. In 8-bit mode, mem_we_n[2:1] serve as address bits 1 and 0.

Value Action

1 Reserved

10 32-bit Port Width Size Writes (default)
01 16-bit Port Width Size Writes

00 8-bit Port Width Size Writes

Table 10.4 Port Width Size Field Values and Actions

79RC32334/332 User Reference Manual 10-6 _ June 4. 2002 1.

Memory Controller Programmable Wait-State Generator

Notes Depending on the Port-Width size selected, the byte enable handling on writes will differ: 16-bit Port
Width memories split a single word write into two mini-burst 16-bit data segments. In this case, the 16-bit
Port Width mode will ensure that mem_we_n[3] and mem_we_n[0] are de-asserted on the first data
segment to provide data hold time. 8-bit Port Width memories always assert mem_we_n[0] on each data
word.

1/0 Width Support

Because the RC32334 does not directly support byte enables on reads (it could be done externally), 32-
bit I/O word-aligned devices are strongly recommended. 8- and 16-bit devices should be word-aligned,
such that the MSB bits [31:8] and [31:16] are not used independent from endianness. Burst or mini-burst
accesses are not recommended, although they will complete with an implementation specific method that
does not necessarily meet any particular device’s burst protocol or command recovery period (BTA period).

Programmable Wait-State Generator

A software programmable register (see Table 10.11 on page 10-11) allows selection of the number of
wait-states from between 0 and 31 for reads versus writes. Data within bursts have identical settings to
reads versus writes. According to the nature of each memory type’s protocol, a minimum number of wait-
states for asynchronous transfer types is required, as shown in Table 10.5.

Memory type | Transfer type Mi“i“‘“'F' Wait-state
requirements

sram read 0

sram write (32/8-bits) 2

sram write (16-bits) 2 + (1 clk automatically inserted between data)
ioi read 1+ (2 clks automatically inserted between data)
ioi write 2 + (1 clk automatically inserted between data)
iom read 1+ (2 clks automatically inserted between data)
iom write 2 + (1 clk automatically inserted between data)
dpm read 0

dpm write 2

Table 10.5 Minimum Wait-State Settings

External Wait-State Behavior

On SRAM, 10l (I/O Intel type), and IOM (I/O Motorola type) accesses, the internal wait-state gener-
ator ignores the mem_wait_n signal until its last internal wait-state. At that time, users can add an arbitrary
number of additional external wait-states. The last internal wait-state corresponds to the clock before
cpu_ack_n would have asserted, thus mem_wait_n must be asserted any time before the final clock cycle
of the transaction occurs. If the channel is using 0 wait-states internally, the first data cannot be stopped
unless mem_wait_n is left asserted before the memory transaction begins.

On Dual-Port accesses, if mem_wait_n is always ignored during the first clock of a dpm transaction, it
allows the dpm time to generate a valid busy_n signal. On subsequent clocks, mem_wait_n is internally
synchronized for metastability by delaying it one clock, and the internal wait-state counter is then reset to 0
to restart the dpm transaction. If any channel uses the dpm mode, then mem_wait_n is automatically
ignored during SRAM, 101, and IOM accesses. Note that only 1 dpm may use mem_wait_n, unless external
provisions are made to ensure that a dpm address match does not occur on other banks.

Typically, the RC32334 BTA register is also set up before switching to any bank besides the Boot
PROM. The RC32334 BTAs are set to their maximum of 3 clocks and most memories can be set to a
minimum of 1 clock (a Trecovery clock is always inserted, in addition to any BTA clocks).

79RC32334/332 User Reference Manual 10-7 _ June 4. 2002 1.

Memory Controller Bus Error Recovery

Notes Bus Error Recovery

The Memory Controller gracefully aborts on a bus error and bus time-out. Both bus errors and bus time-
outs latch the present physical address into the BusError Address Register. This implies that the bus error
controller can only assert cpu_buserr_n up until the first cpu_ack_n would be returned.

On a bus error, the memory controller ignores the mem_wait_n signal and returns cpu_ack_n to the
CPU core, at the normal times indicated by the WSG until the transaction is complete. At the first
cpu_ack_n, cpu_buserr_n is then asserted. A bus time-out may occur at any time during the bus transac-
tion, even after the first ack_n has been returned. If the time-out occurs, the bus time-out interrupt is
asserted, then the mem_wait_n is ignored and the transaction continues.

Signal Descriptions

Table 10.6 describes the signals used in RC32334’s memory controller transactions. The list of memory
controller registers is provided in Table 10.7, with register fields and their descriptions listed in Table 10.11.

Name Type Description

Memory/l/O Controller

mem_addr[25:2]" I/O Not appli- | Memory Address Bus

cable These signals provide the Memory or DRAM address, during a Memory or
DRAM bus transaction. During each word data, the address increments
either in linear or sub-block ordering, depending on the transaction type.
The table below indicates how the memory write enable signals are used
to address discrete memory port width types.

mem_addr subsets

mem_addr[22:20]

0 reset_boot_mode[1:0]
reset_pci_host_mode

mem_addr{19:17] | 1/0 reset mode bits
mem_addr[15:2] 110 sdram_addr{15:2] Pin Signals
Port Width mem_we_n[3] mem_we_n[2] mem_we_n[1] mem_we_n[0]
DMA (32-bit) | mem_we_n[3] mem_we_n[2] | mem_we_n[1] | mem_we_n[0]
32-bit mem_we_n[3] mem_we_n[2] | mem_we_n[1] | mem_we_n[0]
16-bit Byte High Write mem_addr[1] Not Used Byte Low Write
Enable (Driven Low) Enable
8-bit Not Used (Driven | mem_addr{1] mem_addr[0] Byte Write
High) Enable

mem_addr[22] Alternate function: reset_boot_mode[1].
mem_addr[21] Alternate function: reset_boot_mode[0].
mem_addr[20] Alternate function: reset_pci_host_mode.
mem_addr[19] Alternate function: modebit [9].
mem_addr[18] Alternate function: modebit [8].
mem_addr[17] Alternate function: modebit [7].
mem_addr([15] Alternate function: sdram_addr[15].
mem_addr[14] Alternate function: sdram_addr[14].
mem_addr[13] Alternate function: sdram_addr[13].
mem_addr[11] Alternate function: sdram_addr[11].
mem_addr[10] Alternate function: sdram_addr[10].
mem_addr[9] Alternate function: sdram_addr[9].
mem_addr(8] Alternate function: sdram_addr[8].
mem_addr[7] Alternate function: sdram_addr{7].
mem_addr(6] Alternate function: sdram_addr[6].
mem_addr[5] Alternate function: sdram_addr[5].
mem_addr[4] Alternate function: sdram_addr[4].
mem_addr[3] Alternate function: sdram_addr[3].
mem_addr[2] Alternate function: sdram_addr[2].

Table 10.6 Memory Controller Pin Descriptions (Part 1 of 2)

79RC32334/332 User Reference Manual 10-8 _ June 4. 2002 1.

Register Definitions

Memory Controller

Notes Name Type Description
mem_cs_n[5:0] O | Not appli- | Memory Chip Select Negated Recommend an external pull-up.
cable Signals that a Memory Bank is actively selected.
mem_oe_n O | Not appli- | Memory Output Enable Negated Recommend an external pull-up.
cable Signals that a Memory Bank can output its data lines onto the cpu_ad bus.
mem_we_n[3:0] O | Not appli- | Memory Write Enable Negated Bus
cable Signals which bytes are to be written during a memory transaction. Bits
act as Byte Enable and mem_addr[1:0] signals for 8-bit or 16-bit wide
addressing.
mem_wait_n Memory Wait Negated Requires an external pull-up.
SRAM/IOI/IOM modes: Allows external wait-states to be injected during
last cycle before data is sampled.
DPM (dual-port) mode: Allows dual-port busy signal to restart memory
transaction.
Alternate function: sdram_wait_n.
mem_245_oe_n O | Not appli- | Memory FCT245 Output Enable Negated
cable Controls output enable to optional FCT245 transceiver bank by asserting
during both reads and writes to a memory or 1/O bank.
mem_245 dt r_n O | cpu_dt_r_| Memory FCT245 Direction Xmit/Rcv Negated Recommend an external
n pull-up.
Alternate function: cpu_dt_r_n.

79RC32334/332 User Reference Manual 10-9 _ June 4. 2002 1.

Table 10.6 Memory Controller Pin Descriptions (Part 2 of 2)

1. mem_addr[22:2] for the RC32332.

Register Definitions

Table 10.7 provides the physical hardware address locations of the Memory Controller registers, which
include Memory Base and Mask registers for Banks 1:0 and the Control registers for Banks 5:0. Fields of
the Bank and Mask registers are shown in Figure 10.3 and Figure 10.4.

Details on these fields are provided in Table 10.9 and Table 10.10. The Memory Control register infor-
mation is provided in Figure 10.5 and Table 10.11.

Physical Address Register Descriptions
1800_0080 Memory Base Address Register for Bank 0
1800_0084 Memory Base Mask Register for Bank 0
1800_0200 Memory Control Register for Bank 0
1800_0088 Memory Base Address Register for Bank 1
1800_008C Memory Base Mask Register for Bank 1
1800_0204 Memory Control Register for Bank 1
1800_0208 Memory Control Register for Bank 2
1800_020C Memory Control Register for Bank 3
1800_0210 Memory Control Register for Bank 4
1800_0214 Memory Control Register for Bank 5

Table 10.7 List of Memory Control Registers

Register Definitions

Memory Controller

Notes

79RC32334/332 User Reference Manual 10-10 __ June 4. 2002 1.

Memory MSB Base Address Register for Banks 1:0

The base address registers are used to determine the starting location of a particular chip select. There
are six pairs of MSB and LSB registers, a pair for each Memory Chip Select (MemCS). Each pair of
memory base address registers is concatenated onto an internal 32-bit register and refers to the most
significant 16 address bits and the least significant 16 address bits. Unused bits are always read as ‘0".

Typically, if two banks of PROM/SRAM are used, the larger bank is placed in the Bank 0 address space
and the smaller bank is placed in the Bank 1 address space. This arrangement allows a contiguous address
space for the two combined banks.

The default value for bank 0 base address register [1800_0080] is 0x1FCO_0000 when the RC32334 is
programmed in the standard boot mode. The default is OxFFCO_0000 when programmed with the reset
vector PCI_boot mode or the Non_boot mode. The default value for bank1 base address register [1800-
0088] is 0x 2000_0000.

31 16 15 0

MSB Base Address 0000 I

Figure 10.3 Memory Base Address Register for Banks 1:0

Internal Group Base Address

mem_cs_n[0] Default is 1FCO_0000 except if in PCI-boot or Non-boot mode where the default is FFCO_0000
mem_cs_n[1] Default is 2000_0000

mem_cs_n[2] Hard-coded to 1000_0000

mem_cs_n[3] Hard-coded to 1200_0000

mem_cs_n[4] Hard-coded to 1400_0000

mem_cs_n[5] Hard-coded to 1600_0000

Table 10.8 Internal Chip Select Base Addresses

Memory MSB Bank Mask Registers for Banks 1:0

The Bank mask registers are used to determine the address bits in the base address that are to be used
for comparing whether a chip select is to be activated. Unused bits are always read as ‘0. The internal
grouping of the six chip selects are as listed in Table 10.9.

31 16 15 0

MSB Bank Mask 0000 I

Figure 10.4 Memory Bank Mask Register for Banks 1:0

Memory Controller Register Definitions

Notes
Internal Group Ch|p-SeI¢?ct I!IIask Bit
Activation
mem_cs_n[0]
Default is FFFF_0000
mem_cs_n[1]
mem_cs_n[2]
Effective value is hard-coded as FE00_0000
mem_cs_n[3]
mem_cs_n[4]
mem_cs_n[5]

Table 10.9 Internal Chip Select Grouping

Value Action
1 Bit is used in address comparison
0 Bit is masked out

Table 10.10 Memory Mask Field Definitions and Values

Memory Control Register for Banks 5:0

Systems with multiple memory/IO banks can have all banks behind a FCT245 transceiver bank or they
can have all banks on the CPU local bus. Systems may be “mixed” such that the boot memory Bank 0 is
behind the FCT245 bank and other memory/IO banks can reside either behind the FCT245 transceiver
bank or on the local CPU bus.

Note: For each bank, the Write Protect field (bit 12) and the Port Width Size field (bits 11:10) of
the Memory Control register must be setup before any writes to that bank occur. The Write
Protect field defaults to protected and must be unset prior to the first write issued. During write
protection, the chip select remains de-asserted.

15 14 13 12 1 10 9 5 4 0
245 Mode | Write Protect| Port Width Write Read
Memory Type Enable fie Frotec Size Writes Wait-States Wait-States

Figure 10.5 Memory Control Register Channel 5:0

Bit Name Description
15:14 | Memory
Type Value | Description
11 Dual Port Note: If the Dual-Port mode is selected, all other memory

types will ignore the mem_wait_n pin. This prevents inadvertent
lockups from matching addresses during non-Dual-Port transactions.

10 M-type I/0 (Motorola type)
01 [-Type 1/O (Intel type)
00 Flash/SRAM (default)

Table 10.11 Memory Controller Register Field Descriptions, Channels 5:0 (Part 1 of 2)

79RC32334/332 User Reference Manual 10 - 11 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Notes Bit Name Description

13 mem_245_oe_n| The mem_245_oe_n Enable Field controls whether the mem_245_oe_n transceiver enable
Enable Field can assert or not. If it is disabled, then the memory bank for this channel can reside on the
local CPU bus rather than behind a transceiver bank.

Value | Description

1 mem_245_oe_n enabled for this channel bank (default)

0 mem_245_oe_n disabled for this channel bank such that it
can reside on the CPU local bus

12 Write Protect

Field Value | Description
1 mem_cs_n not asserted on writes (default)
0 mem_cs_n asserts during writes (typical setting)

11:10 | Port Width The function of this field is discussed in the section titled “Port-Width Size” on page 10-6.

Size Writes
Value | Size
1" Reserved
10 32-bit port width size writes (default)
01 16-bit port width size writes
00 8-bit port width size writes
9:5 | Write This software programmable register allows selection of the number of wait-states for writes
Wait-States from between 0 and 31. Each memory type’s protocol requires a minimum number of wait-
states. As shown, the default value is 31.
Value | Wait-States
0-31 | Referto Table 10.4 for transfer type requirements. The
default value is 31.
4.0 | Read This software programmable register allows selection of the number of wait-states for reads
Wait-State from between 0 and 31. Each memory type’s protocol requires a minimum number of wait-

states. As shown, the default value is 31.

Value | Wait-States

0-31 | Referto Table 10.4 for transfer type requirements. The
default value is 31.

Table 10.11 Memory Controller Register Field Descriptions, Channels 5:0 (Part 2 of 2)

Timing Diagrams

The timing of various memory and peripheral read and write operations is shown in the diagrams that
follow. These diagrams include timing representations for both single and burst transfers. An operational
overview description is provided before each diagram.

Figure 10.6 shows an SRAM-type single word memory read with 1 internally generated wait-state. Note
that both the chip select, mem_cs_n[0], and the output enable, mem_oe_n, signals primarily determine the
read access time for the data from the SRAM. Note that additional internally generated wait-states will
repeat state 4. (Type=00, 245=1, WP=0, PW=10, WWS=2, RWS=1).

79RC32334/332 User Reference Manual 10-12 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Notes
1 2 3 4 5 6
B [*Tsu6 » [*Tsu2
> <Thid8| * & Thld2
cpu_masterclk ¥ \ ¥ \ ¥ \ ¥ \ ¥ \ ¥
| 4| Tdos5, L4Td05,
Tdoh?2
mem_addr[25:2]<<2 X 3C00000 | | X doh3]
mem_data[31:0] | X 1FC00004) {0 ﬁ
Tdo6, Tdo6,
_’ITd0h3 _’I Tdoh3
mem_cs_n[0] \ /
_,|Td07, Tdo7,
Tdoh3 Fdeh3
mem_oe_n \ /
_,|Tdo7a, _.| Tdo7a,
Tdah?
mem_we_n[3:0] 1111 X 1111 X (NG X]
_,| Tdos, _,|Td08,
mem_245 dt_r_n —\Tdoh3 / IR
Tdo7, Tdo7,
_.l Tdoh3 _.| Fdeh3
mem_245_oe_n \
mem_wait_n

Figure 10.6 Single Word SRAM Read Transaction

79RC32334/332 User Reference Manual 10 - 13 __ June 4. 2002 1.

Memory Controller

Notes Figure 10.7 shows an SRAM-type single word memory read with 1 internally generated wait-state and
then 1 externally generated wait-state as indicated by mem_wait_n asserting. Note that if the memory
controller were programmed such that 2 or more internally generated wait-states occurred, mem_wait_n is
ignored until the final wait-state occurs the clock before where debug_cpu_ack_n would assert. (Type=00,

245=1, WP=0, PW=10, WWS=2, RWS=1).

Timing Diagrams

1 2 3 4 5 6 7
> <*Tsu6 ® [<Tsu6 [+ Tsu6
> [Thidg® [+ Thidg* [« Thids
cpu_masterclk [\ ® __ & N\ | #[\ | # O\ 1y
tP it
mem_addr[25:2]<<2 X 3C00000 — X
mem_data[31:0] D@@ A@
P ~{tP
mem_cs_n[0] \ /
~{tP ~{tP
mem_oe_n \ /
P -{tP
mem_we_n[3:0] 1111 X 1111 X 1111 X
| tP | tP
mem_245_dt_r_n _\ /
P ~{tP
mem_245 oe_n \ /
mem_wait_n \ 1/

79RC32334/332 User Reference Manual 10 -14 __ June 4. 2002 1.

Figure 10.7 Single Word SRAM Read Transaction with Wait-State

Memory Controller Timing Diagrams

Notes Figure 10.8 shows an SRAM-type single word memory write with 2 internally generated wait-states.
Note that the write enables, mem_we_n[3:0], are used as status lines, while the chip select, mem_cs_n[0],
is used as the primary write strobe. Also note that additional internally generated wait-states will repeat
state 4, so that mem_cs_n[0] is continuously asserted during internal wait-states. (Type=00, 245=1, WP=0,
PW=10, WWS=2, RWS=1).

1 2 3 4 5 6
> [*tSU
+ [*tHLD
cpu_masterclk ¥ ¥ \ ¥ \ ¥] \ ¥
—tP —{tP
mem_addr[25:2]<<2 X 3C00000 X |
|| Tdo4, | ,|Tdo4,
Tdohl
mem_data[31:0] | X _1FC00004 X ABCD0000 %
~{tP > tP
mem_cs_n[0]
P > tP
mem_oe_n
—tP —{tP
mem_we_n[3:0] 1111 X 0000 X 1111]
—tP tP
mem_245 dt r_n
—{tP | tP |
mem_245_oe_n \ /
mem_wait_n

Figure 10.8 Single Word SRAM Write Transaction

79RC32334/332 User Reference Manual 10 - 15 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Notes Figure 10.9 shows an SRAM-type single word memory write with 3 internally generated wait-states and
then 1 externally generated wait-state as indicated by mem_wait_n asserting. This case provides 1 more
wait-state beyond the required minimum of 2 wait-states. Note that if the memory controller were
programmed such that 3 or more internally generated wait-states occurred, mem_wait_n is ignored until the
final wait-state occurs where debug_cpu_ack_n would assert. (Type=00, 245=1, WP=0, PW=10, WWS=3,

RWS=2).
—1 2 3 4 5 6 7 8
* [tHLD
* <tsuU
* ©ISU |¥ [tHLD
cpu_masterclk [\ &\ ® N\ & [\ [#] N\ & _ ¥ \ &
- tP P
mem_addr[25:2]<<2 X 3C00000 X |
P >/ tP
mem_data[31:0] | X1FC0000 ABCD0000 ——@l
-{tP »ftP
mem_cs_n[0] \
{tP > tP
mem_oe_n
P P
mem_we_n[3:0] 1111 X 0000 X 1111 X
- tP it
mem_245_dt_ r_n
{tP > tP
mem_245 oe_n \ /
mem_wait_n \ |/

Figure 10.9 Single Word SRAM Write Transaction with Wait-State

79RC32334/332 User Reference Manual 10 - 16 __ June 4. 2002 1.

Memory Controller

Notes

RWS=1).

Timing Diagrams

Figure 10.10 shows an SRAM-type four word memory burst read with 1 internally generated wait-state
on each data. Note that both the chip select, mem_cs_n[0], and the output enable, mem_oe_n, primarily
determine the read access time for the data from the SRAM. (Type=00, 245=1, WP=0, PW=10, WWS=2,

cpu_masterclk

mem_addr[25:2]<<2

mem_data[31:0]

mem_cs_n[0]

mem_oe_n

mem_we_n[3:0]

mem_245_dt r_n

mem_245 oe_n

mem_wait_n

> *+tSU » [+tSU

o [tHLD #f frtHL
+tSU
tHLD
SR BN IR 1 i1
P tP
X 3c000<|)0 ’3COOO(|J4 3cooo<|)8 3co|oo|oc X
X 1FCopoo4 d)} d@ \A_@ a@
" tP P
\ /
tP {tP
\ /
»tP M P
1111 X 1111 X 1111
»{tP »tP
N
>l tP P
\ /

79RC32334/332 User Reference Manual 10 - 17 __ June 4. 2002 1.

Figure 10.10 Quad Word Burst Read SRAM Transaction

Memory Controller Timing Diagrams

Figure 10.11 shows an SRAM-type four word memory burst write with two internally generated wait-
states. Note that the writes enables, mem_we_n[3:0], are used as status lines, while the chip select,
mem_cs_n[0], is used as the primary write strobe. Note that if the access is to a 16-bit port-width, then an
extra cycle (not shown) is automatically inserted between each datum, such that the write enables,
mem_we_n[] can change dynamically for each halfword with both 1 clock setup and hold relative to the chip
select asserting and de-asserting. (Type=00, 245=1, WP=0, PW=10, WWS=2, RWS=1).

Notes

1712 3T 4 5 67
> ‘tSU >
™ ¢ tHUD ™
cpu_masterclk | _ ¥ _ K\ \[F\ 0\ O\
M M P
mem_addr{25:2]<<2 X 3C00000 X 3C00004
el |l be
mem_data[31:0] |XIFCQ ABCD0000 X__ABCDO
e | ple PP
mem_cs_n[0]
i | ptp
mem_oe_n
PP e
mem_we_n[3:0] 1111 X 0000 X1111]
P
mem_245_dt_r_n
P e |
mem_245_oe_n \ /
mem_wait_n

Figure 10.11 SRAM 4 Word Burst Write

Figure 10.12 shows an SRAM-type tri-byte mini-burst 16-bit port width write with 2 internally generated
wait-states. Note that the second assertion of mem_cs[] is delayed one clock to allow mem_we_n[] time to
setup. (Type=00, 245=1, WP=0, PW=10, WWS=2. RWS=1).

—1 2 3 4 5 6 7 8 9 10—
» *tSU > *tSU
> [tHL | |+ tHLD
cpu_masterclk [_F _F _ & A\ N\ F O\ F O\ N\ _F
>{tP »{tP
mem_addr[25:1]<<2 X 3C00000 X 3C00002 X |
P »{tP
mem_data[31:0] | XLFCOO 1234 X 0056 X |
PP | Pt PP | PItP
mem_cs_n[0] \ \
P »{tP
mem_oe_n
{tP PP ptP >{tP
mem_we_n([3,0] 1111 X 00 X_11 X 10 X |
»{tP
mem_245_dt_ r_n
Pt P |
mem_245 _oe_n \ / N\ /
mem_wait_n

Figure 10.12 Tri-byte 16-bit SRAM Write Transaction

79RC32334/332 User Reference Manual 10 -18 __ June 4. 2002 1.

Timing Diagrams

Memory Controller

Notes

79RC32334/332 User Reference Manual 10 -19 __ June 4. 2002 1.

Figure 10.13 shows an I0I-type single word memory read with 1 internally generated wait-state. Note
that the read output enable, mem_oe_n provides the read data strobe.

Note that additional internally generated wait-states will repeat state 4, so that mem_oe_n is continu-
ously asserted during internal wait states. (Type=01, 245=1, WP=0, PW=10, WWS=2, RWS=1).

1 2 3 4 5 6
+ etSU ¥ [tSU
» [tHLD | [¢tHLD
cpu_masterclk \ ¥ \ ¥ \ ¥ \] \ ¥ \ ¥
—{tP P
mem_addr[25:2]<<2 X 3(:o|0000| X |
mem_data[31:0] 1FC00004) {ABCPB0660 ﬁ
—{tP > tP B
mem_cs_n[0] \
—{tP
~>tP
mem_oe_n 7J
—1tP —{tP
mem_we_n[3:0] 1111 1111 X 1111
—{tP | tP B
mem_245 _dt r_n _\
—{tP —{tP
mem_245_oe_n \ /
mem_wait_n

Figure 10.13 101 1 Word Single Read

Timing Diagrams

Memory Controller

Notes

Figure 10.14 shows an |Ol-type single word memory read with 2 internally generated wait-states. This
case provides 1 more wait-state beyond the required minimum of 1 wait-state. (Type=01, 245=1, WP=0,
PW=10, WWS=3. RWS=2).

cpu_masterclk

mem_addr[25:2]<<2

mem_data[31:0]

mem_cs_n[0]

mem_oe_n

mem_we_n[3:0]

mem_245 dt r_n

mem_245 oe_n

mem_wait_n

1 2 3 4 5 6 7
» <tsU < tSU
* [tHLD* [tHLD
A B BN BN -
—{tP ~itP
X 3(:00000| | X |
D(@@ (AB 4*
-{tP ~{tP |
\
tP
4‘ Rgkis
\ /
-»{tP - tP
1111 X 1111 X 1111 |
| tP i tP |
A\ /]
- tP - tP
\ /

79RC32334/332 User Reference Manual 10 - 20 __ June 4. 2002 1.

Figure 10.14 10l 1 Word Single Read with Wait-State

Timing Diagrams

Memory Controller

Notes

79RC32334/332 User Reference Manual 10 - 21 __ June 4. 2002 1.

Figure 10.15 shows an IOl-type single word memory write with 2 internally generated wait-states. Note
that the write enable bus, mem_we_n[3:0], provides the write data strobe.

Note that additional internally generated wait-states will repeat state 4, so that mem_oe_n is continu-
ously asserted during internal wait states.(Type=01, 245=1, WP=0, PW=10, WWS=2, RWS=1).

1 2 3 4 5 6
> [*tSU
» [tHLD
cpu_masterclk ¥ ¥ \ ¥ \ ¥ \) \ ¥
P —{tP
mem_addr[25:2]<<2 X 3C00000 X |
—{tP —{tP
mem_data[31:0] | X 1FC00004 X ABCD0000 .
tP —{tP |
mem_cs_n|[0] \
—{tP P
mem_oe_n
—{tP > tP
mem_we_n[3:0] 1111 X___ 0000 1111
—{tP tP
mem_245 dt r_n
—{tP | tP |
mem_245_oe_n \ /
mem_wait_n

Figure 10.15 101 1 Word Single Write

Memory Controller Timing Diagrams

Notes Figure 10.16 shows an IOI-type single word memory write with 3 internally generated wait-states. This
case provides 1 more wait-state beyond the required minimum of 2 wait-states. (Type=01, 245=1, WP=0,
PW=10, WWS=3. RWS=2).

1 2 3 4 5 6 7
> & SU
+ [tHLD
cpu_masterck [\ ¥ N\ & N\ & O\ & [¥\ ¥ \ ¥
->{tP -{tP
mem_addr[25:2]<<2 X 3C00000 X |
- tP - tP
mem_data[31:0] | X1FC00004X ABCD0000)y |
~{tP ~{tP B
mem_cs_n[0] \
Balls Ball
mem_oe_n
P P
mem_we_n[3:0] 1111 X 0000 1111
Rl - tP
mem_245_dt_ r_n
P ~{tP B
mem_245 oe_n \ /
mem_wait_n

Figure 10.16 101 1 Word Single Write with Wait-State

Figure 10.17 shows an IOI-type four word memory burst read with 1 internally generated wait-state for
each datum. Note that the read output enable, mem_oe_n, provides the read data strobe. The burst IOM-
type access is not conventionally used by I/O peripherals. (Type=01, 245=1, WP=0, PW=10, WWS=2,

RWS=1).
123 T4
> [FtSU
gl
cpu_masterclk /__!‘__!‘__J‘_
M
mem_addr[25:2]<<2 X 3C00000 3C0000C
i j Iy i
mem_data[31:0] / \Q/ \4/ \8/ \C/ \
Mp P
mem_cs_n[0] \
M ple Mr ple M ple Mtp PP
mem_oe_n / / /
Mip plp M plp M plp M plte
mem_we_n[3:0] 1111 1211 1211 Y2312} 1111 X2113X 1113 X2113X 1111
P ¥ tp
mem_245_dt_r_n /
M tp P
mem_245_oe_n /
mem_wait_n

Figure 10.17 101 4 Word Burst Read

79RC32334/332 User Reference Manual 10 - 22 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Figure 10.18 shows an |0l-type four word memory burst write with 2 internally generated wait-states for
each data. Note that the write enable bus, mem_we_n[3:0], provides the write data strobe. The burst IOM-
type access is not conventionally used by 1/O peripherals. (Type=01, 245=1, WP=0, PW=10, WWS=2,

Notes

RWS=1).
23 45 6 78 9 10111213 1415161718197
* [tsuU + [*tsU + [1sU + [€tsuU
Pl [tHILD P [« tHID P [tHID P [tHILD
cpu_masterciic |\ O\ O\ O\ S\ T
PP PP Mtp PP PP
mem_addr[25:2]<<2 X___ 3co0000 X 3C00004 X 3C00008 X 3c0000C X J
el [l bel | Il bel | be | | el |
mem_data[31:0] [XLECO) ABCD0000 X ABCD0004 X ABCD0008 X ABCDO000C X |
P P
mem_cs_n[0] \
bte | PP Mie | ptp Mte | Ptp btp | PP
mem_oe_n
Mtp | Mtp Mtp | Mtp Mp | Mtp M | Mtp
mem_we_n[3:0] 1111 X0000 111 X0000) 1111 X0000) 1111 X0000 1111 |
M M
mem_245_dt_r_n
P "p
mem_245_oe_n \
mem_wait_n

Figure 10.18 101 4 Word Burst Write

Figure 10.19 shows an IOM-type single word memory read with 1 internally generated wait-state. Note
that the chip select, mem_cs_n[0], provides the data strobe while the output enable—or the write enables—
indicate the read/write status. Also note that additional internally generated wait-states will repeat state 4,
so that mem_cs_n[0] is continuously asserted during internal wait-states. (Type=10, 245=1, WP=0, PW=10,

WWS=2, RWS=1).
1 2 3 4 5 6
> *tSU
> *tSU
» <*tHLD
» ktHLD
cpu_masterclk \ ¥ \ ¥ ¥ \) \ ¥ y
—{tP —{tP
mem_addr[25:2]<<2 X 3C00000 X |
mem_data[31:0] | X _1FC00004 } l AB Luoooo i
~{tP > tP
mem_cs_n[0] \
P —{tP B
mem_oe_n \ /
—{tP —{tP
mem_we_n[3:0] 1111 X 1111 X 1111]
—ltP —{tP B
mem_245_dt_r_n /
—{tP > tP
mem_245_oe_n
mem_wait_n

Figure 10.19 1OM 1 Word Single Read

79RC32334/332 User Reference Manual 10 - 23

Memory Controller Timing Diagrams

Figure 10.20 shows an IOM-type single word memory read with 2 internally generated wait-states. This
case provides 1 more wait-state beyond the required minimum of 1 wait-state. (Type=10, 245=1, WP=0,
PW=10, WWS=3. RWS=2).

Notes

1 2 3 4 5 6 7
+ tsuU
» [tSU
+ [tHLD
+ [tHLD
cpu_masterck [\ ¥\ & N\ &\ & O\ [¥\ & O\ §
—{tP - tP
mem_addr[25:2]<<2 X 3C00000 X |
mem_data[31:0] | X1FC00004) ABG 4*
| tP T—>tP
mem_cs_n[0]
-{tP ~{tP |
mem_oe_n \ /
—{tP -{tP
mem_we_n[3:0] 1111 X 1111 X 1111]
- tP - tP |
mem_245 dt r_n _\ /
~{tP > tP
mem_245 _oe_n \
mem_wait_n

Figure 10.20 IOM 1 Word Single Read with Wait-State

79RC32334/332 User Reference Manual 10 - 24 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Figure 10.21 shows an IOM-type single word memory write with 2 internally generated wait-states. Note
that the chip select, mem_cs_n[0], provides the data strobe while the output enable, or the write enables,
indicate the read/write status. Also note that additional internally generated wait-states will repeat state 4,
so that mem_cs_n[0] is continuously asserted during internal wait-states. (Type=10, 245=1, WP=0, PW=10,

Notes

WWS=2, RWS=1).
1 2 3 4 5 6
» [tSU
¢ tHLD
cpu_masterclk N AN N N | y
—tP —{tP
mem_addr[25:2]<<2 X 3C00000 X |
—tP —tP
mem_data[31:0] | X 1FC00004 X ABCD0000]
-{tP > tP
mem_cs_n[0] \
| tP —tP
mem_oe_n
—tP —tP
mem_we_n([3:0] 1111 X 0000 (1111]
—tP —{tP
mem_245 dt r n
| tP —tP B
mem_245 oe n \ /
mem_wait_n

Figure 10.21 IOM 1 Word Single Write

79RC32334/332 User Reference Manual 10 - 25 __ June 4. 2002 1.

Memory Controller

Notes

Timing Diagrams

Figure 10.22 shows an IOM-type single word memory write with 3 internally generated wait-states. This
case provides 1 more wait-state beyond the required minimum of 2 wait-states. (Type=10, 245=1, WP=0,
PW=10, WWS=3. RWS=2).

1 2 3 4 5 6 7
> < tSU
» [¢tHLD
cpumasterckk [\ ¥\ & N\ &\ & [\ & 4§
~{tP -{tP
mem_addr[25:2]<<2 X 3C00000 X
~{tP -{tP
mem_data[31:0] | XLFC00004) ABCD0000 y
P > tP
mem_cs_n[0] \
- tP ~{tP
mem_oe_n
P ~{tP
mem_we_n[3:0] 1111 X 0000 X 1111
~{tP - tP
mem_245_dt_r_n
~{tP ~{tP B
mem_245 _oe_n \ /
mem_wait_n

Figure 10.22 10M 1 Word Single Write with Wait-State

Figure 10.23 shows an I0OM-type four word memory read with 1 internally generated wait-state for each
data. Note that the chip select, mem_cs_n[0], provides the data strobe while the output enable, or the write
enables, indicate the read/write status. The burst IOM-type access is not conventionally used by I/O periph-
erals. (Type=10, 245=1, WP=0, PW=10, WWS=2, RWS=1).

cpu_masterclk /__!

mem_addr[25:2]<<2

mem_data[31:0]

mem_cs_n[0]

mem_oe_n

mem_we_n[3:0]

mem_245_dt_r_n \

mem_245_oe_n

_1__2__3__4 o) o— [[/ [e] 9__10__11_
+ =tsu + = tsu » [sU
P | tHUD # k- tHLD # [tHUD
[+ tsu < tSU *tSU
tHUD tHLD tHU D
N\ | i\ | K] O\ |¥] O\
M P M tp M P M M P
X 3co|oo|oo X 3ccfoo|o4 X 3C0|00|08 X 3co|oo|0c X
Mip e Mip e M plip Mip e
/ /
P o tp
o
PP Pt Mip Pl PP plte Mip Pl
1111 1212} 1211 Xaa1a)C 1121 X422 11321 x4312aX 1441
M tp Mip |
e
P i
\ /

79RC32334/332 User Reference Manual 10 - 26 __ June 4. 2002 1.

Figure 10.23 IOM 4 Word Burst Read

Memory Controller Timing Diagrams

Figure 10.24 shows an IOM-type four word memory write with 2 internally generated wait-states for each
datum. Note that the chip select, mem_cs_n[0], provides the data strobe while the output enable, or the
write enables, indicate the read/write status. The burst IOM-type access is not conventionally used by 1/0
peripherals. (Type=10, 245=1, WP=0, PW=10, WWS=2, RWS=1).

Notes

123 4 [5 6 7 8 [9 10111213 141516171819
* [€tsuU * [*1sU + *tsU * [€tsuU
P [tHID P [tHID P [*tHID P [tHILD
cpu_masterclic [\ F \F K\ F A A A O N N T\
PP PP P PP pip
mem_addr[25:2]<<2 X___ 3co0000 X 3C00004 X 3C00008 X 3c0000C X |
el |l bel [l bel [[hel [Il hel |
mem_data[31:0] [XLFCO ABCD0000 X ABCD0004 X ABCD0008 X ABCD000C X |
e | PP Mt | Bip e | Bip Mt | PP
mem_cs_n[0] __J __J | {4 __J
P PP
mem_oe_n
P Pip
mem_we_n[3:0] 1111 0000 X 1111]
Mtp '
mem_245_dt r_n
P Mtp
mem_245_oe_n \ /
mem_wait_n

Figure 10.24 I0OM 4 Word Burst Write

Figure 10.25 shows a DPM-type single word memory read with 1 internally generated wait-state. Note
that both the chip select, mem_cs_n[0] and the output enable, mem_oe_n, primarily determine the read
access time for the data from the SRAM.

Note that additional internally generated wait-states will repeat state 4. (Type=11, 245=1, WP=0,
PW=10, WWS=2, RWS=1).

1 2 3 4 5 6 7
> tSU ¥ <«tSU
» *tHLD|® <tHLD
cpu_masterclk U DS AN EERVEE IR NS e B
~{tP tP
mem_addr[25:2]<<2 X 3C00000 - X |
mem_data[31:0] | X1FC00004) (AB 4*
-{tP - tP
mem_cs_n[0] \ /
-{tP ~{tP
mem_oe_n \ /
-{tP ~{tP
mem_we_n[3:0] 1111 X 1111 X 1111 |
P ~{tP -
mem_245 dt r_n A\ /
-{tP i tP
mem_245 oe_n \ /
mem_wait_n

Figure 10.25 Dual-Port 1 Word Single Read

79RC32334/332 User Reference Manual 10 - 27 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Figure 10.26 shows a DPM-type single word memory read with 1 internally generated wait-state, and
then 1 externally generated wait-state is indicated by mem_wait_n asserting. Note that the internal wait-
state counter starts over each time mem_wait_n is asserted, such that when mem_wait_n de-asserts the
internal wait-state counter goes through a complete count before the transaction ends. (Type=11, 245=1,
WP=0, PW=10, WWS=2, RWS=1).

Notes

—1 2 3 4 5 6 7 8 9—|
+ *tHLD + [tHLD|
> <tHLD < tSU
+ @ltSU [«tSU+ [+tSU |#f [¢tHLD
cpu_masterck [__ & _ & __F N\ | #]\ ¥ _|]| J= i
P{tP L{tP
mem_addr[25:2]<<2 X 3C00000 - X |
mem_data[31:0] | YLFC00004 (AB 9—*
> tP P
mem_cs_n[0] /
P tP > tP
mem_oe_n /
> tP P
mem_we_n[3:0] 1111 X 1111 X 1111 |
P P |
mem_245 dt_r_n \ /
> tP > tP
mem_245 oe_n \ /
mem_wait_n L/

Figure 10.26 Dual-Port 1 Word Single Read with Wait-State

79RC32334/332 User Reference Manual 10 - 28 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Figure 10.27 shows a DPM-type single word memory write with 2 internally generated wait-states. Note
that the writes enables, mem_we_n[3:0], are used as the primary write strobes. Note that additional inter-
nally generated wait-states will repeat state 4. (Type=11, 245=1, WP=0, PW=10, WWS=2, RWS=1).

Notes

1 2 3 4 5 6
> [*tSU
< tHLD
cpu_masterclk \ ¥ \ ¥ ¥ \ ¥] ¥
—{tP —{tP
mem_addr[25:2]<<2 X 3C00000 X |
—{tP P
mem_data[31:0] | X 1FC00004 X ABCD0000 o
it —{tP B
mem_cs_n[0] /
P —>tP
mem_oe_n
—{tP > tP
mem_we_n[3:0] 1111 X__ 0000 1111
—tP P
mem_245 dt r_n
it —{tP B
mem_245_oe_n /
mem_wait_n

Figure 10.27 Dual-Port 1 Word Single Write

79RC32334/332 User Reference Manual 10 - 29 __ June 4. 2002 1.

Timing Diagrams

Memory Controller

Notes

Figure 10.28 shows an SRAM-type single word memory write with 3 internally generated wait-states and
then 1 externally generated wait-state as indicated by mem_wait_n asserting. This case provides 1 more
wait-state beyond the required minimum of 2 wait-states. Note that if the memory controller were
programmed such that 3 or more internally generated wait-states occurred, mem_wait_n is ignored until the
final wait-state occurs where debug_cpu_ack_n would assert. (Type=00, 245=1, WP=0, PW=10, WWS=3,
RWS=2).

1 2 3 4 5 6 7
+ [tSU ¥ [tSU
» [tHLD ¥ [+tHLD
cpumasterckk [\ ¥ N\ & N\ & [\ [\ & N\ #&
- tP P
mem_addr[25:2]<<2 X 3C00000 X |
~{tP ~{tP
mem_data[31:0] | X1FC00004) ABCD0000 IR
~{tP ~{tP B
mem_cs_n[0] \
~tP -{tP
mem_oe_n
P - tP
mem_we_n[3:0] 1111 X 0000 1111
Rall
mem_245 dt r_n
P —{tP B
mem_245 oe_n \ /
mem_wait_n L/

Figure 10.28 Single Word SRAM Write Transaction with Wait-State

Figure 10.29 shows a DPM-type four word memory burst read with 1 internally generated wait-state for
each datum. Note that both the chip select, mem_cs_n[0] and the output enable, mem_oe_n primarily
determine the read access time for the data from the SRAM. (Type=11, 245=1, WP=0, PW=10, WWS=2,
RWS=1).

1 2T 3 4 5 6 7 8T 9 T 10 11112
> [*tSuU > [*tSuU * [FtSU
P [tHUD P [¢tHUD [+ tHUD
[+tSU [+ tSU [+tSU
[+ tHUD [+ tHUD [tHU
cpu_masterclk |\ K _F K D\ A\ K[\
M P PtP P|tP PP
mem_addr[25:2]<<2 X 3C00000 i 3C00004 I 3C00008 I
mem_data[31:0] [ALFCOQ064 {0/} {(4) /J_&/_\
M P
mem_cs_n[0]
e P
mem_oe_n \ /
Plte Mip
mem_we_n[3:0] 1111 X 1111 X 1111 |
P Mip |
mem_245_dt_r_n \
Me P
mem_245_oe_n /
mem_wait_n

Figure 10.29 Dual-Port 4 Word Burst Read

79RC32334/332 User Reference Manual 10 - 30

Memory Controller Timing Diagrams

Notes Figure 10.30 shows a DPM-type four word memory burst write with 2 internally generated wait-states.
Note that the writes enables, mem_we_n[3:0], are used as the primary write strobes. (Type=11, 245=1,
WP=0, PW=10, WWS=2, RWS=1).

——

cpu_masterclk M\

mem_addr[25:2]<<2

ABCD0004 X ABCD0008 _ X ABCDO000C _ X |

mem_data[31:0] [ALFCO ABCDO0000

mem_cs_n[0] \ / i

i | plip

mem_oe_n

e | Plie e | e e | plee Mip | pltp
mem_we_n[3:0] 1111 X0000X 1111 X0000X 1111 X0000X 1111 X0000X 1111 |

lia

mem_245_dt_r_n

mem_245_oe_n \

mem_wait_n

Figure 10.30 Dual-Port 4 Word Burst Write

79RC32334/332 User Reference Manual 10 - 31 __ June 4. 2002 1.

Memory Controller Timing Diagrams

Notes

79RC32334/332 User Reference Manual 10 - 32 - dume 4. 2002 .

Synchronous DRAM
Controller

Introduction

The SDRAM controller supports 4 channels of 32-bit physical banks. Because each SDRAM chip/
channel internally provides 2 to 4 bank arrays of memory, the 4 physical channels have a total of 8 to 16
virtual/conventional page banks. In systems using DIMMs, the 4 chip selects correspond to 2 DIMM cards.
Only same size banks are supported. A total of 512 MB of SDRAM memory can be used. Each of the
DRAM channels has software selectability as to how much memory space a channel uses.

Notes

Features

* SDRAM controller (32-bit memory only)
— 4 banks, non-interleaved, 512 MB total (interleaving is not supported)
- Automatic refresh generation in the background
* Software programmable options support 1 (33MHz), 2 (66MHz), or 3 clock CAS latency for 75MHz
parts
* Software programmable Pre-charge Time and Refresh Time

* Supports SORAM DIMMS or SODIMMS

SDRAM Enhancements in Y Silicon Revision

The SDRAM memory controller is one of the modules that has been enhanced in the Y revision of the
silicon. Table 11.1 outlines some of the significant differences between the Z and Y revisions. For more
information on the differences between the silicon revisions, refer to Application Note AN-350, RC32334/
RC32332 Differences Between Z and Y Revisions, and to the RC32334/RC32332 Device Errata, both
posted on IDT's web site at www.idt.com.

Function Z Revision Y Revision Comments

SDRAM address line 16 | Not supported Added Allows the Y revision to
address 256 and 512Mb
SDRAM devices. Note: Use of
256Mb SDRAMs was imple-
mented for Z revision using
mem_addr{25:24], an
approach that restricted their
use to RC32334-based imple-
mentations.

Supported SDRAM
Memory configurations

16Mb-256Mbit

16M-512Mbit. Addi-
tional configurations
include64Mb:
2Mbx32128Mb:
32Mbx4

Allows the part to support
larger bursts from external PCI
bus masters transferring infor-
mation to/from SDRAM. Note:
Legacy bank address to
mem_addr line mappings
have changed between silicon
revisions.

Table 11.1 SDRAM Differences Between Z and Y Revisions (Part 1 of 2)

79RC32334/332 User Reference Manual 11 -1 o Patashe

Synchronous DRAM Controller Features

Notes

Function Z Revision Y Revision Comments

tWR Timing Uses tRP to define mini- | Additional option to
mum recovery period set recovery period
after a write. to two clock periods.

DQM Behavior Assertion of DQM signal | Option to assert Simplifies view and interpreta-

used to setup external DQM only with read | tion by logic analyzers of
transceivers for buffered | or write command. memory cycles.
SDRAM systems. DQM
asserted 2 clocks early
for read accesses. Chip
select signal would stay
asserted for two clocks
beyond the access.

SDRAM refresh behav- | Burst mode did not sup- | Byte enables are Simplifies system design and

ior port dynamic bytes sampled dynami- programming of memory con-
enables. Burst needed cally for every troller.
all four byte enables to datum.
be active for all words in
the burst.

Table 11.1 SDRAM Differences Between Z and Y Revisions (Part 2 of 2)

To ensure backwards compatibility with Z revision, the new functionality in Y revision is enabled using

bits in a new register that was not included in the Z revision. Specifically, the Control Register present in the
Z revision has been renamed to Primary Control Register and a new register, Secondary Control Register,
has been added. Both registers are shown in Table 11.2 below.

. Offset Effective
Base Address Register Address Address
1800_0000 SDRAM Primary Control Register 300 Base + Offset

SDRAM Secondary Control Register 304

79RC32334/332 User Reference Manual

11 -2

Table 11.2 Modified and New SDRAM Control Registers

www NataGhestdlleq

Synchronous DRAM Controller

Notes

Block Diagram

Block Diagram

IP to CPU

& Data Register
CPUto IP

MUX
Latch

Clk

ALE

Clk

IP Address

RC32300 Address

A

RC32300 CPU Core Bus

[3:0]

Address
—PM Addr [15:2
Generator om Addr [15:2] GPY Sel I[;_Sel

IRIEAS

PUIP
Sel[3:0] Sel[3:0]

Row/Col, Inc, Load Addr
L 245 OE
_ 7T SDRAM gt
> Control He— SDRAM CS [3.0]
Ras,Cas,Cke,Wr
A Dgm([3;0]
Page Size Refresh
_If_rom
Page Hit et
Page -)
Comparator Page Size, Bank Size Cril Register
16 compare Refresh from Ti
Registers <— eifresh from Timer
PCotl gt [P P | pseo
CPU Sel IP Sel ﬁgr%sBelllJ Stave# 1 Slave #2

[3:0] [30]

IDT IP Bus

Figure 11.1

Functional Overview

The SDRAM controller provides a glueless interface to industry standard SDRAMs as well as four chip
selects (sdram_cs_n[3:0]), each supporting either two or four SDRAM banks. Two banks are supported
when 16 M-bit SDRAMs are used; four banks when 64 M-bit SDRAMs are used. Each SDRAM bank must
have a 32-bit data path. As shown in Table 11.3, the SDRAM controller supports a wide variety of SDRAMs,
allowing the 32-bit data path to be constructed using x4, x8, x16, or x32 SDRAMs.

SDRAM Block Diagram

SDRAM SDRAM SDRAM Chip Select
Size Organization Total Memory
16 M-bit 2Mb x 4 x 2 banks 16 MB
1Mb x 8 x 2 banks 8 MB
512 Kb x 16 x 2 banks 4MB
64 M-bit 4 Mb x 4 x 4 banks 64 MB
2 Mb x 8 x 4 banks 32 MB
1 Mb x 16 x 4 banks 16 MB
0.5 Mb x 32 x 4 banks 8 MB
128 M-bit 8 Mb x 4 x 4 banks 128 MB (Limit 2 chip selects)1
4 Mb x 8 x 4 banks 64 MB
2 Mb x 16 x 4 banks 32 MB
1 Mb x 32 x 4 banks 16 MB

79RC32334/332 User Reference Manual

Table 11.3 Supported SDRAMs (Part 1 of 2)

11 -3

e DataSheetdiieom

Synchronous DRAM Controller Functional Overview

Notes SDRAM SDRAM SDRAM Chip Select
Size Organization Total Memory
256 M-bit 16 Mb x 4 x 4 banks 256 MB? (Limit 1 chip select)
(RC32334 0nly) 5\ x 8 x 4 banks 128 MB2 (Limit 2 chip selects)
4 Mb x 16 x 4 banks 64 MB
2 Mb x 32 x 4 banks 32 MB
512 M-bit 16 Mb x 8 x 4 banks 256 MB? (Limit 1 chip select)
(RC32334 0nly) - 51 X 16 x 4 banks 128 MBZ (Limit 2 chip selects)

Table 11.3 Supported SDRAMs (Part 2 of 2)
! The allocated physical memory map for SDRAM is 256 MB maximum when using the User
Mode. The Kernel Mode can address additional memory above 0xC000_0000, but it is generally
not recommended since the User Mode cannot access this physical address space. Thus, in
practice, several of the 128 M-bit, 256 M-bit, and 512 M-bit systems are limited to using only 1 or
2 of the available 4 chips selects.

The master input clock to RC32334 is cpu_masterclk, which is used as the system clock for SDRAMs.
All SDRAM transactions on the memory and peripheral bus are synchronous to this clock. During SDRAM
transactions, the address bus is multiplexed as shown in Table 11.4. The exact address multiplexing is
dependent upon the configuration of the page size field in the SDRAM control register.

The SDRAM controller contains a single control register, since SDRAMs connected to all four chip
selects must share a common configuration. The SDRAM controller does not support the burst addressing
mode of SDRAMs. Instead, SDRAMs must be configured to use the pipeline command mode, allowing the
SDRAM controller to simulate burst operations by issuing a new address on each clock cycle. This allows
the SDRAM controller to perform linear burst operations, as required by the DMA controller, as well as
supporting Subblock Address Ordering read operations as required by cache refills.

The SDRAM controller provides the control signals necessary to control two sets of external buffers,
such as 74FCT245s, on the RC32334 system data bus (mem_data[31:0]). The buffer output enable
(sdram_245_oe_n) pins are the enables for such buffers, while the external buffer direction
(sdram_245_dt_r_n) pin controls the direction.

Note: The Memory and Peripheral Address Bus sdram_addr [13:2], corresponds to the SDRAM
chip pins A11:A0.

SDRAM[16] is added by multiplexing its functionality onto mem_addr{16]. The drive strength for
mem_addr{16] must be increased to SDRAM high drive strength. SDRAM[16] outputs a27, a26, a25, and
a24 are based on the SDRAM RAS Mux Control field setting in the SDRAM Control register.

The RC32334 includes a dedicated SDRAM address signal, denoted sdram_addr_12 (A10), which
allows transparent refreshes to assert the PRECHARGE_ALL command during SDRAM accesses, as well
as the appropriate row address during the row address command. This signal should be connected to the
A10 pin on the SDRAM devices.

SDRAM Cycle | Memory and Peripheral Bus Address (sdram_addr{16:2])2

PP |
Organization 16 [15 |14 [13 [12 [11 |10 |9 [8 [7 |6 [5 |4 [3 |2
2Mbx4x2banks ||Pin# BAS|A10| A9 |A8 |A7 |A6 |A5 |A4 |A3 [A2 |A1 |AD
16MP Row a23|a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|al12
(10-bit page)

Column a23|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad4 |a3 |a2
1Mbx8x2banks ||Pin# BA3|A10| A9 |A8 |A7 |A6 |A5 |A4 |A3 [A2 |A1 |AD
16 Mb
(9-bit page) Row a22|a21|a20|a19|a18|a17|a16|al15|al4|a13|a12|al1

Column a22|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad |a3 |a2

Table 11.4 SDRAM Address Multiplexing (Part 1 of 3)

79RC32334/332 User Reference Manual 1 -4 __ June 4. 2002 1.

Synchronous DRAM Controller Functional Overview

Notes SDRAM Cycle | Memory and Peripheral Bus Address (sdram_addr[16:2])2
NPT |
Organization 16 [15 |14 [13 [12 [11 [10 |9 [8 [7 [6 [5 [4 [3 |2
512 Kb x 16 x 2 banks| | Pin# BA3|A10| A9 |A8 |A7 |A6 |A5 |A4 |A3 [A2 |A1 |AD
16Mb Row a21|a20(a19|a18|a17|a16|a15|a14|a13|a12|a11|a10
(8-bit page)

Column a21|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad |a3 |a2
4 Mbx4x4banks ||Pin# BA1|BAO| A11|A10| A9 |A8 |A7 |A6 [A5 |A4 [A3 |A2 |A1 |AD
64 Mb
(10-bit page) Row a25|a24 |a23|a22|a21|a20(a19|a18|a17|a16|al15|al4|a13|al2

Column a25|a24|a23 | AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad4 |a3 |a2
2Mb x8x4banks ||Pin# BA1|BAO| A11|A10| A9 |A8 |A7 |A6 [A5 |A4 [A3 |A2 |A1 |AO
64 Mb Row a24 |a23|a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|a12|al1
(9-bit page)

Column a24|a23|a22 | AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |a4 |a3 |a2
1 Mb x 16 x4 banks ||Pin# BA1|BAO| A11|A10| A9 |A8 |A7 |A6 [A5 |A4 [A3 |A2 |A1 |AO
64 Mb
(8-bit page) Row a23|a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|a12|al1|a10

Column a23|a22|a21|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad4 |a3 |a2
512 Kb x 32 x 4 banks| | Pin# BA1|BAO| A10| A9 | A8 |A7 [A6 |A5 |A4 |A3 |A2 |A1 |AD
64 Mb Row a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|a12|a11|a10
(8-bit page)

Column a22|a21|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad |a3 |a2
8Mb x4 x4banks ||Pin# BA1|BAO| A11|A10| A9 |A8 |A7 |A6 [A5 |A4 [A3 |A2 |A1 |AO
128 Mb
(11-bit page) Row a26 | a25 |a24 | a23|a22|a21(a20|a19|a18|al7 |a16|al15|al4|a1d

Column a26|a25|a12| AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |a4 |a3 |a2
4 Mb x 8 x4 banks ||Pin# BA1|BAO| A11|A10| A9 |A8 |A7 |A6 [A5 |A4 [A3 |A2 |A1 |AO
128 Mb Row a25|a24 |a23|a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|al12
(10-bit page)

Column a25|a24|a23 | AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |a4 |a3 |a2
2 Mb x 16 x 4 banks ||Pin# BA1|BAO| A11|A10| A9 |A8 |A7 |A6 [A5 |A4 [A3 |A2 |A1 |AO
128 Mb
(9-bit page) Row a24|a23|a22|a21|a20|a19|a18|a17|al16|a15|al14|a13|a12|al1

Column a24 |a23|a22 | AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad4 |a3 |a2
1 Mb x 32 x4 banks ||Pin# BA1|BAO| A11|A10| A9 |A8 |A7 |A6 [A5 |A4 [A3 |A2 |A1 |AO
128.Mb Row a23|a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|a12|a11|al10
(8-bit page)

Column a23|a22|a21|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |a4 |a3 |a2
16 Mb x 4 x 4 banks ||Pin# BA1| BAO| A12| A11| A10| A9 | A8 |A7 [A6 |A5 |A4 |A3 |A2 |A1 |AD
256 Mb
(11-bit page) Row a27 | a26 |a25|a24|a23|a22 |a21|a20|a19|a18|al7|a16|a15|al4 |al3

Column |a27|a26|a13|a12|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad4 |a3 |a2
8 Mb x 8x4banks ||Pin# BA1| BAO| A12| A11| A10| A9 [A8 |A7 [A6 |A5 |A4 |A3 |A2 |A1 |AD
296 Mb Row a26 | a25|a24 |a23|a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|al12
(10-bit page)

Column |a26|a25|a13|a12|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |a4 |a3 |a2
4 Mb x16 x 4 banks ||Pin# BA1| BAO| A12| A11| A10| A9 [A8 |A7 [A6 |A5 |A4 |A3 |A2 |A1 |AD
256 Mb
(9-bit page) Row a25|a24 |a23|a22|a21|a20|a19|a18|al7|a16|al15|al4|a13|a12|al1

Column |a25|a24|a13|a12|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad4 |a3 |a2

Table 11.4 SDRAM Address Multiplexing (Part 2 of 3)

79RC32334/332 User Reference Manual 1-5 __ June 4. 2002 1.

Synchronous DRAM Controller Functional Overview

Notes SDRAM Cycle | Memory and Peripheral Bus Address (sdram_addr[16:2])2
NPT |

Organization 16 [15 |14 [13 [12 [11 [10 |9 [8 [7 [6 [5 [4 [3 |2
2 Mb x 32 x 4 banks ||Pin# BA1| BAO| A12| A11| A10| A9 |A8 |A7 [A6 |A5 |A4 |A3 |A2 |A1 |AD
256.Mb Row a24|a23|a22|a21|a20|a19|a18|a17|a16|a15|al14|a13|a12|a11|a10
(8-bit page)

Column |a24|a23|a13|a12|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |a4 |a3 |a2
16 Mb x 8 x 4 banks ||Pin# BA1| BAO| A12| A11| A10| A9 | A8 |A7 [A6 |A5 |A4 |A3 |A2 |A1 |AD
512 Mb
(11-bit page) Row a27 | a26 |a25|a24|a23|a22 |a21|a20|a19|a18|al7|a16|a15|al4 |al3

Column |a27|a26|a13|a12|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |ad4 |a3 |a2
8 Mb x 16 x 4 banks ||Pin# BA1| BAO| A12| A11| A10| A9 |A8 |A7 [A6 |A5 |A4 |A3 |A2 |A1 |AD
512Mb Row a26 | a25|a24 |a23|a22|a21|a20|a19|a18|a17|a16|a15|a14|a13|al12
(10-bit page)

Column |a26|a25|a13|a12|AP*|a11|a10|a9 |a8 |a7 |a6 |a5 |a4 |a3 |a2

Table 11.4 SDRAM Address Multiplexing (Part 3 of 3)
1- 425 - a2 denote bits from the RC32334 internal physical address bus.

2 sdram_addr[14:2] pins correspond to the A12:A0 pins on SDRAM devices.

3 For 16 M-bit bank size, sdram_addr[14] duplicates sdram_addr[13] for DIMM expandability, such that the SDRAM BA pin(s)
can be connected to sdram_addr[14] instead of sdram_addr[13].

4 AP - Auto Precharge (automatically precharged at end of transaction).

The sdram_ras_n, sdram_cas_n, sdram_we_n, and sdram_addr{12] signals, summarized in Table 11.5,
encode the command issued to an SDRAM.

Command Description sdram_ras_n | sdram_cas_n | sdram_we_n | sdram_addr[12]
NOP1 No operation H H H X
ACTIVE Select active bank and L H H Row
row

READ Select bank and column, H L H L
perform read (auto pre-
charge disabled)

READ Select bank and column, H L H H

perform read (auto pre-
charge enabled)

WRITE Select bank and column, H L L L
perform write (auto pre-
charge disabled)

WRITE Select bank and column, H L L L

perform write (auto pre-
charge enabled)

REFRESH Enter self refresh mode L L H X!

PRECHARGE | Deactivate row in bank L H L L
(selected by BA)

PRECHARGE | Deactivate row in all L H L H
banks

Table 11.5 SDRAM Command Encoding
1-X = Don't care.

79RC32334/332 User Reference Manual 1-6 __ June 4. 2002 1.

Synchronous DRAM Controller Functional Overview

Notes Base Address Decoding

The SDRAM base (SDRAM([3|2/1/0]BASE) and SDRAM mask (SDRAM[3]2/1|0JMASK) registers’
control the address decoding for each SDRAM chip select. The SDRAM mask register bit settings control
the bits used for address decoding. When a bit in the SDRAM mask register equals one, the corresponding
address bit is active in address comparisons.

If a bit in the SDRAM mask register equals zero, then the corresponding address bit does not participate
in address comparisons. All active address bits not masked by the SDRAM mask register are compared to
the value in the SDRAM base register. If they all match, then the corresponding SDRAM chip select is
asserted. The software selectable regions are as listed in Table 11.6.

Default Physical Address Range Default Default SDRAM Register
Base Mask Description
From To Setting Setting P
0000_0000 000F_FFFF 0000_0000 FFF0_0000 | Base/Mask Address Bank0
0100_0000 010F_FFFF 0010_0000 FFF0_0000 | Base/Mask Address Bank1
0100_0000 010F_FFFF 0010_0000 FFF0_0000 | Base/Mask Address Bank2
0100_0000 010F_FFFF 0010_0000 FFF0_0000 | Base/Mask Address Bank3

Table 11.6 Base Address and Base Mask Address Map

Note: Because Bank1, Bank2, and Bank3 default to the same base register value, all three
registers must be programmed by the boot software, when initializing the DRAM interface to valid
Base and Mask register values before initial access.

Page Row Comparators

Bank row page address comparators are used by the SDRAM controller to speed up consecutive
multiple bus transactions to the same row of an already active bank, i.e., where the upper row address bits
are constant but the lower column address bits are changing. Each chip select supports up to four bank
page row address comparators: two are used with 16 M-bit SDRAMs and all four are used with 64 M-bit
SDRAMs. Although each bank row page address comparator is 12 bits in size (a31:a20), not all bits are
used in all SDRAM configurations. The bank page row address comparators support 1024, 2048 & 4096
byte pages, and because even the smallest application has at least 2 pages to select from, the page
comparators will typically be left on as defined by CAS A10 (sdram_addr[12]). To decode which page
comparator is being used, use RAS A11 (sdram_addr[13]) (16M-bit) or RAS A12/A13 (sdram_addr[14][15])
(64M-bit).

When the CPU performs a read or write operation to SDRAM space, the bank page row address
comparator associated with the SDRAM bank selected is checked. If the bank was left active and the value
in the comparator matches the SDRAM row address, then the access can be made without first closing the
currently active page and then opening a different page.

If the active page in the bank page row address comparator does not match the SDRAM row address,
before the access can occur, the active page must first be closed (precharged) and the correct page made
active. Finally, if there is no active page in the bank, the required page must first be made active and then
the access can occur.

Burst Support

RC32334 does not use the burst addressing mode of SDRAM chips. Instead, the RC32334 uses the
“pipeline command” mode, which imitates a burst by issuing a new address on each clock. The RC32334 is
able to burst in subblock address order on bursts from the RC32300 CPU Core as well as burst in linear
address order on bursts up to 1KB. from DMA. Figure 11.2 shows the subblock retrieval method.

! The Bank1 range priority overrides the Bank0 range. Thus, if the physical address of a memory transaction is
such that Bank1 is selected, it will override the Bank0 row select. Similarly, Bank3 overrides Bank2, which over-
rides Bank1.

79RC32334/332 User Reference Manual 1-7 __ June 4. 2002 1.

Synchronous DRAM Controller SDRAM Initialization

Notes
Start Address[3:0] Burst Sequence

(0, 4,8, C
(4,0,C 8)
(8,C 0,4)
(C 8,4,0)

0O®obho

Figure 11.2 Subblock Ordered Retrieval Method

RAS/CAS Address MUX

Using an RAS/CAS multiplexer—where extra address bits can be used for various chip types (1Mx16,
2Mx8, 4Mx4)—provides 32-bit support. Because common SDRAM DIMMs come in a 64-bit width, some
users may want to populate RC32334 boards with discrete package(s) in order to provide 32-bit wide
memory.

Alternatively, users can tie a 64-bit DIMM module’s data outputs and byte masks together to form two
banks of 32-bit SDRAM. Systems consisting of more than eight chips should buffer the address lines. 64M-
bit parts, which use 4 internal banks, are supported by using an additional address pin as the additional
signal. Two additional page comparators are added.

If the SDRAM controller's control register bank size is selected to be 16M bank size, then during the
Row address phase sdram_addr[13] (BA) will be duplicated on sdram_addr [14] for DIMM upward compati-
bility.

Refresh Timer

The SDRAM timer is enabled/disabled through software so that self-refresh can be invoked. An internal
interrupt can be optionally generated when the timer overflows. In systems with no SDRAM, the SDRAM
refresh timer can be used as a general purpose timer. This option is enabled by setting the
sdram_enable_n bit (31) in the SDRAM control register to zero, which disables the queueing of SDRAM
refresh transactions when the timer expires. The TO sticky bit in the RTC register is an input to the interrupt
controller. A refresh will close all open pages.

Error Recovery

The SDRAM controller is required to abort gracefully on a bus error and bus time-out. Both bus errors
and bus time-outs latch the present physical address into the BusError Address Register. This implies that
the bus error controller can only assert buserror_n up until the first ack_n would be returned. Both ack_n
and busreq_n are de-asserted when buserror_n is asserted, such that the user can connect retry_n instead
of buserror_n if desired.

On a bus error, the memory controller must skip to the transaction end state of the primary state
machine and return all outputs to their transaction end values. A bus time-out may occur at any time during
the bus transaction, even after the first ack_n has been returned. If the time-out occurs, then ack_n is
immediately returned and if a burst, the transaction continues.

SDRAM Initialization

Before using, SDRAMs must be powered up and initialized in a predefined manner. Each SDRAM
contains a mode register which defines the specific mode of operation for the SDRAM. The mode register
selects: the burst length, the burst type, CAS latency, operating mode, and write burst mode. The mode
register is programmed using an SDRAM LOAD MODE REGISTER command.

To support compatibility within a wide range of devices, the SDRAM controller does not directly support
the SDRAM LOAD MODE REGISTER command. Instead, this command must be synthesized using an
SDRAM custom transaction, initiated as follows:

* Select one or all four of the chip selects (sdram_cs_n[3:0]) in the CS field of the SDRAM control
register

* Program the sdram_addr[12] status by setting the sdram_addr[12] bit in the SDRAM control regis-

79RC32334/332 User Reference Manual 1 -8 __ June 4. 2002 1.

Synchronous DRAM Controller Register Definitions

Notes

ter, ¥vhich then determines the state of the SD_ADDR[12] pin during an SDRAM custom transac-
tion

* Program the Write Enable status by setting the WE bit in the SDRAM control register, which then
determines the state of the DWEN pin during an SDRAM custom transaction

* Program the RAS and CAS status by setting the RAS and CAS bits in the SDRAM control register,
which specifies the state of the RASN and CASN signals during an SDRAM custom transaction.

On the next decoded SDRAM memory cycle, a transaction will be issued to the SDRAM with the
command programmed in the SDRAM control register. For the Load Mode Register command, the lower
address field bits (A13:A0) determine the value programmed into the SDRAM mode register. The chip
select signals selected in the chip select field are asserted for one clock cycle and are reset after the
command has been executed.

The state of the sdram_ras_n, sdram_cas_n, and sdram_we_n signals reflects the state programmed
into the SDRAM control register, until a new command value is written into the SDRAM control register. The
state of the sdram_cke signal is reflected directly from the programmed state. The address bus is driven

with the column address. If the processor operation was a write?, the data bus is driven with the data to be
written. Using this mechanism, most SDRAM commands, including LOAD MODE REGISTER, may be
synthesized by the RC32334. After the SDRAM custom transaction completes, the value of the chip select
field in the SDRAM control register is automatically reset back to zero.

Register Definitions

The Base Address and Base Mask registers allow selection of the address range to be decoded for
each channel. The address map for base address, base mask, and primary and secondary control registers
is provided in Table 11.7. Through the SDRAM Primary and Secondary Control registers, various SDRAM
features and options are enabled, as shown in Figure 11.3 and Table 11.8 for primary and Figure 11.4 and
and Table 11.9 for secondary.

Offset Effective

Base Address Register Address Address

DRAM Base Address Register 0 C0
DRAM Base Mask Register 0 C4
DRAM Base Address Register 1 C8

1800_0000 DRAM Base Mask Register 1 cC
DRAM Base Address Register 2 DO
DRAM Base Mask Register 2 D4
DRAM Base Address Register 3 D8
DRAM Base Mask Register 3 DC
SDRAM Primary Control Register 300
SDRAM Secondary Control Register 304

Base + Offset

Table 11.7 SDRAM Register Address Map

1- Set this bit only for a precharge command.

2 The RC32300 CPU core performs a read or write operation to SDRAM space. This causes the RC32334 to
assert the SDRAM chip selects programmed in the CS field of the control register, drive the address bus with the
address of the SDRAM column address, and drive the SDRAM custom command programmed in the SDRAM
register. In addition, if the CPU core performed a write operation to SDRAM space, then the data bus is driven with
the data written by the CPU.

79RC32334/332 User Reference Manual 1-9

www NataGhestdlleq

Synchronous DRAM Controller SDRAM Control Registers

Notes SDRAM Control Registers

SDRAM Primary Control Register

3130 29 28 21 2625 24 23 2 21201916 15 14 13 98 0
SDRAM | Page Size | Bank Size | CAS Auto pre-charge/ | tRP SODIMM |output_cik | Reserved

Enable | (Mux Control) | (16/64M-bit) | Latency PageMode ™ | R enable | QUPUL | 1o zero

Bit | Action -

8 Sdram_addr{12] (sticky write, that is, data retained until
rewritten)

7 CKE Status (sticky write, that is, data retained until
rewritten)

6 RAS_n Status (sticky write, that is, data retained until

rewritten)

5 CAS_n Status (sticky write, that is, data retained until
rewritten)

4 WE_n Status (sticky write, that is, data retained until
rewritten)

3 CS_n[3] Status (write data retained until next data

address decode)

2 CS_n[2] Status (write data retained until next data
address decode)

1 CS_n[1] Status (write data retained until next data
address decode)

0 CS_n[0] Status (write data retained until next data
address decode)

Figure 11.3 SDRAM Primary Control Register Fields

Bit Field Description

31 SDRAM Note that if the DRAM Base Address range is decoded and the SDRAM controller is not
Controller Enable | enabled, and an SDRAM access is attempted, a bus error will occur.

Value | Description

1 SDRAM Controller Enabled
0 SDRAM Controller Disabled (default)
30:29 | SDRAM Shifts the RAS Address to MemAddr bit assignments.
RAS Mux
Control Value | Action
11 No shift (11-bit CAS)

10 Shift 1 (10-bit CAS) 4Mx4 SDRAM chips
01 Shift 2 (9-bit CAS) 2Mx8 SDRAM chips (default)
00 Shift 3 (8-bit CAS) 1Mx16 SDRAM chips

Table 11.8 SDRAM Primary Control Register Field Descriptions (Part 1 of 4)

79RC32334/332 User Reference Manual 11-10 __ June 4. 2002 1.

Synchronous DRAM Controller SDRAM Control Registers

Notes Bit Field Description

28 | SDRAM Along with SDRAM Bank Field Size B, selects which address bits are used for the BA
Bank Size Field A| pin(s).

Value | Description
1 16 M-bit (2 banks) (default)

0 64 M-bit (4 banks) (typical)

Note: Use for x4, x8, x16 but not x32
wide 64 M-bit parts.

128 M-bit (4 banks)

Note: Use for x4, x8, x16, x32 wide

128 M-bit parts.
27:26 | CAS Latency Implements a number of clocks needed for the CAS phase. The default number of clocks is
(CL) two.
Value | Action
1 3 clocks
10 2 clocks (Default)
01 1 clock
00 Reserved

A CAS latency of one is not supported by all SDRAM manufacturers.
25:24 | Active to R'W Value Description

Command Clocks -
Val A
(RCD) alue ction
11 Reserved
10 3 clocks (Default)
01 2 clocks
00 1 clock
23 Reserved Setto 0
22 | Bank Auto This value controls sdram_addr_12 (A10) during the CAS Phase and is used to control if
Pre-charge / the SDRAM controller assumes after each single or burst access that the current bank and
Bank Remains | bank page row comparator are to be de-activated (similar to non-Page Mode DRAM); or
Active that the current bank and bank page row comparator are to remain active in anticipation of a

possible follow-on access within the same bank row (similar to Page Mode DRAM).

Value | Description

1 Bank auto pre-charge (bank row de-acti-
vated after each access)

0 Bank remains active (bank row left-acti-
vated after each access)

Table 11.8 SDRAM Primary Control Register Field Descriptions (Part 2 of 4)

79RC32334/332 User Reference Manual 11 -11 __ June 4. 2002 1.

Synchronous DRAM Controller

SDRAM Control Registers

Notes Bit Field Description
21:20 | Pre-charge Number of clocks used for SDRAM pre-charge + write recovery time
clocks / pre- .
charge to active Value Description
command clocks 11 4 clocks (default)
(tRP) and Write
Recovery Time 10 3 clocks
Clocks (tWR) 01 2 clocks (typical)
(tRP+WR)
00 Reserved
19:16 | Refresh Transac- | Refresh to active clocks 1,2,3,4
tion Clocks (RC)
Value | Description
15-12 Reserved
11-3 Number of clocks used during a refresh operation (default is 8)
2-0 Reserved
15 | SODIMM enable | Enables RC32334 controller to operate with SODIMM-144 devices. If SDRAM control regis-
ter bit 15 is set to 1, then logically OR each pair of SDRAM chip selects on two new pins,
and use the present chip selects for the odd chip select byte masks.
sdram_s_n[1] corresponds to chip select 3 and 2.
sdram_s_n[0] corresponds to chip select 1 and 0.
sdram_cs_n[3:0] correspond to the byte enable DQM signals for chip select 3 and 1.
sdram_bemask_n[3:0] correspond to the byte enable DQM signals for chip select 2 and 0.
Value | Description
1 SODIMM mode enabled
0 SODIMM mode disabled
14 | Output Clk Allows the output_clk signal to be driven as an output from the RC32334. When disabled,
output_clk signal is tri-stated. Default value is 1.
Value | Description
1 Enable output_clk signal as output
0 output_clk signal output disabled
13:9 |Reserved Reserved to zero.
8:4 | sdram_addr[12], | The values in these register bits assert or de-assert the corresponding pins as synced with
CKE,RAS _n, the CS_n status bits.
CAS_n,WE_n
Status Value | Description
1 High (default)
0 Low
Table 11.8 SDRAM Primary Control Register Field Descriptions (Part 3 of 4)

79RC32334/332 User Reference Manual 11-12 __ June 4. 2002 1.

r SDRAM Control Registers

Synchronous DRAM Controlle

Notes Bit

Field Description

3.0 |[CS_n[3:0] Write low waits until the next bank address decode and, while in command write, asserts

the pin low for 1 clock and de-asserts the pin high after the command write occurs.

Value | Description
1 High (default)
0 Low

Table 11.8 SDRAM Primary Control Register Field Descriptions (Part 4 of 4)

SDRAM Secondary Control Register

31 14 13 12 1 10 9 8 2 1 0
SDRAM | SDRAM | SDRAM SDRAM SDRAM Refresh | SDRAM Refresh
Reserved bank size | RAS DoM |~ twr | Reserved | Optimal Timing Priority

Figure 11.4 SDRAM Secondary Control Register Fields

Bit Field Description
31:14 | Reserved
13:12 | SDRAM Along with SDRAM Bank Size Field A, selects which address bits are used for the BA
Bank Size Field B| pin(s).
Value | Description
11 Reserved
10 256 M-bit or 512 M-bit (4 banks)
01 64 M-bit with x32 wide parts (4 banks)
00 Use SDRAM Bank Size Field A (default
11 SDRAM Along with SDRAM RAS Mux Control Field, shifts the RAS Address to MemAddr bit assign-
RAS Mux ments.
Control B

Value | Description

1 If SDRAM RAS Mux Control Field = 00, then
Shift 4 (12-bit CAS).

If SDRAM RAS Mux Control Field = 00, then
the Shift is undefined (reserved).

0 Use the SDRAM RAS Mux Control Field
(default).

79RC32334/332 User Reference Manual 11 -13 __ June 4. 2002 1.

Table 11.9 SDRAM Secondary Control Register Field Descriptions (Part 1 of 2)

Synchronous DRAM Controller

SDRAM Control Registers

Notes Bit

Field

Description

10

SDRAM DQM

Value

Description

Assert sdram_bemask_n (DQM) only with
read or write command.

Assert sdram_bemask_n (DQM) earlier
and deassert later for external transceiver
setup and hold (default).

SDRAM tWR

If the tWR field is set, the SDRAM Controller will use the tWR field rather than the tRP field
to time write recovery periods. The tRP field can then be programmed to the optimal tRP

period without regard to adding in the tWP period.

Note: tWR is a timing parameter that requires a minimum recovery period after a write. The
RC32334 adds an option to optimize PC-100/133 writes using the Secondary Control Reg-

ister bit 9.

Value

Description

1

Use 2 clocks for tWR independent of tRP set-
ting (PC100+ setting).

Use part of tRP time to include tWR (default/
Legacy SDRAM setting).

8:2

Reserved

SDRAM Refresh
with Optimal
Timing

Value

Description

New Refresh with optimal Timing behavior.
Access after refresh issues an active com-
mand with no preceding precharge (typi-
cal).

Legacy behavior. Page mode (RAS-left-
asserted) access after refresh issues a pre-
charge (default).

SDRAM Refresh
Priority

Value

Description

New Refresh Priority. Refresh occurs
before any new read or write command

(typical).

Legacy behavior. Refresh occurs during
idle cycles after read or write commands
(default).

79RC32334/332 User Reference Manual 11 -14 __ June 4. 2002 1.

Table 11.9 SDRAM Secondary Control Register Field Descriptions (Part 2 of 2)

Synchronous DRAM Controller Timing Diagrams

Notes

Timing Diagrams

Figure 11.5 shows an SDRAM non-page burst read, as it occurs after the SDRAM controller has been
idle, such as after reset, refresh, or if the page mode is turned off. Because no precharge occurs, the row
address is captured immediately and a tRCD active command to r/'w command delay—in this case 2
clocks—then occurs. Finally, the column addresses are then captured.

Note that there is CAS latency from the column address until the first data appears, which in this case is
2 clocks. Also, in this case, auto precharge has been programmed—as indicated by the AP symbol—by the
col3 sdram_addr. Finally, the beginning of the next transaction is shown. A minimum pre-charge time
occurs, however, at least 4 clocks coincidently, prior to the next transaction because of the RC32300 CPU
core BTA protocol. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=1, RP=4, RC=8, Status=FF).

M Thilz *[* Tsu
MTsu2[f TTsu2

o

[tRCD—™

51 N I O O B O R |

Tdoll0, Tdgh4
'|Td0 |0} Tdqh4 '|Td0 5

sdram_addr[15:2] ﬂEX 010 X Coll

mem_data[31:0] _Addr /
Tdo9, Tdoh#
*"Tdo Tdol{l
 Tdod| Tdo M Tdo9, Tdoll4
sdram_cs_n[x] \ I/
Tdo9, Tdoh# 1 Tdo9, Tdoh#t Tdo9| TdoHft
" Tdo}[Tdollt "Tdo9 Tdot{l "Tdo Tdohi "TTdoc,Tdom
M Tdog) Tdo " Tdo9| [Tdoh M Tdo9 dohft
Command[ras,cas,we) Inhibit)@ctiv Xlnlnbi X RcadXRcad X RcadXRcad X Nué Acliv:X |
Tdoh#
M Tdod, Tdoht H Tdo9] Tdohlt
sdram_bemask_n[3:0] \ / \
™ Tdod, tdohd M Tdod, tdohd
sdram_cke
1Tdo 1, Tdgh4
M Tdol|l, Tdoh4 H Tdolll, Tdo

sdram_245_oe n

"Tdo , Tdot4
H Tdo8| Tdohlt H Tdos] Tdohlt
sdram_245 dt r n \

AP = Auto Precharge, which is enabled by A12 high.
CL = Cas Latency =2

Figure 11.5 SDRAM Non-Page Burst Read

Figure 11.6 shows an SDRAM non-page burst write as it occurs after the SDRAM controller has been
idle, such as after reset, refresh, or if the page mode is turned off. Because no precharge occurs, the row
address is captured immediately and a tRCD active command to r/'w command delay—in this case 2
clocks—then occurs. Finally, the column addresses are then captured.

Note that the write data occurs at the same time as its column address and write command. In this case,
auto precharge has been programmed, as indicated by the AP symbol, by the col3 sdram_addr. Finally, the
beginning of the next transaction is shown. A minimum pre-charge time is enforced, in this case 3 clocks,
before the next transaction from the SDRAM controller can begin. (En=1, Mux=01, Size=0, CL=2, RCD=2,
AP=1, RP=3, RC=8, Status=FF).

79RC32334/332 User Reference Manual 11 -15

Synchronous DRAM Controller Timing Diagrams

Notes
#1¢ Tdg4, Tdoh1
» € Tdd4, Tdohl
—RCD— *1[¢ Td#, Tdoh!
¢ Tdo@, Tdohl ®|[* Tdq4, Tdop1 tRP
L N B
AP
sdram_addr[15:2] Row Col0 Coll X col2 X cCol3 | | | | | ||
mem_data[31:0] Addr Data0 Datal AData2 AData3 Addr |
sdram_cs_n[x] / / \
Command[ras,cas,we] Inhibit XAc\iv XInhibitX Write X Write A_WriteA Write Inhibit __ AActive
sdram_bemask_n[3:0] \ /
sdram_cke
sdram_245_oe_n \ \
sdram 245 dt r n
AP = Auto Precharge, which is enabled by A12 high.

Figure 11.6 SDRAM Non-Page Burst Write

Figure 11.7 shows an SDRAM non-page single word read as it occurs after the SDRAM controller has
been idle, such as after reset, refresh, or if page mode is turned off. Because no precharge occurs, the row
address is captured immediately, a tRCD active command to r/w command delay—in this case 2 clocks—
then occurs. Finally, the column address is captured.

Note that there is CAS latency from the column address until the data appears, which is 2 clocks in this
case. Also in this case, auto precharge has been programmed—as indicated by the AP symbol—Dby the col
sdram_addr. Finally, the beginning of the next transaction is shown. A minimum pre-charge time occurs
coincidentally at least 4 clocks before the next transaction begins, because of the RC32300 CPU core BTA
protocol. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=1, RP=4, RC=8, Status=FF).

ktRED——CL—*]

e [L LD L L L L L L L L Ly Y

sdram_addr[15:2] ﬂ@nkol with AP |
mem_data[31:0] KAddr)

\Addr/ ata(
sdram_cs_n[x] /_
Command[ras,cas,we] Inhibit Kctivi{nhibiX Read Nop XNop X Inhibit _factive(
sdram_bemask n[3:0] \
sdram_cke

sdram 245 oe n

sdram 245 dt r n /

AP = Auto Precharge, which is enabled by A12 high.
CL = Cas Latency =2

Figure 11.7 SDRAM Non-Page Word Read

Figure 11.8 Shows an SDRAM non-page single word write, as it occurs after the SDRAM controller has
been idle, such as after reset, refresh, or if the page mode is off. Because no precharge occurs, the row
address is captured immediately and a tRCD active command to r/iw command delay—in this case 2
clocks— then occurs. Finally, the column address is captured.

Note that the write data occurs at the same time as its column address and write command, as does the
sdram_bemask_n[3:0] and dgm bus, indicating which bytes are valid. In this case, auto precharge has been
programmed, as indicated by the AP symbol, by the col sdram_addr. Finally, the beginning of the next

79RC32334/332 User Reference Manual 11 -16 __ June 4. 2002 1.

Synchronous DRAM Controller Timing Diagrams

Notes

79RC32334/332 User

transaction is shown. A minimum pre-charge time is enforced, in this case 3 clocks, before the next transac-
tion from the SDRAM controller can begin. The RP field, in this case 3 clocks, must include both the tRP
precharge time and the tWR write recovery time of the SDRAM AC requirements. (En=1, Mux=01, Size=0, CL=2,
RCD=2, AP=1, RP=3, RC=8, Status=FF).

-tRCD tRP
ek LU L L L L L Y
sdram_addr[15:2] Row XCol with AP |
mem_data[31:0] Addr, Data Addr, | | | | | | | | ||
sdram_cs_n[x] N N
Command[ras,cas,we] Inhibit ctivi{nhibifWriteX__ Inhibit factivey
sdram_bemask n[3:0] \
sdram_cke
sdram_245 oe n \ \
sdram_245 dt r n
AP = Auto Precharge, which is enabled by A12 high.

Figure 11.8 SDRAM Non-Page Word Write

Figure 11.9 shows an SDRAM page-hit burst read, as it occurs after the SDRAM controller has been left
with an active page open. In this figure, the current memory page matches the previous page. Thus, no
precharge occurs. The row address is not needed nor is a tRCD active command to r/w command delay, so
the column addresses are captured.

Note that there is CAS latency2 clocks in this case, from the column address until the first data appears.
Also in this case, page left actively asserted has been programmed, as indicated by the lack of an AP
symbol, by the col3 sdram_addr. Finally, the beginning of the next transaction is shown. At least 4 clocks
coincidently occur before the next transaction because of the RC32300 CPU core BTA protocol, at which
time a SDRAM page-hit may reoccur. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0, RP=2, RC=8, Status=FF).

—(L
clk _L_I__I_T__L:IJT_T_—I_—I_T_—I_—I_—I_I—I_—I_
sdram_addr[15:2] ﬂ(@@ Col2){Col3 |
mem_data[31:0] \Addr) {Data0 JDatal }Data2 AData3 Addr
sdram_cs_n[x] / /
Command[ras,cas,we] Inhibit ead ead)@ ead A\Nop ANop X Inhibit ARead
sdram_bemask_n[3:0] \ / \
sdram_cke
sdram_245 oe n /
sdram_245 dt r n /
AP = Auto Precharge, which is enabled by A12 high.
CL = Cas Latency = 2

Figure 11.9 SDRAM Page-Hit Burst Read

Figure 11.10 shows a SDRAM page-hit burst write, as it occurs after the SDRAM controller has left with
an active page open. In this figure, the current memory page matches the previous page, so no precharge
occurs. Neither the row address or tRCD active command to r/'w command delay are needed, so the
column addresses are captured.

Reference Manual June 4, 2092

Synchronous DRAM Controller

Timing Diagrams

Notes

79RC32334/332 User Reference Manual

Note that the write data occurs at the same time as its column address and write command. In this case,
page left actively asserted has been programmed, as indicated by the lack of an AP symbol, by the col3
sdram_addr. Finally, the beginning of the next transaction is shown. At least 2 clocks coincidently occur
before the next transaction because of the RC32300 CPU core BTA protocol, at which time a SDRAM
page-hit may reoccur. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0, RP=2, RC=8, Status=FF).

ek [L] L] L

sdram_addr[15:2] Col0)Col1 XCol2 XCol3 |

mem_data[31:0] ddr)Data0 fDatal AData2 \Data3 Addr |

sdram_cs_n[x] /

Command[ras,cas,we] Inhibit (Write \WriteXWriteXWrite X _Inhibit XWrite

sdram_bemask_n[3:0] \ / \

sdram_cke

sdram_245 oe n / \

sdram 245 dt r n

Figure 11.10 SDRAM Page-Hit Burst Write

Figure 11.11 shows a SDRAM page-hit single word read as it occurs after the SDRAM controller has
been left with an active page open. In this figure, the current memory page matches the previous page, so
no precharge occurs. The row address is not needed nor a tRCD active command to r/w command delay,
so the column address is captured.

Note that there is CAS latency, 2 clocks in this case, from the column address until the first data
appears. Also in this case, page left actively asserted has been programmed, as indicated by the lack of an
AP symbol, by the col sdram_addr. Finally, the beginning of the next transaction is shown. At least 4 clocks
coincidently occur before the next transaction, because of the RC32300 CPU core BTA protocol, at which
time an SDRAM page-hit may reoccur. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0, RP=2, RC=8,
Status=FF).

—dL
clk —L—LT_T_—I_—_I_LI_—I_—I_—I_—I_—I_—I_—I_—I_—I_—I_
sdram_addr[15:2] Col |
mem_data[31:0] {Addr) {Data Addr)
sdram_cs_n[x]
Command][ras,cas,we] Inhibit Read {Nop \Nop Inhibit
sdram_bemask n[3:0] \
sdram_cke

sdram 245 oe n |

sdram 245 dt r n |

AP = Auto Precharge, which is enabled by A12 high.
CL = Cas Latency =2

Figure 11.11 SDRAM Page-Hit Word Read

June 4. 2002

Timing Diagrams

Synchronous DRAM Controller

Notes

79RC32334/332 User Reference Manual

Figure 11.12 shows an SDRAM page-hit single word write, as it occurs after the SDRAM controller has
left with an active page open. In this figure, the current memory page matches the previous page, so no
precharge occurs. The row address is not needed nor is a tRCD active command to r/w command delay, so
the column address is captured.

Note that the write data occurs at the same time as its column address and write command. In this case,
page left actively asserted has been programmed, as indicated by the lack of an AP symbol, by the
col sdram_addr. Finally, the beginning of the next transaction is shown. At least 2 clocks coincidently occur
before the next transaction because of the RC32300 CPU core BTA protocol, at which time an SDRAM
page-hit may reoccur. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0, RP=2, RC=8, Status=FF).

ek [L L L L L)L LW L L L u L L L 4y

sdram_addr[15:2] Col0 |

mem_data[31:0] Addr Data0 Addr, |

sdram_cs_n[x]

Command][ras,cas,we] Inhibit WriteX Inhibit |

I N N N I I

sdram_bemask n[3:0] | |
sdram_cke

sdram_ 245 _oe n |

sdram_245 dt r n [[[[[[I | | I |

Figure 11.12 SDRAM Page-Hit Word Write

Figure 11.13 shows a SDRAM page-miss burst read, as it occurs after the SDRAM controller has been
left with an active page open. In this figure, the current memory page does not match the previous page, so
a precharge occurs that is of the Pre-charge programmed length, in this case 3 clocks. Then the row
address is captured and a tRCD active command to r/'w command delay occurs. The column addresses are
then captured.

Note that there is CAS latency, 2 clocks in this case, from the column address until the first data
appears. Also in this case, page left actively asserted has been programmed, as indicated by the lack of an
AP symbol, by the col3 sdram_addr. Finally, the beginning of the next transaction is shown. At least 4
clocks coincidently occur before the next transaction because of the RC32300 CPU core BTA protocol, at
which time a SDRAM page-miss or hit may (re-)occur. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0, RP=3, RC=8,
Status=FF).

RP +—1~tRCD —e—CL—>
o LD LD L L L L L L L L L L L L
sdram_addr[15:2] Row X Col Col X\ ColA Col
mem_data[31:0] \Addr Data0 XDatal AData2 \Data3 Addr
sdram_cs_n[x] /] /
Command[ras,cas,we] Tnhibit reched_Inhibit _active)hibif{Read JRead XRead XRead __NOP Inhibit
sdram_bemask n[3:0] /
sdram_cke
sdram_245 oe n /
sdram_245_dt r n

CL = Cas Latency =2

Figure 11.13 SDRAM Page-Miss Burst Read

June 4. 2002

Synchronous DRAM Controller

Timing Diagrams

Notes

79RC32334/332 User Reference Manual

Figure 11.14 shows an SDRAM page-miss single word read, as it occurs after the SDRAM controller has
been left with an active page open. In this figure, the current memory page does not match the previous
page, so a precharge occurs that is of the Pre-charge programmed length, in this case 3 clocks. Then the
row address is captured and a tRCD active command to r/w command delay occurs. The column address is
then captured.

Note that there is CAS latency, 2 clocks in this case, from the column address until the first data
appears. In this case, page left actively asserted has been programmed, as indicated by the lack of an AP
symbol, by the col sdram_addr. Finally, the beginning of the next transaction is shown. At least 4 clocks
coincidently occur before the next transaction because of the RC32300 CPU core BTA protocol, at which
time a SDRAM page-miss or hit may (re-)occur. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0, RP=3,
RC=8, Status=FF).

tRP tRECD->fe—ClL—>
e [L L LU L L LU LYy L Ly LY
sdram_addr[15:2] RowA Col |
mem_data[31:0] {\Addr) Data0 Addr)
sdram_cs_n[x] _ /_
Command[ras,cas,we] Inhibit rechgh Inhibit clive@@ Nop \Nop A Inhibit)Read

sdram_bemask n[3:0]

sdram_cke

sdram_245 oe n

sdram 245 dt r n

CL = Cas Latency = 2
Figure 11.14 SDRAM Page-Miss Word Read

Figure 11.15 shows an 11 clock page mode SDRAM refresh with the Pre-charge Clocks field
programmed to the value of 3 clocks and the Refresh Transaction Clocks field programmed to the value of
8 clocks. A minimum of 8 clocks occurs before the next active command can occur, which in this figure is a
page mode write.

Note that a non-page mode SDRAM refresh is similar, except that the Pre-charge All command and the
Pre-charge Clocks field delay do not occur. Also note that the refresh occurs transparently with respect to
concurrent memory controller generated transactions. The refresh will wait until the current SDRAM trans-
action is complete (if present) and has higher priority over the next/new SDRAM transaction (if present).
(En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0, RP=3, RC=8, Status=FF).

clk

sdram_addr[12]

sdram_cs_n[3:0]

Inhibit

Command|[ras,cas,we] Inhibit

sdram_bemask n[3:0]

sdram_cke

sdram 245 oe n \

sdram 245 dt r n

Figure 11.15 SDRAM Refresh

June 4. 2002

Synchronous DRAM Controller SOoDIMM

Connecting the RC32334 to the SDRAMs

Below is the recommended address interface between the RC32334 and the SDRAM banks. A[10]
allows “Precharge all banks” during each SDRAM precharge command as well as the appropriate Row
address during the row address command.

RC32334 SDRAM Banks
sdram_addr{15:13] | A[13:11]
sdram_addr_12 A[10]
sdram_addr{11:2] | A[9:0]

Notes

SODIMM

SODIMM Configuration

RC32334 memory configurations can always use discrete parts. In addition, RC32334 is designed to
use memory modules. The RC32334 default memory module configuration is the 100/168-pin DIMM with 4
chip selects. In addition, the RC32334 supports the 144-pin Small OQutline DIMM (SODIMM-144) with 2 chip
selects.

The use of SODIMM requires two additional pins, sdram_s_n[1:0]. The SODIMM mode requires that
the RC32334 SDRAM control register's SODIMM Enable bit be initialized to the SODIMM setting. Note that
when the SODIMM mode is enabled, all DIMMs in the system must use the SODIMM signal configuration.
In the SODIMM mode, the SDRAM module chip selects are provided on the two sdram_s_n[1:0] signals.
sdram_s_n[0] is used to select banks 0 and 1 on the first SODIMM as programmed by the RC32334
address ranges for banks 0 and 1. sdram_s_n[1] is used to select banks 2 and 3 on an optional second
SODIMM as programmed by the RC32334 address ranges for banks 2 and 3.

The SODIMM mode also changes the behavior of the sdram_bemask_n[3:0] DQM byte mask enables
to only assert on even bank selects, 0 and 2. The SODIMM mode also changes the behavior of the
sdram_cs_n[3:0] chip selects to become DQM byte mask enables that only assert on odd bank selects, 1
and 3.

SDRAM SODIMM Even Bank Non-Page Word Read

&

RCD-# IL—>]

<*—(
ek [L) LI L L L Lo L e o o Ly
sdram_addr{15:2] | NN R o ol with A |

sdram_s_n[x] /
Command|ras,cas,we] Inhibit ctivthibiX Rea}(Nop NopX Inhibit ctiv}(
sdram_bemask n[3:0] \

sdram_cs_n[3:0]

sdram_cke

sdram 245 oe n

sdram 245 dt r n \

AP = Auto Precharge, which is enabled by A12 high.
CL = Cas Latency =2

Figure 11.16 SDRAM SODIMM Even Bank Non-page Word Read

79RC32334/332 User Reference Manual 11-21 __ June 4. 2002 1.

Synchronous DRAM Controller SOoDIMM

Notes Figure 11.16 shows an SDRAM SODIMM Even Bank non-page word read as it occurs after the SDRAM
controller has been idle, such as after reset, refresh, or if page mode is turned off. Because no precharge
occurs, the row address is captured immediately, a tRCD active command to the r/w command delay (in this
example a 2 clock delay) then occurs. Finally, the column address is captured. The module select,
sdram_s_n[0] will assert if bank 0 is accessed or sdram_s_n[1] will assert if bank 2 is accessed. The even
DQM bus signals, sdram_bemask_n[3:0], are asserted instead of the odd DQM bus signals,
sdram_cs_n[3:0]. Note that the burst, write, and page mode accesses for even banks are similar to this
case.

SDRAM SODIMM Odd Bank Non-Page Word Read

[+RED>e—dL—]

clk —I_—I_—I_—I__I__I_‘T_C__I__L—I_—I__I_—I_—I_—I_—I_—I_
sdram_addr[15:2] [N R o Yol with A |
sdram_s_n[x] /an
Command[ras,cas,we] Inhibit___ Xctiviahibi ReafNop XNop X_Inhibit Wctivy(

sdram_bemask n[3:0]

sdram_cs_n[3:0] \

sdram_cke

sdram_245 oe n

sdram_245 dt r n / \

AP = Auto Precharge, which is enabled by A12 high.
CL = Cas Latency =2

Figure 11.17 SDRAM SODIMM Odd Bank Non-page Word Read

Figure 11.17 shows an SDRAM SODIMM Odd Bank non-page word read as it occurs after the SDRAM
controller has been idle, such as after reset, refresh, or if page mode is turned off. Because no precharge
occurs, the row address is captured immediately, a tRCD active command to the r/w command delay (in this
example a 2 clock delay) then occurs. Finally, the column address is captured. The module select,
sdram_s_n[0] will assert if bank 1 is accessed or sdram_s_n[1] will assert if bank 3 is accessed. The odd
DQM bus signals, sdram_cs_n[3:0], are asserted instead of the even DQM bus signals,
sdram_bemask_n[3:0]. Note that the burst, write, and page mode accesses for odd banks are similar to this
case.

79RC32334/332 User Reference Manual 11 - 22 __ June 4. 2002 1.

Synchronous DRAM Controller SOoDIMM

Notes SDRAM SODIMM Refresh

clk

sdram_addr[12]

sdram_s_n[1:0]

Command[ras,cas,we]

sdram_bemask _n[3:0]

sdram_cs_n[3:0]

sdram_cke

sdram_245 oe n _|/]

sdram 245 dt r n

CBR = Auto refresh; PA = Precharge All, which is enabled by A12 low.

Figure 11.18 SDRAM SODIMM Refresh

Figure 11.18 shows an 11 clock page mode SDRAM SODIMM refresh with the Pre-charge Clocks field
programmed to the value of 3 clocks and the Refresh Transaction Clocks field programmed to the value of
8 clocks. A minimum of 8 clocks occur before the next active command can occur, which in this example is
a page mode write. Note that a non-page mode SDRAM refresh is similar, except that the Pre-charge All
command and the Pre-charge Clocks field delay do not occur.

Also note that the refresh occurs transparently with respect to concurrent memory controller generated
transactions. The refresh will wait until the current SDRAM transaction is complete (if present) and has
higher priority over the next/new SDRAM transaction (if present). The module selects, sdram_s_n[1:0], are
both asserted. (En=1, Mux=01, Size=0, CL=2, RCD=2, AP=0. RP=3, RC=8, Status=FF.) (SODIMM=1.)

output_clk Usage

The RC32334 provides an output_clk output. This clock follows the cpu_masterclk with an approximate
5ns phase delay which aligns the transmit direction control, address, and data signals to a transmit clock.
Conventional non-registered PC66, PC100, and PC133 SDRAMSs cannot take advantage of the output_clk
output feature. Instead, it is recommended that most systems use the cpu_masterclk as the SDRAM clock.
Because the output_clk output is enabled at reset time, unless used elsewhere in the system as a transmit
aligned clock, output_clk can be turned off to save power using the RC32334 SDRAM control register
output_clk Output Enable bit.

Please see the RC32334 Design Considerations document at www.idt.com for the latest SDRAM
recommendations, especially concerning the use of transceivers, speed grades, and data width.

79RC32334/332 User Reference Manual 11 - 23 __ June 4. 2002 1.

Synchronous DRAM Controller SOoDIMM

Notes

79RC32334/332 User Reference Manual 11 -24 _ June 4. 2002 .

PCI Interface Controller

®
Notes Introduction

The PClI Interface Controller complies with PCI Local Bus Specification, Revision 2.2'. Both master and
target modes are supported. The interface implements 3.3V PCl-compliant pads (5V tolerant). The PCI bus
operates up to 66 MHz and supports burst transfers. The PCI Interface Controller serves as a PCI bridge
between the PCI bus and the RC32334 internal bus. The block diagram of the PCI Interface Controller is
shown in Figure 12.1.

The PCI bus interface contains two separate data paths, one for access initiated by the CPU or DMA
and one for access initiated by an external PCI agent. Each path has its own FIFO, and each path operates
independently from the other.

The PCI controller uses a dedicated DMA engine, separate from the four general purpose DMA
controller channels described in Chapter 13, to initiate PCI bus target transfers to and from local memory.
Features

The PCI Interface Module includes the following functions:

* Master and Target Controllers
- Host or Satellite (Adapter Card) mode
— Capability to access configuration registers from CPU
— Target lock support
* PCI Bus Arbitration selection in Host Mode
- Internal arbiter provides:
- Fixed priority or Round Robin
- Arbitrate 32 external PCI masters
— Capability to disable internal arbiter to implement arbiter function externally
* Mailbox registers
* Software programmable endianness byte swapper
* Address translation between CPU address space and PCl address space
* Independent DMA engine for PCI target transfers from PCI bus to CPU memory
* Support for Plug and Play
PCI Interface Enhancements in Y Silicon Revision

The PCI Interface is one of the modules that has been significantly enhanced in the Y revision of the
silicon. TTable 12.1 outlines some of the significant differences between the Z and Y revisions. For more
information on the differences between the silicon revisions, refer to Application Note AN-350, RC32334/
RC32332 Differences Between Z and Y Revisions, and to the RC32334/RC32332 Device Errata, both
posted on IDT's web site at www.idt.com.

1 For operational details and/or timing diagrams not included in this chapter, refer to the PCI 2.2 specification.
Z Arbitrate 2 external PCI masters for the RC32332.
79RC32334/332 User Reference Manual 12 -1 v Datashertdeom

PCI Interface Controller Features

Notes

79RC32334/332 User Reference Manual 12-2 _ June 4. 2002 1.

Function

Z Revision

Y Revision

Comments

PCI specification sup-
ported

2.1

22

FIFO size for target
read and target writes

8 words deep in each
direction.

16 words deep in
each direction.

Allows the part to support
larger bursts from external PCI
bus masters transferring infor-

mation to/from SDRAM.
FIFO size for master 8 words deep in each Read FIFOis 8
read and master writes | direction. words deep, write
FIFO now 16 words
deep.
Maximum burst size for | One word Eight words Significant performance
target writes improvement for bursts of data
from external PCI bus mas-
ters.
Number of BAR regis- | 2 4 Allows users to program cer-
ters tain BARs for SDRAM and
others to system control regis-
ters, preventing multiple
changes to the BAR register.
Improves time taken to switch
between tasks.
Programmability of BAR | Upper four bits of BAR Upper 24 bits are Provides more efficient use of
address bits are programmable. programmable. memory space for applications
where RC32332/4 is config-
ured for satellite mode opera-
tion (example - PCl-add in
cards).
Priority of PCI target Writes favored over Retry of target writes | Opportunity to balance read

reads versus writes reads. Multiple writes during read opera- and write operations.

behavior can be buffered, but tions made optional.

reads cannot. Write FIFO | Option to perform
must be flushed before | eight word fetch for
target read is allowed to | one word request.
complete.

"Eager prefetch" Not available Part will continue to | Significant performance
perform targetread | improvement for applications
operations until its moving large blocks of data
FIFO is full. across PCI.

TRDY Counter behavior | Holds PCI bus for 16 Bus can be held Violates the PCI specification,

cycles before retrying a
transaction.

longer than 16
cycles.

but provides opportunity to
optimize platform and mini-
mize wasted PCI cycles.

Table 12.1 PCI Differences Between Z and Y Revisions

PCI Interface Controller Functional Overview

Notes

To ensure backwards compatibility with Z revision, the new functionality in Y revision is enabled using
bits in new registers that were not included in the Z revision. These new registers are shown in Table 12.2
below.

Address

Register

0x1800_20A0

New Feature Register

0x1800_20A4

PCI Target Control Register

Table 12.2 Additional PCI Control Registers

Functional Overview

During reset, three reset initialization pins (mem_addr{22:20]) must be set up properly to select the
desired PCI and boot modes for the RC32334. Table 12.3 shows all of the possible mode configurations
with the settings of mem_addr[22-20] pins, which are latched after reset. The PCl interface controller can
be in either host mode or satellite mode.

mem_addr[22:21] | mem_addr[20] Description

00 0 Host mode, boot from memory controller, serial EEPROM
not supported

00 1 Satellite mode, boot from memory controller, serial
EEPROM not supported

01 0 Not allowed

01 1 Satellite mode, boot from PCI serial EEPROM

10 X Reserved

11 X Tri-state memory bus and EEPROM bus during
coldreset_n assertion.

Table 12.3 Initialization Pins mem_addr[22:20] Settings

When the PCI Boot Mode option is selected at reset, the PCI host can write to the PCI master enable bit.
This is because the PCI Target Not Ready bit (PCI Arbitration Register, bit 2) is cleared when the PCI Boot
Mode option is selected.

RC32334 System Bus ID'IlnFt’emahl BUISB
(IDT Peripheral Bus) PClI Interface Controller
A e
PClI Target Receive FIFO
Memory 4_» Internal <_qu:|:|:|:|:|:|<- el
" Control | MButS Target
lemory =i aster
? Control Control
| PCI Target Transmit FIFO
DRAM
Control PCI Master Receive FIFO
1o | Internal PCI
Bus Master
‘ . Slave _»
DMA [Control Control
| PCI Master Transmit FIFO
| O PCI
Intar;iatce e | Configuration
| PCl Interface Registers
Controller
CPU |-g=p> | Internal
Registers
y Ty e

PCI Bus

"

{770
Optional
in
Boot from

| PCI
Mode)

79RC32334/332 User Reference Manual

Figure 12.1 PCl Interface Controller Block Diagram

12-3

www NataGhestdl oo

PCI Interface Controller Functional Overview

Notes Memory Mapping

Figures 12.2 and 12.3 show the CPU to PCI memory mapping and the PCl to CPU memory mapping,
respectively.

CPU Virtual Address (4 ranges)
Mapped via TLB Range 1 (up to 512MB)
Mapped via TLB Range 2 (up to 512MB)
B880_0000 - B88F_FFFF example: B880_1234
B8C0_0000 - B8FF_FFFF (w/ non-PCl-boot reset option)
or BFC0_0000 - BFFF_FFFF (w/ PCl-boot reset option)
CPU Virtual Address mapped to Physical Local Bus Address
via TLB or Fixed Mapping; or Address originates as DMA Local Bus Address (4 ranges)
4000_0000 - 5FFF_FFFF (via TLB, 512MB)
6000_0000 - 7FFF_FFFF (via TLB, 512MB)
1880_0000 - 188F_FFFF (via Fixed Mapping, 1MB) example: 1880_1234
18C0_0000 - 18FF_FFFF (via Fixed Mapping, 4MB)
or 1FC0_0000 - 1FFF_FFFF (via Fixed Mapping, 4MB)

CPU/DMA Local Bus Physical Addresses assigned to Fixed PCI Memory or I/O Spaces (4 ranges)
PCI Memory Space 1

PCI Memory Space 2

PCI Memory Space 3
PCI I/O Space example: 1880_1234

CPU/DMA Local Bus Physical Address Mapped via “PCI Memory Space [3:1] Base Register’
or “PCI I/O Space Base Register” into PCI Address (4 ranges)
PCI Memory Space 1 (top 4-bits substituted)
PCI Memory Space 2 (top 4-bits substituted)
PCI Memory Space 4 (top 4-bits substituted)
PCI 1/O Space (top 12-bits substituted) example: 0000_1234 (1/0)

Figure 12.2 CPU to PCI Memory Mapping

79RC32334/332 User Reference Manual 12-4 _ June 4. 2002 1.

PCI Interface Controller Functional Overview

Notes

PCI Address decoded by 32334/32332 Target PCI “Memory Base Address Register’ (BAR1,

BAR2, BAR4) or Target PCI “I/O Base Address Register’ (BAR3) (4 ranges).

The BAR's are setup via the PCI Configuration Register Space rather than the Local Bus

memory space.
BAR 1 (up to 4GB)
BAR 2 (up to 4GB)
BAR 3 (up to 4GB
BAR 4 (up to 4GB

) example: 7F00_C840 (1/0)
)

PCI Address Translated to Local Bus Physical Address by the
“PCl to CPU Memory Space [4,3,1]"or “PCl to CPU I/O Space Base Register” (4 ranges)
CPU Memory Space 1 (up to the top 24-bits substituted)

CPU Memory Space 2 (up to the top 24-bits substituted)
CPU I/0 Space (up to the top 24-bits substituted) example: 1F00_C840
CPU Memory Space 4 (up to the top 24-bits substituted)

Figure 12.3 PCI to CPU Memory Mapping

RC32334 PCI Bus Target Operation

The PCl interface of the RC32334/RC32332 integrated processors is optimized to support transfers for
external PCl bus masters that initiate the transmission/reception of data to/from local SDRAM (termed as
target mode in this chapter). When the device is configured for target operation, the module supports up to
seven queued target write commands and one queued target read command. When these queues are
exceeded, the PCl host transaction will be retried until the command can be accepted. When the RC32334
PCl is configured as a target, external PCI masters can perform up to 8 word bursts.

The PCI target interface allows an external PCl master to be able to read and write any local memory
address. This allows an external PCI master to access local SDRAM, Memory-1/O (8, 16 or 32-bit memory)
or any internal register. The PCI target interface automatically performs byte scattering (writes) and gath-
ering (reads) for devices on the memory and peripheral bus, and partial writes and reads for SDRAMs. PClI
bus accesses to 8-/16-/32-bit external I/0 are supported, provided that the 1/O addresses are aligned on a
word boundary and that the data is located in the correct 1/2/4 byte lanes. Note there is NO byte unpacking.
Therefore, for 8- or 16-bit accesses the reminder of the word will not be used.

The PCI bus master can read/write to memory through a CPU memory space 1 BR. The CPU memory
space 1 BR translates a PCI address to a local physical CPU address by modifying the top upper 24 bits
are programmable. This means that the minimum memory size is 256 Bytes.

Similarly, when accessing /O peripherals, the CPU I/O space BR translates a PCI address to a local
physical CPU address by modifying the top 24 address bits of the PCI address. For I/O accesses, note that
only the top 8 address bits of the PCl address bus are used, as the I/O space accessed from the PCI bus is
limited to 64 words (256 bytes). The endianness swap setting can be modified for each of the above BRs by
setting a bit in each BR.

The RC32334 PCI does not support the cache line wrap mode defined in the PCI specification. Thus,
the RC32334 PCI master never generates a cache line wrap mode. A cache line wrap mode cannot be
generated from PCIl agents, since the RC32334 does not recognize this mode. If this mode is generated
from the PCI bus, the RC32334 device will treat the access as linear incrementing.

The PCI bus interface supports target locking. Once a lock has been established, all PCI target transac-
tions to the RC32334/RC32332 device are retried until the lock has been released. Lock operations are
useful for creating atomic sequences as seen by external masters on the PCI bus. Lock accesses cannot
be issued when the RC32334 is a PCI master.

Note that on PCI target accesses to memory and 10, 0x0xxx_xxxx and 0x0000_00xx spaces are
decoded. This enables conventional debug and non-PC system usage of this address space.

79RC32334/332 User Reference Manual 12-5 _ June 4. 2002 1.

PCI Interface Controller Functional Overview

Notes PClI target burst transactions which attempt to burst data beyond the address space allocated to a BAR
will terminate with a target disconnect without data. The PCI address spaces mapped by two BAR registers
may be contiguous. PCI target burst transactions which attempt to burst data across adjacent address
spaces mapped by BAR registers will terminate with a target disconnect without data.

PCI Target Control in the PCI to CPU memory and I/O space base registers contain additional fields
beyond the BAR register which control the behavior of the PCI bus interface when acting as a PCl target.
These include:

- Avretry timer controls the number of PCI clock cycles the PCl interface will wait (to receive the first
data of an access) before it issues a retry command. This is used during target read operations
(i.e., memory read, memory read multiple, memory read line, and I/O read) to specify the number
of PCl clock cycles the PCI bus interface is allowed to wait (for the first data quantity of a transac-
tion) before the transaction must be retried. During target write operations (i.e., memory write,
memory write and invalidate, and I/O write), this field specifies the number of PCI clock cycles the
PCI bus interface is allowed to wait (for space to appear in the PCI target input FIFO) before a
transaction must be retried. The initial value for the retry timer is specified in the Retry Timer
(RTIMER) field of the PCI CPU Memory and I/O Space Base register. Note that PCI 2.2 sets the
maximum to 16 PCI clock cycles. However, the RC32334/RC32332 device allows this limit to be
extended up to 255 clock cycles. Although this violates the PCI specification, it does provide an
opportunity to optimize PCI bandwidth for systems with known PCl-based peripherals.

- A disconnect timer controls the number of PCI clock cycles the PCl interface will wait between
data transfers. If the PCl bus interface is unable to accept data before the timer expires, the PCI
bus will be released. PCI 2.2 specification allows a maximum of 8 PCI clock cycles, but the
RC32334/RC32332 allow a value of up to 255 clock cycles.

The PCI bus interface supports target delayed reads. The PCI bus interface supports only one pending
delayed read. If a read is attempted while a delayed read is pending, the transaction is retried and a
delayed read is not initiated for the transaction. The external PCI master that initiates a delayed read is
expected to retry the transaction until the read completes. The PCI bus interface contains a discard timer. If

the master does not repeat a delayed read request within 2'5 clock cycles, the discard timer will expire and
discard the pending read. If the discard timer expires and a pending read is discarded, then the pending
read discarded (PRD) bit is set in the PCI controller interrupt pending register. Note that the discard timer
can be disabled by setting the disable discard timer (DDT) bit in the PCITC register.

The PCl transaction ordering constraints may be viewed as favoring target write operations, since only a
single delayed read is allowed when there are posted writes, while multiple posted writes are allowed when
there is a delayed read.

There is also an “eager prefetch” mode. When enabled, the target read PCI block will continue to fetch
data until its FIFO is filled. Since the new FIFO is 16 words, this means that a single word fetch can result in
16 words, divided into two bursts, being fetched across the local bus. This will result in substantial
throughput improvements in cases of long block reads. However, this mode should be used with caution. If
the system is not moving blocks of data, but rather doing isolated reads from specific locations, enabling
these features will degrade system performance rather than improve it.

Note that the last 16 words of physical memory should not be accessed by a prefetchable PCI target
read. If they are accessed, a system error via the pci_serr_n signal may be signalled since the target read
prefetch may try to access non-existent memory beyond the physical memory bank, thereby generating a
local bus non-decoded address error.

RC32334 PCI Bus Master Operation

RC32334 PCI Bus Master operation is defined as CPU core or general purpose DMA initiated read/write
transfers between the RC32334 and the PCI bus. The address map is shown in Table 12.4 when the CPU
core or DMA controller wants to access the PCI bus. The CPU or DMA can read/write to targets on the PCI
bus through 3 PCI memory spaces. In PCI master mode, the device can perform quad-word bursts for both
read and write accesses. When accessing PCI memory space, the corresponding PCI memory space Base
Register (BR) translates a local physical CPU address into a PCI address by modifying the top 4 address
bits of the local CPU address.

79RC32334/332 User Reference Manual 12-6 _ June 4. 2002 1.

PCI Interface Controller Functional Overview

Notes Similarly, when accessing PCI I/0 space, the PCI I/O space Base Register translates a local physical
CPU address into a PCl address by modifying the top 4 address bits of the local CPU address. The BRs
can point to the same or overlapping address spaces, if desired. The endianness swap setting can be modi-
fied for each of the BRs by setting a bit in each BR.

When the RC32334 PClI is configured as a master, it can perform quad-word burst for both read and
write accesses.

From To Allocation

1800_2000 | 1800_2FFF | PCI Internal Registers (4KB)

1880_0000 | 188F_FFFF | PCI I/O Space (1M)

18C0_0000 | 18FF_FFFF | PCl Memory Space 3 (4MB) (for non-PCl boot reset option)
1FC0_0000 | 1FFF_FFFF | PCl Memory Space 3 (4MB) (for boot from PCI bus option)
4000_0000 | 5FFF_FFFF | PCI Memory Space 1 (512MB)
(

6000_0000 | 7FFF_FFFF | PCI Memory Space 2 (512MB)

Table 12.4 PCl Address Map

RC32334 PCI Bus Target Operation

RC32334 PCI Bus Target operation is defined as an external device that initiates a PCI bus read or write
transfers between the PCI bus and external memory or between the PCI bus and an I/O peripheral. Note
that only 32-bit wide external memory is supported. The PCI bus master can read/write to memory through
a CPU memory space 1 BR. The CPU memory space 1 BR translates a PCI address to a local physical
CPU address by modifying the top upper 24 bits are programmable. This means that the minimum memory
size is 256 bytes.

The PCI controller uses a dedicated DMA engine, separate from the four general purpose DMA
controller channels described in Chapter 13, to initiate PCI bus target transfers to and from local memory.

Similarly, when accessing /O peripherals, the CPU I/O space BR translates a PCI address to a local
physical CPU address by modifying the top 24 address bits of the PCI address. Note that only the top 8
address bits of the PCl address bus are used for I/O accesses, as the I/0 space accessed from the PCI bus
is limited to 64 words (256 bytes). The endianness swap setting can be modified for each of the above BRs
by setting a bit in each BR.

The RC32334 PCI Bus Target supports PCI bus accesses to 8-/16-/32-bit external 1/0, assuming the I/0
addresses are aligned on a word boundary and that the data is located in the correct 1/2/4 byte lanes. Note
there is NO byte unpacking. Therefore 8- or 16-bit access the reminder of the word will not be used.

When the RC32334 PCl is configured as a target, external PCI masters can only perform up to 8 word
bursts. If the write address is such that it will cross a 1024-byte boundary (minimum SDRAM page size), the
current write will end when the 0x3FC offset is reached and a new IPBus write is ready to begin.

The RC32334 PCI does not support the cache line wrap mode defined in the PCI specification. Thus,
the RC32334 PCI master never generates a cache line wrap mode. A cache line wrap mode cannot be
generated from PCI agents, since the RC32334 does not recognize this mode. If this mode is generated
from the PCI bus, the RC32334 device will treat the access as linear incrementing.

The RC32334 PCI controller supports lock accesses when RC32334 is a PCI target. However, the lock
accesses cannot be issued when the RC32334 is a PCI master.

Note that on PCI target accesses to memory and 10, 0xOxxx_xxxx and 0x0000_00xx spaces are
decoded. This enables conventional debug and non-PC system usage of this address space.
PCI Satellite Mode

The PCI bus interface can also be configured for satellite mode operation. The satellite mode can be
initiated in two ways:

79RC32334/332 User Reference Manual 12-7 _ June 4. 2002 1.

PCI Interface Controller Functional Overview

Not * The satellite can boot from the Memory Controller. In this case, the bootstrapping code for the satel-
otes) o , .
lite resides in the local memory space from which the satellite board boots up

* The satellite can boot from the PCI serial EEPROM. In this case, the satellite loads its configuration
registers from a serial EEPROM and then attempts to boot over the PCI bus.

In either case, the host PCI bridge in the system is required to program the PCI configuration registers
prior to the satellite generating or receiving any PCI cycles on the PCl bus.

To ensure the correct Satellite mode of operation, the System Controller needs to configure
mem_addr{22:20] bits on reset. When mem_addr[22:20] is configured to [001], the satellite is set to boot
from the Memory Controller. When mem_addr{22:20] is configured to [011], the satellite is set to boot from
the PCI serial EEPROM.

Booting from the Memory Controller

Booting from the Memory Controller, the Satellite mode receives and generates PCI cycles on the PCI
bus. The initialization steps are as follows:
1. Configure the local boot ROM on the satellite system to:
- Link local PCI registers and CPU (PCI to CPU and CPU to PCI)
- Set up the PCI configuration register Master Latency Timer, Cacheline Size, Retry Timeout, TRDY
Timeout, etc.
- Reset the PCI Target Not Ready bit in the PCI Arbitration Register.
2. Configure the satellite PCI Configuration Registers using the host PCI bridge:
- Memory Base Address Register (Configuration Header Offset: 0x10)
- I/O Base Address Register (Configuration Header Offset: 0x18)
- Enable the Bus Master, Memory, and I/O Access in the PCI Configuration Command Register.

Booting from the PCI Serial EEPROM

The Satellite mode, booting from the PCI serial EEPROM, loads the PCI configuration registers from the
serial EEPROM. The initialization steps are as follows:
1. Program the serial EEPROM with the desired configuration register values.
2. Configure the satellite PCI configuration registers using the host PCI bridge.
— Memory Base Address Register (Configuration Header Offset: 0x10)
— I/O Base Address Register (Configuration Header Offset: 0x18)
— Enable the Bus Master, Memory, and I/O Access in the PCI Configuration Command Register.

Once the satellite PCl interface is enabled by the host PCI bridge by writing to the Command Configura-
tion Register, the satellite generates an Instruction Fetch cycle with the local bus physical address 0x1FCO
0000. This address is translated to the PCI bus address 0x0FCO 0000 before being placed on the PCI bus
by the satellite’s local PCI Memory Space 3 Base Register, its contents being all 0's on reset.

The satellite can only boot from a 32-bit port-width external device sitting across the PCI bus. The target
device selected for the PCI address 0xOFCO 0000 must have a 32-bit boot memory in this address space
(typically a 32-bit EPROM space or an SDRAM space where the bootstrap code for the satellite is placed
prior to enabling the satellite). The Target Not Ready bit in the PCI Arbitration Register is reset by default.
Also, the BusError is disabled at power up in this mode. The BusError must be enabled by the startup code
as soon as the satellite is initialized in order to catch any non-decodable address cycles on the PCI bus.

In the PCI-boot mode, the System Controller Internal BIU BusError Register has the CPU BusError, IP
BusError, and Watch Dog timeout bits disabled, which allows the RC32334 to wait indefinitely for the PCI
host to initialize the system.

Serial EEPROM Interface

When booting from PCI, the serial EEPROM is used to load the PCI configuration header in the Satellite
mode.

The boot serial EEPROM must be compatible with and at least as large as the NM93CS46 (1024-bit or
greater), which uses the MICROWIRE™ of National Semiconductor serial protocol. The RC32334 will
sequentially read each of the register addresses listed in Table 12.5, starting from EEPROM address 0x00,
skipping unused addresses, and continuing until EEPROM address 0x3E. Each EEPROM address corre-

79RC32334/332 User Reference Manual 12-8 _ June 4. 2002 1.

PCI Interface Controller Functional Overview

Notes sponds to a 16-bit datum (not the 8-bit datum that PCI address uses), such that each EEPROM address
holds a 16-bit PCI field. Thus, all odd EEPROM addresses are unused by the RC32334 PCl EEPROM
interface and can be used for other storage purposes. The 16-bit PCI fields correspond to the definitions of
the corresponding PCI Configuration Registers.

Field Name EEPROM Address
Device ID 0x00
Vendor ID 0x02
Status 0x04
Class Code (MSB's) 0x08
Class Code (LSB), Revision ID 0x0A
Header Type 0x0C
Subsystem ID 0x2C
Subsystem Vendor ID 0x2E
Min_Lat, Min Gnt 0x3C
Interrupt Pin 0x3E

Table 12.5 PCI Serial EEPROM Address Fields

PCl Commands Supported

The RC32334 PCI master supports PCI memory read line and memory write invalidate commands.
Memory read line performs a quad-word burst read and memory write invalidate performs a quad-word
write. To enable the memory write invalidate command, the cache line size in the Cacheline Size Configura-
tion Register must be nonzero (see Figure 12.21), the memory write and invalidate enable bit in the
Command Configuration Register (see Figure 12.17) must be enabled, and a burst write must be generated
from the CPU or, more typically, from the DMA. As a PClI target, the RC32334 supports memory read line,
memory read multiple, and memory write invalidate.

Table 12.6 summarizes the PCl command codes supported (and not supported) by the controller as
master and as target.

CBEN[3:0] Command As a Master As a Target
0000 Interrupt Acknowledge No Ignored
0001 Special cycle No Ignored
0010 /0 read Yes Yes
0011 /0 write Yes Yes
010x Reserved
0110 Memory read Yes Yes, prefetch 4 words
0111 Memory write Yes Yes
100x Reserved
1010 Configuration read Yes Yes
1011 Configuration write Yes Yes
1100 Memory read multiple No Yes, prefetch 8 words

Table 12.6 PClI Commands (Part 1 of 2)

79RC32334/332 User Reference Manual 12-9 _ June 4. 2002 1.

PCI Interface Controller Functional Overview

Notes CBEn[3:0]

Command

As a Master

As a Target

1101

Dual address cycle

No

Ignored

1110

Memory read line

Yes, quad word burst read

Yes, aliased to memory read

1111

Memory write and invalidate

Yes, quad word burst write

Yes, aliased to memory write

Table 12.6 PCI Commands (Part 2 of 2)

PCI Configuration Register Access

The way RC32334 interfaces and accesses the configuration registers is defined in the PCI specification
2.1, Section 3.7.4.1, Configuration mechanism #1. This mechanism requires the following two RC32334
internal registers be defined to access PCI configuration space:

* PCI Configuration Address Register at 1800_2cf8
* PCI Configuration Data Register at 1800_2cfc.

A PCI configuration register should be accessed in the following manner:
a. Write the desired address of a configuration register to the PCI Configuration Address register
b. Read from (or write to) the PCI Configuration Data register to receive (or to send) data.

The data in the PCI Configuration Data register will be automatically received from (or sent to) the
desired configuration register. The device number field of the PCI Configuration Address Register is used to
select the IDSEL line of the PCl satellite to be configured. See Table 12.7 below.

Device Address Device Address Device Address
Number Line Number Line Number Line

0x00 Internal access 0x08 pci_ad[18] 0x10 pci_ad[26]
0x01 pci_ad[11] 0x09 pci_ad[19] 0x11 pci_ad[27]
0x02 pci_ad[12] 0x0A pci_ad[20] 0x12 pci_ad[28]
0x03 pci_ad[13] 0x0B pci_ad[21] 0x13 pci_ad[29]
0x04 pci_ad[14] 0x0C pci_ad[22] 0x14 pci_ad[30]
0x05 pci_ad[15] 0x0D pci_ad[23] 0x15 pci_ad[31]
0x06 pci_ad[16] 0x0E pci_ad[24] — —

0x07 pci_ad[17] 0xOF pci_ad[25] — —

Table 12.7 PCI Device to IDSEL Mapping

Device Number 0x00 refers to the PCI host (RC32334) in which case the transaction is handled inter-
nally and the PCI Bus remains idle. Device Numbers 0x15 to 0x01 will assert a single pci_ad[31:11] line
high during the configuration access shown in Table 12.7. The PCI system board is assumed to resistively
couple the appropriate pci_ad[31:11] line to each satellite’s pci_idsel line.

Before the RC32334 can be ready to perform any PCI operations, its PCI configuration registers must
be set up correctly. The RC32334 PCI master and target are defaulted to not ready (disabled) after reset.

If the RC32334 PCl is in host mode, then the CPU needs to configure the RC32334 PCI configuration
registers, including read-only configuration registers. The RC32334 PCI target is not ready until the PCI
target not ready bit (bit 2 of the PCI Arbitration Register) is set to 0. When the RC32334 PCI target is not
ready, all the PCI assesses to RC32334 from the PCI bus will be retried by the PCI controller. Thus, after
the writing of configuration registers is complete and RC32334 is ready, bit 2 of the arbitration register
needs to be set to 0 to enable the RC32334 PCl target operations.

79RC32334/332 User Reference Manual 12-10 __ June 4. 2002 1.

PCI Interface Controller Signal Definitions

Notes When writing the configuration registers, the RC32334 in host mode will perform 5 extra cycles of
address stepping, such that the PCI address is valid for 5 clocks before PCI_frame_n is asserted. This
allows the target to resistively couple an address signal to its pci_idsel pin.

If the RC32334 PCl is in satellite mode, read-only configuration registers can be loaded by the CPU
core. If the CPU core finishes loading the read-only configuration registers in the satellite mode, then bit 2 of
the PCI Arbitration Register needs to be set to 0, so that the RC32334 PCI target can respond to accesses
from the PCI bus. If the boot mode initialization chooses to use the EEPROM to load read-only configura-
tion registers, then the system using the RC32334 will be booted from the PCI bus after reset, instead of
from the normal local bus address space.

To enable RC32334 PCI master operation, the enable bus master bit in the configuration command
register must be set to 1 either by the CPU core if the RC32334 PCl is in host mode or by an external PCI
host if in satellite mode.

PCI Polling Error Handling

When the RC32334 device issues a config_read cycle to an unpopulated PCI slot, the device should
read back OxFFFFFFFF. The RC32334 can also be configured to ignore PCI bus errors. This is controlled
through bit 7 in the Bus Interface Unit (BIU) BUSErr Control Register. Even when buserror is disabled, a
bus error interrupt is still generated which can be polled by PCI BIOS software.

PCI Interrupts

If the PCI bus writes a 1 to one of the low order 4 bits in the PCI_to_CPU mailbox pending register, then
a corresponding interrupt is generated to the CPU core via the internal cpu_int_n[3] signal and the CPU
core must service and clear this interrupt. (For testing purposes only, the CPU may also set the interrupt.) If
the CPU writes a 1 to one of the low order 4 bits in the CPU_to_PCI pending mailbox register, then a corre-
sponding interrupt is generated to the PCl bus via the pci_inta__n pin, and this interrupt needs to be cleared
from the PCI bus. Note that the PCI_to_CPU mailbox interrupt can be generated in either host or satellite
mode, while CPU_to_PCI mailbox interrupts can be generated only in the satellite mode.

The CPU core or DMA can initiate a PCI access and know whether it is failed or not by enabling both the
PCI master read error interrupt and the PCI master write error interrupt defined in the PCI controller inter-
rupt pending register. Note that both interrupts must be enabled to ensure that a RC32334 PCI master
access error can be observed. If only one of the interrupts is enabled, then a master access error may not
be detected.

To enable any PCl address or data parity error detection by the PCl interface controller, both the parity
error response bit and SERR# enable bit must be enabled in the command configuration register. Two kinds
of parity errors can be reported to the CPU by using two specific interrupts. These two errors are PCI Target
Write Data Parity Error, and Pl Master Data Parity Error, as indicated in the PCI controller interrupt pending
register.

Signal Definitions

Note that the pci_serr_n /O signal to the RC32334 is connected as an output, but the signal is not
connected internally inside the device as an input. Users wishing to utilize this signal should connect this
signal externally to either the cpu_nmi_n signal or a high priority interrupt line on the PCI host. Additionally,
a pci_eeprom_cs signal has been added as a PIO pin. This enables external EEPROMSs, configured in the
PCI memory address space, to be written to and reprogrammed. To support the feature, an extra PIO
register has also been added. Note that the I/O direction of pci_gnt_n[1] is controlled by the PIO Direction
Register, not by the PCI arbiter mode. See Chapter 15, Programmable I/0 (PIO) Controller.

When the RC32334 is in PCl satellite mode, the pci_gnt_n[2:0] and pci_req_n[2:0] pins on the RC32334

each have a different name and use'. Table 12.8 shows the name and the direction of each pin for the
different settings of RC32334. A complete description of all PCI signals is provided in Chapter 1, RC32334
Device Overview.

! Depending on the PCI Mode for which the default is configured.

79RC32334/332 User Reference Manual 12 - 11 __ June 4. 2002 1.

PCI Interface Controller

Notes

79RC32334/332 User Reference Manual 12-12 __ June 4. 2002 1.

Register Definitions

RC32334 in host mode

Reset

Use internal
arbiter

Use external
arbiter

RC32334 in
satellite mode

pci_gnt_n[2], output

tri-stated if host

pci_gnt_n[2], out-
put

not used, tri-stated

pci_inta_n, open-collec-
tor output

peci_gnt_n[1], bidirectional® output pci_gnt_n[1], out- | not used, output | pci_eeprom_cs, output
put
pci_gnt_n[0], bidirectional | tri-stated pci_gnt_n[0], out- | pci_req_n=output | pci_gnt_n, input
put
pci_req_n[2], input tri-stated pci_req_n[2], input | not used, tri-stated | pci_idsel, input
pci_req_n[1], input2 tri-stated pci_req_n[1], input2 not used, tri-stated | not used, tri-stated
pci_req_n[0], bidirectional | tri-stated pci_req_n[0], input | pci_gnt_n, input pci_req_n, output

tion at reset.

Table 12.8 RC32334 Muxed PCI Pin Names and Directions
g pci_gnt_n[1] output enable control is determined by the PIO Pin Direction Register bit field, which defaults to the Output Direc-

Z There is no pci_req_n[1] in the RC32332.

Register Definitions

Base Register Function Offset Effective
Address Address Address
1800_0500 PCI Controller Interrupt Pending Register 11 BO
1800_0500 PCI Controller Interrupt Mask Register 11 B4
1800_0500 PCI Controller Interrupt Clear Register 11 B8
1800_0500 CPU to PCI Mailbox Interrupt Pending Register 12 Co Base + Offset
1800_0500 CPU to PCI Mailbox Interrupt Mask Register 12 C4
1800_0500 CPU to PCI Mailbox Interrupt Clear Register 12 C8
1800_0500 PCl to CPU Mailbox Interrupt Pending Register 13 DO
1800_0500 PCI to CPU Mailbox Interrupt Mask Register 13 D4
1800_0500 PCI to CPU Mailbox Interrupt Clear Register 13 D8
1800_2000 PCI New Feature Register 0AO
1800_2000 PCI Target Control Register 0A4
1800_2000 PCI Memory and I/O Space 1 Base Register 0BO
1800_2000 PCI Memory and I/O Space 2 Base Register 0B8
1800_2000 PCI Memory and I/O Space 3 Base Register 0Co
1800_2000 PCI Memory and /O Space 4 Base Register 0C8
1800_2000 PCI Arbitration Register 0EO
1800_2000 PCI CPU Space1 Base Register OE8
1800_2000 PCI CPU Space 2 Base Register 0F4
1800_2000 PCI CPU Space 3 Base Register 100

Table 12.9 PCl Interface Control Register Address Map (Part 1 of 2)

PCI Interface Controller Register Definitions

Notes Base Register Function Offset Effective
Address Address Address

1800_2000 PCI CPU Space 4 Base Register 10C

1800_2000 PCI Configuration Address Register CF8

1800_2000 PCI Configuration Data Register CFC

Table 12.9 PCl Interface Control Register Address Map (Part 2 of 2)

Note: A detailed description of interrupt related registers is provided in Chapter 14, Expansion
Interrupt Controller.

PCI Controller Interrupt Pending Register 11

31 5 4 3 2 1 0
PCI Pending Read | PCI Target WriteData| PCI Master Data PC| Master Read| PCl Master
Reserved Discarded Parity Error Interrupt | Parity Error Interrupt | Error Interrupt YrY{greruEr{"r

Figure 12.4 PCI Controller Interrupt Pending Register 11 Fields

Bit Field Description

31:5 | Reserved

4 PCI Pending Read Dis- Allow Interrupt from a PCI Target read to be discarded as the discard
carded (PRD) timer expired.

3 PCI Target Write Data Interrupt due to a data parity error of a target write to the RC32334 PClI
Parity Error Interrupt

2 PCI Master Data Parity Interrupt due to a data parity error of a RC32334 PCI master read or write
Error Interrupt

1 PCI Master Read Error Interrupt indicating a failed PCI master access, which may be possibly
Interrupt caused by a PCI master read

0 PCI Master Write Error Interrupt indicating a failed PCI master access, which may be possibly
Interrupt caused by a PCI master write

Table 12.10 PCI Controller Interrupt Pending Register 11 Field Descriptions

CPU to PCI Mailbox Interrupt Pending Register 12

Setting a bit in the CPU to PCI mailbox interrupt pending register by the CPU will generate a corre-
sponding interrupt to the PCI bus.

31 16 15 14 13 12 1 0
INT3[INT2 | INT1|INTO

See Expansion Interrupt Controller Chapter See Expansion Interrupt Controller Chapter

Figure 12.5 CPU to PCI Mailbox Interrupt Pending Register 12 Fields

79RC32334/332 User Reference Manual 12-13 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes - - —
Bit Field Name Description

31:16 See Chapter 14, Expansion Interrupt Controller.

15 Interrupt 3 0 = No interrupt (default)
1 = Interrupt pending

14 Interrupt 2 0 = No interrupt (default)
1 = Interrupt pending

13 Interrupt 1 0 = No interrupt (default)
1 = Interrupt pending

12 Interrupt 0 0 = No interrupt (default)
1 = Interrupt pending

11:0 See Chapter 14, Expansion Interrupt Controller.

Table 12.11 CPU to PCI Mailbox Interrupt Pending Register 12 Field Descriptions

PCI to CPU Mailbox Interrupt Pending Register 13

External PCI Bus Masters may access the PCl to CPU mailbox interrupt pending register via a RC32334
Target memory or I/O access. This assumes that either the PCI CPU memory space base register or the
PCI CPU 1/O space base register is set up to allow access to the RC32334 System Controller physical
address range base of 0x18000000.

Setting a bit in the PCI to CPU mailbox interrupt pending register by the PCI bus will generate a corre-
sponding interrupt to the CPU bus.

31 4 3 2 1 0

Reserved INT3[INT2 | INT1 INTO'

Figure 12.6 PCI to CPU Mailbox Interrupt Pending Register 13 Fields

Bit Field Name Description

31:4 Reserved

3 Interrupt 3 0 = No interrupt (default)
1 = Interrupt pending

2 Interrupt 2 0 = No interrupt (default)
1 = Interrupt pending

1 Interrupt 1 0 = No interrupt (default)
1 = Interrupt pending

0 Interrupt 0 0 = No interrupt (default)
1 = Interrupt pending

Table 12.12 PCI to CPU Mailbox Interrupt Pending Register 13 Field Descriptions

PCI Memory Space [1,2,3] Base Register

Whenever PCl Memory is accessed from the CPU or DMA, the high order 4 bits of the CPU physical
address are replaced by bits 31:28 of this register to generate the PCI address.

79RC32334/332 User Reference Manual 12-14 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

NOtes 31 28 27 1 0

PCI Memory Base Reserved Endianness Swap

Figure 12.7 PCI Memory Space [1,2,3] Base Register

Bit Field Name Description
31:28 PCI Memory /0O Base Default to 0
These 4 bits replace the top 4 bits of the CPU physical address
27:1 Reserved 0
0 Endianness Swap Value Description
1= Byte swap

0= No byte swap (default)

Table 12.13 PCI Memory Space [1,2,3] Base Register Field Descriptions

PCI 1/O Base Register

Whenever 1/0 space is accessed from the CPU or DMA, the high order 12 bits of the CPU physical
address are replaced by bits 31:20 of this register to generate the PCI address.

Note that if compatibility with existing software written for the RC32134 system controller is desired, this
register should be programmed with Ox _88 _ _ _ _h.

31 8 7 6 2 1 0

PCI l/O Base Reserved | Size Reserved| Endianness Swap

Figure 12.8 PCI 1/O Base Register

Bit Field Name Description

31:8 CPU Memory or I/0 Base | Default value is 0.

Up to the top 24 bits translate/replace the top 24 bits of the PCI
address with a Local Bus address.

The Size Field determines the number of bits to translate/replace.

7 Reserved Reserved to ‘0",

Table 12.14 PCI I/O Base Register Field Descriptions (Part 1 of 2)

79RC32334/332 User Reference Manual 12-15 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes Bit Field Name Description

6:2 Size Address Space Size. This field indicates the size of the address
space for the corresponding PCl base address register and the num-
ber of the CPU Memory or I/0 Base bits to translate/replace.

All bits greater than or equal to Size in the Memory or I/O Base
Address Register (BAR) may be modified. Bits less than Size and
greater than or equal to bit 4 always return a value of zero when read
and cannot be modified. Setting the Size field to a value less than 8
disables the PCI base address register from decoding and causes
the appropriate BAR bits to always return a value of zero when read
and cannot be modified. One may also view this field as indicating
the number of the Most Significant bit to be used in the decode, the
minimum number being the 8th upper most significant bit.

All bits greater than or equal to Size in the CPU Memory or I/O Base
field are used to translate/replace the top bits of the PCI address with
a Local Bus address.

Value Description
>=8 Set size to 25175
28 Set size to 228
7Tto1 Setsize to 0, i.e., disabled
1 Set size t0 0, i.e., disabled (default for BAR2 and
BAR4)
0 Set size to 228 (default for BAR1T and BAR3)
1 Reserved Reserved to ‘0",
0 Endianess Swap This bit controls byte swapping for PCI transactions that map to the
local bus through the BAR register.
Value Description
1 Byte swap
0 No byte swap (default)

Table 12.14 PCI 1/0 Base Register Field Descriptions (Part 2 of 2)

New Feature Register

This register is not present in the Z revision of the RC32334/RC32332 devices. To ensure backwards
compatibility, new functionality was provided by adding new registers. Upon system boot-up, this register
defaults to provide compatibility with Z revision silicon as follows:

- bit 1is zero, enabling configuration read cycles to generate an interrupt should a PCl error occur
- bit 0is zero, enabling bits 23:20 of the PCI Base Register to program higher order bits.

When a config_read cycle is generated, a PCI error will produce read data as OxFFFFFFFF. With the
PCI Config Read Suppress Bus Error bit field set in the PCI New Feature Register, the PCI Interface
Controller suppresses the generation of an IPBus Error for Config Read errors and returns the read data as
OXFFFFFFFF. Thus, neither a bus error exception to the CPU nor an IPBus error interrupt will occur. Even
with this bit set, Non-Config Reads to conventional PCl memory space still signal a CPU bus error.

79RC32334/332 User Reference Manual 12-16 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes . ; 1 -

Reserved CO”ﬁgBRead SUppress | gyt Py 1o 110 Base'
us Error

Figure 12.9 PCI New Feature Register

Bits Field Name Description

31:2 Reserved

1 Config Read Sup-
press Bus Error

Value Description

1 Suppress internal IPBus error generation on PCI
Config Read errors.

0 IPBus Bus Error generated on PCI Config Read
errors (default).

0 Shift CPU to I/0
Base Field
Value Description
1 Use the PCI to CPU I/0 Base Register Base Address

field and Size field to program bits 31:8 (which corre-
sponds to bits 31:8).

0 Use bits 23:20 of the PCI to CPU I/O Base Register
field to program bits 31:28 (requires the PCl to CPU
I/0 Base Register Size Field to be set to 228).

Table 12.15 PCI New Feature Register Field Descriptions

PCI Target Control Register

A new register for the Y revision of silicon, PCI Target Control Register, is added at physical address
0x1800_20A4.

31 0

Refer to Table 12.14 '

Figure 12.10 PCI Target Control Register

79RC32334/332 User Reference Manual 12 - 17 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes
Bits Field Name Description
31 Reserved Reserved to ‘0.
30 Eager Prefetch for | Eager Prefetch mode. On a Memory Read line or a Memory Read Multiple
BAR4 command decoded by Memory Base Address Register 4 (Bar4), after the

initial prefetch, if the Target Read continues without a disconnect and the
Target Read FIFO has at least 8 data words empty, then prefetch the next

block of data.
Value Description
1 Use Eager Prefetch mode.
0 Do not use Eager Prefetch mode (default).
29 Reserved Reserved to '0'.
28 Eager Prefetch for | Eager Prefetch mode. On a Memory Read line or a Memory Read Multiple
BAR2' command decoded by Memory Base Address Register 2 (BAR2), after the

initial prefetch, if the Target Read continues without a disconnect and the
Target Read FIFO has at least 8 data words empty, then prefetch the next
block of data.

Value Description

1 Use Eager Prefetch mode.

0 Do not use Eager Prefetch mode (default).

27 Eager Prefetch for | Eager Prefetch mode. On a Memory Read line or a Memory Read Multiple
BAR1' command by Memory Base Address Register 1 (BAR1), after the initial
prefetch, if the Target Read continues without a disconnect and the Target
Read FIFO has at least 8 data words empty, then prefetch the next block of
data.

Value Description

1 Use Eager Prefetch mode.

0 Do not use Eager Prefetch mode (default).

26 MWMWI Memory Write and Memory Write and Invalidate Behavior. In some system
dependent applications, reducing the target write burst size on the Local
Bus may help balance target read vs. write throughput.

Value Description
1 Burst up to 8 words on the Local Bus.
0 Burst up to 4 words on the Local Bus (default).

Table 12.16 PCI Target Control Register Field Descriptions (Part 1 of 4)

79RC32334/332 User Reference Manual 12-18 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes Bits Field Name Description

25:24 Threshold Threshold for Target Write FIFO. The threshold setting provides hysteresis
on the incoming PCI stream, ensuring that PCI burst writes are accepted in
4 or 8 data word increments. Note that the FIFO Threshold takes into
account one command/address word FIFO location such that the actual
internal FIFO pointer representation is the data word threshold + 1 com-

mand/address word.
Value Description
3 Reserved.
2 Threshold = 8 data words. Wait until at least 8 data

words are free in FIFO before accepting any new
write commands.

1 Threshold == 4 data words. Wait until at least 4 data
words are free in FIFO before accepting any new
write commands (default).

0 No Threshold (Threshold == 1 data word). Wait until
at least 1 data word is free in FIFO before accepting
any new write commands.

23 MRML4 Memory Read and Memory Line Behavior for Memory Base Address Reg-
ister 4 (BAR4).

Value Description

1 Prefetch 8 words on Memory Read and Memory Line
target accesses similar to Memory Read Multiple.

0 If the BAR for the decoded target Memory Read or
Memory Read Line indicates the Prefetchable
attribute is enabled, prefetch 4 words (default).

22 Reserved Reserved to '0".
21 MRML2 Memory Read and Memory Line Behavior for Memory Base Address Reg-
ister 2 (BAR2).
Value Description
1 Prefetch 8 words on Memory Read and Memory Line
target accesses similar to Memory Read Multiple.
0 If the BAR for the decoded target Memory Read or
Memory Read Line indicates the Prefetchable
attribute is enabled, prefetch 4 words (default).

Table 12.16 PCI Target Control Register Field Descriptions (Part 2 of 4)

79RC32334/332 User Reference Manual 12-19 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes Bits Field Name Description
20 MRML1 Memory Read and Memory Line Behavior for Memory Base Address Reg-
ister 1 (BAR1).

Value Description

1 Prefetch 8 words on Memory Read and Memory Line
target accesses similar to Memory Read Multiple.

0 If the BAR for the decoded target Memory Read or
Memory Read Line indicates the Prefetchable
attribute is enabled, prefetch 4 words (default).

19 EDT Enable Discard Timer. When a master does not repeat a delayed read
request within 2'5 PCI clock cycles the PCl interface discards the delayed
completion. When this bit is not set, delayed completions are never dis-
carded. Note that an interrupt may optionally be set when the timer expires.

Value Description
1 Discard timer enabled (default).
0 Discard timer disabled.
18 RDR Retry When Delayed Read. When this bit is set, all transactions are retried

as long as there is an uncompleted delayed read being executed on the
local bus. Once the PCI Target Read command is accepted, the PCI Target
Write FIFO is flushed. Meanwhile, additional PCI Target Writes are
accepted but not issued until after the PCI Target Read is issued. Once the
PCI Target Write FIFO is flushed and the PCI Target Read is issued, all
new PCl transactions are retried.

Warning: setting this bit may violate the PCI 2.2 specification -- see imple-
mentation note in the PCI 2.2 specification Section 3.3.3.3.4.

Value Description
1 Retry writes when delayed read.
0 Post writes (default).

Table 12.16 PCI Target Control Register Field Descriptions (Part 3 of 4)

79RC32334/332 User Reference Manual 12 - 20 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes Bits Field Name Description
17:16 Reserved Reserved to ‘0.
15:8 DTimer Disconnect Timer. This field specifies the number of PCI clock cycles the

PCl interface will wait between data phases in an access before issuing a

disconnect. A side effect of a disconnect is that any prefetched data in the
Target Read FIFO will be flushed. The PCl 2.2 specification sets the maxi-
mum limit of this timer at 8 PCI clock cycles, but in some systems it may be
necessary to extend this limit for more optimal performance. The minimum
disconnect timer value is four. Values less than four are aliased to four.

Value Description

any PCI Target Interface will wait for subsequent data of
an access before issuing a retry.

0x08 PCI Target Interface will wait 8 clocks for subsequent
data of an access before issuing a retry (default).

7.0 RTimer Retry Timer. This field specifies the number of PCI clock cycles the PCI
interface will wait (to receive the first data of an access) before a retry com-
mand is issued. The PCI 2.2 specification sets the maximum limit of this
timer at 16 PCI clock cycles, but in some systems it may be necessary to
extend this limit for more optimal performance.

Value Description

OxFF- PCI Target Interface will wait the specified number of
0x08 PCI clocks for the first data of an access before issu-
ing a retry.

0x10 PCI Target Interface will wait 16 clocks for the first
data of an access before issuing a retry. (default).

0x08 Minimum value allowed.
0x07- Reserved
0x00

Table 12.16 PCI Target Control Register Field Descriptions (Part 4 of 4)
To fully utilize the Eager Prefetch mode, the Target disconnect timer (DTimer) should be set high enough to avoid prac-
tically all disconnects, and the Master should issue Memory Read Multiple commands using large blocks (for instance 64
words or more).

PCI Arbitration Register

When the RC32334 PCl is in the host mode, either an internal arbiter or an external arbiter can be

selected. The internal arbiter can arbitrate up to four' PCI masters, including the RC32334 device itself.
When the internal arbiter is used, either a round robin or a fixed priority arbitration scheme can be chosen.
If the RC32334 PCl is in the satellite mode, then the external arbiter is always used.

At boot time, in the standard reset boot mode, the PCI Target Not Ready Bit is set. This allows the PCI
configuration registers to be written from the CPU and from the PCI side. After initialization, this bit should
be cleared so that normal PCl operation, which requires the configuration registers to be in read-only mode,
can begin.

Note: Most conventional masters are able to take advantage of Idle Grant Mode enabled.

1- Two PCI masters for the RC32332.

79RC32334/332 User Reference Manual 12 - 21 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

NOtes 31 5 4 3 2 1 0

Arbiter Idle | Arbiter Park
Grant Mode | Mode Enabl

Reserved PCI Target not ready Arbitration Type Arbitration Mode

Figure 12.11 PCI Arbitration Register Fields

Bit | Field Name Description

31:5 | Reserved

4 Arbiter Idle Grant | Arbiter Idle Grant Mode. If enabled, the Arbiter Idle Grant Mode may use PCI Spec.
Mode rules to withdraw a Grant during Idle cycles and then Grant a higher priority Master.
If disabled, the Arbiter will not withdraw a Grant unless the original requesting Mas-
ter withdraws its request, the Master asserts pci_frame_n, or until a PCI Arbiter
Timeout occurs where 16 PCI clocks occur after a Grant and pci_frame_n has not
been asserted by the Master.

Value Description
1 PCI Arbiter Idle Grant Mode Enabled.
0 PCI Arbiter Idle Grant Mode Disabled (default).

3 Arbiter Park Mode | Arbiter Park Mode Enabled. When the PCI bus interface is configured to operate in
Enable PCI host mode using an internal arbiter, this bit selects the bus parking mode to
park the bus on the last master that was granted access to the bus. If the Arbiter
Park Mode is disabled, then the PCI Arbiter will return to Idle when no masters are
requesting the bus.

Value Description
1 PCI Arbiter Park Mode Enabled.
0 PCI Arbiter Park Mode Disabled (default).

2 PClI Target Not 0 = PCl target ready (default if PCl-boot mode is selected)
Ready 1 = PCl target not ready (default if standard boot mode is selected)

1 Arbitration Type | 0= Use Internal Arbiter
1= Use External Arbiter (default)

0 Arbitration Mode | 0 = Round Robin. Rotating sequence is RC32334 PClI, pci_req_n[0], pci_req_n[1]1,
pci_req_n[2], and so on.

1 = Fixed Priority (default). Priority order is RC32334 PCl, pci_req_n[0],
pci_req_n[1]1, pci_req_n[2], with the highest priority assigned to the RC32334 PCI.

Table 12.17 PCI Arbitration Register Field Descriptions
! There is no pci_req_n[1]in the RC32332.
PCI to CPU Memory/l10 Space [1,2,3,4] Base Registers

Whenever local CPU memory is accessed via the PCI bus, the upper 4 bits of a PCl address are substi-
tuted to create a CPU physical address.

31 8 7 6 2 1 0
CPU Memory or I/0 Base Reserved Size ‘ Reserved Endéav\r);\; s

Figure 12.12 PCI to CPU Memory/lO Space [1,2,3,4] Base Register

79RC32334/332 User Reference Manual 12 - 22 __ June 4. 2002 1.

PCI Interface Controller Register Definitions

Notes - - —
Bit Field Name Description
31:8 CPU Memory or I/0 Default value is 0.
Base Up to the top 24 bits translate/replace the top 24 bits of the PCI address

with a Local Bus address.
The Size Field determines the number of bits to translate/replace.

7 Reserved Reserved to 0

6:2 Size Address Space Size. This field indicates the size of the address space
for the corresponding PCI base address register and the number of the
CPU Memory or I/0O Base bits to translate/replace.

All bits greater than or equal to Size in the Memory or I/O Base Address
Register (BAR) may be modified. Bits less than Size and greater than or
equal to bit 4 always return a value of zero when read and cannot be
modified. Setting the Size field to a value less than 8 disables the PCI
base address register from decoding and causes the appropriate BAR
bits to always return a value of zero when read and cannot be modified.
One may also view this field as indicating the number of the Most Sig-
nificant bit to be used in the decode, the minimum number being the 8th
upper most significant bit.

All bits greater than or equal to Size in the CPU Memory or I/O Base
field are used to translate/replace the top bits of the PCI address with a
Local Bus address.

Value Description

28 | BART: Set size to 2%°

27 | BAR1, BAR2, BAR4: Set size to 27
26 | BAR1, BAR2, BAR4: Set size to 228
25 | BAR2, BAR4: Set size to 2%

1 BAR2, BAR4: Set size 0, i.e., disabled (default for BAR2
and BAR4)

0 | BART: Setsize to 228
BAR3: Set size to 28
(default for BAR1 and BAR3)

Other | All other values are reserved.

Summary of PCI BAR Size Decoding Valid Values
BAR1: 28 (0), 27, 26

BAR2: 27, 26, 25, or disabled (1)

BAR3: 8 (0)

BARA4: 27, 26, 25, or disabled (1)

1 Reserved Reserved to 0

0 Endianness swap This bit controls byte swapping for PCI transactions that map to the
local bus through the BAR register.

Value Description

1 Byte swap
0 No byte swap (default)

Table 12.18 PCI to CPU Memory/lO Space [1,2,3,4] Base Register Field Descriptions

79RC32334/332 User Reference Manual 12 - 23 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Not PCI Configuration Address Register
otes
31 30 24 23 16 15 11 10 8 7 210
Enable bit Reserved Bus Number Device Number unction Number | Register Number |0 |0

Figure 12.13 PCI Configuration Address Register Fields

Bit Field Name Description

3 Enable Bit 0 = Disabled”
1 =Enabled

30:24 Reserved

23:16 Bus Number PCI bus number

15:11 Device Number PCI device number.2 Asserts pci_ad[31:11] for device numbers 0x15
through 0x01.

10:8 Function Number PCI function number

72 Register Number PCI configuration register address

1:0 Hardwired to 00

Table 12.19 PCI Configuration Address Register Field Descriptions

1-If the enable bit is illegally disabled (because there is no analogous PC-AT I/O address space in the MIPS architec-
ture) then the PCI target state machine is fully reset.

2 Device number 0 refers to the RC32334’s host device (which is itself).

PCI Configuration Data Register

31 0

Data '

Figure 12.14 PCI Configuration Data Register Field

Bit Field Name Description

31:0 Data Data value of configuration read/write access

Table 12.20 PCI Configuration Data Register Field Description

RC32334 PCI Configuration Registers

The PCI Configuration Space is described in this section. Table 12.21 shows the bits used, the read/
write status, and the base address of each register. Shaded registers are read-only registers after being
loaded and areas with x’s are ‘don’t-cares’. Each of the registers is described in the sections following this
table.

These shaded read-only registers can be written (where applicable and allowed) by the CPU by first
enabling the PCI Target Not Ready bit in the PCI Arbitration Register and then following this two-step proce-
dure:

1. Write the PCI Configuration Register Address as a pointer into the Register Number Field of the PCI

Configuration Address Register.
2. Write the data to the PCI Configuration Data Register.

The non-shaded status and read/write registers in Table 12.21 may only be read or written by the CPU
when the PCI Interface Controller is configured to be in Host Mode. When the PCI Interface Controller is
configured to be in Satellite Mode, the non-shaded status and read/write registers may only be read by the

79RC32334/332 User Reference Manual 12 - 24 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

CPU by first enabling the PCI Target Not Ready bit in the PCI Arbitration Register and then following the
two step pointer/data procedure listed in the paragraph above. In Satellite Mode, the non-shaded status
and read/write registers may never be cleared or written by the CPU.

Notes

During a Configuration Register access or other access that results in an error—for example, an unde-
coded access to an empty PCl slot—the PCI controller will return the data value OxFFFFFFFF to the CPU.
A BusError will also result unless masked by the Internal BIU BusError Control bits for CPU and IP
accesses. Typically, during empty slot polling, the Internal BIU BusError Control Register’s bit 7 (BusError
Exception Disable) can be disabled. This will prevent a CPU exception from being generated, and the
BusError interrupt can be handled/ignored by the Expansion Interrupt Controller.

Bits Used
Address
31 16 15 0

Device ID Vendor ID 00h
Status Command 04h
Class Code Revision ID 08h
BIST Header Type Master Latency Timer Cacheline Size 0Ch
Memory/lIO Base Address 1 10h
Memory/IO Base Address 2 14h
Memory/l/O Base Address 3 18h
Memory/IO Base Address 4 1Ch
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 20h
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 24h
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 28h
Subsystem ID Subsystem Vendor ID 2Ch
XXXXXXXX | XXXXXXXX XXXXXXXX XXXXXXXX 30h
Reserved 34h
Reserved 38h
Max_Lat | Min_Gnt Interrupt Pin Interrupt Line 3Ch
Reserved Retry Timeout Value TRDY Timeout Value 40h

Reserved 44h-FFh

Table 12.21 RC32334 PCI Configuration Registers
Vendor ID Register
This read/write register specifies the vendor of this device. This register must be set to 111Dh.

15 0

Vendor ID '

Figure 12.15 Vendor ID Register

Bit Description Reset

15:.0 Vendor ID 111Dh

Table 12.22 Vendor ID Address Field Description
0x111D is the IDT Vendor ID.

79RC32334/332 User Reference Manual 12 - 25 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes Device ID Register

This read/write register specifies the ID to identify this device. On the RC32332 it is recommended that
the PCI Device ID be written as 0205h, either through the configuration register interface or, if in the PCI
Boot Mode, through the PCI Boot EEPROM. Using the recommended value will distinguish the controller
from the RC32334. The default for the RC32332 is 204h, the same value as the RC32334.

31 16

Device ID '

Figure 12.16 Device ID Register

Bit Description Reset

31:15 Device ID 0x0204h"

Table 12.23 Device ID Address Field Description
1 0x0205h for the RC32332.

PCl Command Register

The PCI command register is a read/write register that provides protocol control to generate and
respond to PCI cycles. Note that system errors typically occur due to address or data parity errors.
However, if a target access occurs that is undecoded by the local memory bus, a system error will also
occur, which is generally only recoverable by the master aborting its retries and resetting the RC32334.

15 10 9 8 7 6 5 4 3 2 1 0

Fast System . Enable
Reserved| Back-to-Back | Error Reserved Parity Error Reserved R 4 | Bus Memory | I/0
Master Enable | Enable Enable MWINV SS8IVET | Naster | Access | Access

Figure 12.17 PCl Command Register

Bit Description Reset
15:10 Reserved Oh
9 Fast Back-to-Back Master Enable Oh
8 System Error Enable 0
7 Reserved
6 Parity Error Enable 0
5 Reserved
4 Memory Write and Invalidate Enable (MWINV). Allows Master write and invali- 0

date operations if the Cacheline Size Configuration Register is nonzero and a
burst write is issued from the DMA or CPU.
3 Reserved
2 Bus Master Enable 0
When PCI Boot mode option is selected at reset, PCl Master Enable Bit can be
written to by the PCI Host because the PCI Target Not Ready bit (PCI Arbitration
Register bit 2) is cleared when the PCI Boot mode option is selected at reset.
1 Memory Access Enable 0
0 I/0 Access Enable 0

Table 12.24 Command Register

79RC32334/332 User Reference Manual 12 - 26 _June 4. 2002 W

PCI Interface Controller RC32334 PCI Configuration Registers

PCI Status Register

The PCI Status register reports the status of operations on the PCl bus. It also indicates the
PCI_DEVSEL# timing that has been selected. If the Arbitration Register PCI Target Not Ready bit is set, then
the 66MHz-Capable Flag (as well as other read-only flags) may be written.

Notes

Note: Except for bit 5, this is a register with a mixture of clearable status bits and read-only bits.
Updates of bit 5 should be done through a read (other read-only bits), mask (status bits), modify,
and write series of operations.

15 14 13 12 11 10 9 8 7 6 5 4 0
e e e e | G et e |
Figure 12.18 PCI Status Register
Bit Description Reset Type
15 Detect Parity Error 0 Status
14 Signaled System Error 0 Status
13 Received Master Abort Status. Set when PCI Master terminates a 0 Status
Host-to-PCl transaction with a Master Abort.
12 Received Target Abort Status. Set when the core initiates a PCI 0 Status
transaction and it is terminated by the Target.
1 Signaled Target Abort Status 0 Status
10:9 Device Select Timing. Indicates timing of PCI_DEVSEL# when the 01 RO
core responds to a PCI transaction as a Target.
8 Data Parity Detected 0 Status
7 Fast Back-to-Back Capable Status Flag. 1 RO
6 Reserved 0 RO
5 66 MHz-Capable Status Flag. Application software can set this bit to 1 Write/Read
indicate the PCl interface can be operated at 66MHz.
4.0 Reserved Oh RO

Table 12.25 Configuration PCI Status Register

Device Revision Identification Register
This read-only register contains the current revision identifier for this device.

7 0

Revision Identification Number '

Figure 12.19 Configuration Device Revision Identification Register

Bit Description Reset

7.0 Revision Identification Number 01h

Table 12.26 Configuration Device Revision Identification Register Field Description

79RC32334/332 User Reference Manual 12 - 27 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes Class Code Register

The Class Code register contains a code value identifying the generic function of this device. The codes
listed in Table 12.28 duplicate PCI 2.2 Specification.

31 8

Class Code Value '

Figure 12.20 Class Code Register

Bit Description Reset

31:8 Class Code value 000000h

Table 12.27 Class Code Register Field Description

Base Device type
Class

00h Device built before standardized definition of class codes

01h Mass storage controller

02h Network controller

03h Display controller

04h Multimedia device

05h Memory controller

06h Bridge device

07h Simple communication controllers

08h Base system peripherals

09h Input devices

OAh Docking stations

0Bh Processors

0Ch Serial bus controllers

0Dh - FEh Reserved

FFh Device does not fit in any designated class

Table 12.28 Class Code Definitions

Cacheline Size

The cacheline size register specifies the system cacheline size in units of 32-bit words. It allows Master
write and invalidate operations if the PCI Command Register MWINV bit is set and a burst write is issued
from the DMA or CPU.

7 0

Cacheline Size '

Figure 12.21 Cacheline Size Register

79RC32334/332 User Reference Manual 12 - 28 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes The PCI system requirements specify that the cacheline size must default to 0 at reset time. The
RC32334 requires that the maximum cacheline size be no greater than 4.
Bit Description Reset
7.0 Cacheline Size 00h

Table 12.29 Configuration Cacheline Size Field Description

Master Latency Timer Register

The Master Latency Time Register is an 8-bit read/write register that controls the amount of time that the
core, as a bus Master, can perform burst transfers if another Master requests the bus. The two least signifi-
cant bits are hardwired to zero, allowing interval changes in increments of four clocks.

15 10 9 8

Master Latency Timer Count Value Reserved '

Figure 12.22 Master Latency Timer Register Fields

Bit Description Reset

15:10 Master Latency Timer Count Value 00h
This register sets the minimum number of PCI clock cycles that the core

will be guaranteed access to the PCI bus. After the count has expired the
core will surrender the PCI bus as soon as other PCI Master devices are
granted the bus by the arbiter.

9:8 Reserved: Hardwired to 0. Oh

Table 12.30 Master Latency Timer Register Field Descriptions

Header Type
Header Type is defined in Section 6.2.1 of the PCI 2.1 Specification.

23 16

Header Type I

Figure 12.23 Header Type Register Field

Bit Description Reset

23:16 Header Type. 00h

Table 12.31 Header Type Register Field Description

BIST
This capability is not supported.

23 16

BIST '

Figure 12.24 BIST Register Field

79RC32334/332 User Reference Manual 12 - 29 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes

Bit Description Reset

23:16 Built in self test, hardwired to 0 00h

Table 12.32 BIST Register Field Description

PCI Memory/lI0 Base Address [1,2,3,4] Registers

This register contains the base address (BAR1-4) through which the PCI memory space is accessed.
BARSH1, 2, and 4 are memory base addresses by default; BAR3 is an I/O base address by default.

31 87 4 3 2 1 0

Memory Base or 1/O Base Reserved P | Width |1/0

Figure 12.25 PCI Memory/IO Base Address [1,2,3,4] Register

Bits Description Reset
31:8 Memory or I/0 Base Address 000000h
74 Reserved Oh
3 Prefetchable (hardwired to prefetchable). 1

Value Description

1 Prefetchable (hardwired default)

0 Not prefetchable (reserved)
2:1 Port Bus Width. Hardwired to indicate 32 bit width. 00b
0 I/O Space vs. Memory Space (hardwired to Memory space). 0

Value Description

1 I/0 Space (reserved)

0 Memory Space (hardwired default)

Table 12.33 Memory/lO Base Address Register 1 (BAR1) Field Description

79RC32334/332 User Reference Manual 12 - 30 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes
Bits Description Reset
31:8 Memory or I/O Base Address 000000h
74 Reserved Oh
3 Prefetchable. Note that if Not prefetchable is selected, then all types of PCI 0

reads, including Memory Read, Memory Read Multiple, and Memory Read
Line, will fetch 1 word at a time on the Local Bus to fuffill the exact number
of words required for the read.

Value Description

1 Prefetchable
0 Not prefetchable (default)

2:1 Port Bus Width. Hardwired to indicate 32 bit width. 00b

0 I/O Space vs. Memory Space (hardwired to Memory Space) 0

Value Description

1 I/0 Space (reserved)

0 Memory Space (hardwired default)

Table 12.34 Memory/l/O Base Address Registers 2 and 4 (BAR2,4) Field Description

Bits Description Reset
31:8 Memory or I/O Base Address 000000h
74 Reserved Oh
3 Prefetchable (hardwired to Not prefetchable) 0

Value Description

1 Prefetchable (reserved)

0 Not prefetchable (hardwired default)
21 Port Bus Width. Hardwired to indicate 32 bit width. 00b
0 I/O Space vs. Memory Space (hardwired to 1/O Space) 1

Value Description

1 I/0 Space (hardwired default)

0 Memory Space (reserved)

Table 12.35 Memory/I/O Base Address Register (BAR3) Field Description

79RC32334/332 User Reference Manual 12 - 31 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes Subsystem Vendor ID
This read/write register identifies the vendor of the subsystem where the PCI device resides.

15 0

Subsystem Vendor ID '

Figure 12.26 Subsystem Vendor ID Register

Bit Description Reset

15:0 Subsystem Vendor ID 0000h

Table 12.36 Subsystem Vendor ID Field Description

Subsystem ID
This read/write register identifies the subsystem where the PCI device resides.

31 16

Subsystem ID '

Figure 12.27 Subsystem ID Register

Bit Description Reset

31:16 Subsystem ID 0000h

Table 12.37 Subsystem ID Field Description

Interrupt Line Register
The interrupt line register contains the interrupt line to which the controller core is currently connected.

7 0

Interrupt Line Register '

Figure 12.28 Interrupt Line Register

Bit Description Reset

7.0 Identifies the interrupt line register to which the 00h
core is connected

Table 12.38 Interrupt Line Register Field Description

Interrupt Pin Register
This register contains the interrupt pin that the device uses.

15 8

Interrupt Pin Register '

Figure 12.29 Interrupt Pin Register

79RC32334/332 User Reference Manual 12 - 32 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes - —
Bit Description Reset

15:8 Identifies which interrupt pin the device uses 00h

Table 12.39 Interrupt Pin Register Field Description

MIN_GNT Register
This register specifies how long a burst period the device needs.

23 16

MIN_GNT Register '

Figure 12.30 MIN_GNT Register

Bit Description Reset

23:16 | Identifies length of burst period, assuming a 33 MHz clock. Units are 0.25 uS. 00h

Table 12.40 MIN_GNT Register Field Description

MAX_LAT Register
This register specifies how often the device needs to gain access to the PCl bus.

31 24

MAX_LAT Register '

Figure 12.31 MAX_LAT Register

Bit Description Reset

31:24 | Sets value of MAX_LAT. See PCI 2.1 specification Section 6.2.4 for details. Units are 0.25 pS. 00h

Table 12.41 MAX_LAT Register field Description

TRDY Timeout Value
This register sets the length of time in PCI clocks that the controller core, as master, will wait for TRDY.

Note: If this register is set to 0, the number of clocks that the Master waits for TRDY Timeout is
infinite.

7 0

TRDY Timeout Value '

Figure 12.32 TRDY Timeout Value Register

Bit Description Reset

7.0 Sets number of PCI clocks that core as Master will wait for TRDY. The setting must be greater 80h
than or equal to 16. Settings of 15-0 are reserved.

Table 12.42 TRDY Timeout Value Field Description

79RC32334/332 User Reference Manual 12 - 33 __ June 4. 2002 1.

PCI Interface Controller RC32334 PCI Configuration Registers

Notes Retry Timeout Value

This register sets the maximum number of times the controller, as master, will retry. If the Retry Timeout
Value is reached, a PCI Master Read or Write Error interrupt will occur in PCI Controller Interrupt Pending
Register 11, bit 1 or bit 0.

The combined value (in nsec) of the Retry Timeout multiplied by TRDY Timeout must be smaller than
the IPBus Timeout Value (in nsec). This ensures that PCI FIFO’s are properly re-aligned on timeout errors.
For additional information, refer to the BusError Address Register section in Chapter 8 and the Base
Address Register 5 (Table 16.7) in Chapter 16.

15 8

Retry Timeout Value '

Figure 12.33 Retry Timeout Register

Bit Description Reset

15:8 Sets number of retries that the core as Master will perform.” 80h

Table 12.43 Retry Timeout Value Field Description
1-For example, assume 133MHz CPU, 33MHz PCI, and 1/2 system clock. If TRDY Timeout = 40 nsec and Retry
Timeout = 40 nsec, then PCI Timeout = 124 psec. and IPBus Timeouts should be greater than (124 psec * 133MHz
/ 2) which should be greater than 2079h. Note that the CPU and IPBus Timers use the IPBus system clock which
is typically 1/2 the frequency of the CPU pipeline clock.

For PCI systems capable of stopping the clock, the CPU Bus Timeout, IPBus Timeout, and the
Watchdog Timeout timers must be disabled, so that the PCI clock can be restarted after an arbitrary delay.
Alternatively, if the system design allows, the CPU could be signalled to not issue PCI Master transactions
or a PCl reset could be issued when the PCI clock is stopped. Such a signal or reset would allow the CPU
to continue operation while the PCI clock is stopped.

On PCI Master Write errors, the DMA engine is decoupled from the PCI interface via a master write
FIFO. For example, if the PCI Master Write Error occurs due to a TRDY/Retry Timeout, the PCI Write FIFO
is then flushed so that pending writes can be aborted. However, the DMA engine may have stored or
continue to store additional writes after the initial error. Thus, in general, the PCI Master Write Error Inter-
rupt service routine should note the PCI error and, if appropriate, restart the DMA engine from the point of
the error.

79RC32334/332 User Reference Manual 12-34 __ June 4. 2002 1.

. Chapter13]
DMA Controllers

Notes Introduction

Four general purpose DMA channels move data between source and destination resources such as
system memory, PCl or external I/O devices (8-,16-,0r 32-bit I/O devices are treated as memory-mapped
word-aligned devices). Using a flexible, memory-based descriptor structure, any of the four channels effi-
ciently support “scatter/gather” capability. The RC32334 DMA supports byte, half-word (16-bit), word, and
quad-word burst transfers that can cross over quad-word boundaries and are then automatically split into
single-word transfers until a quad-word boundary is reached. The DMA controller also automatically
prevents burst transfers from crossing SDRAM page boundaries and supports little- or big-endian data
conversions.

To initiate" a DMA transfer, the CPU configures the Status, Source Address, Destination Address and
Next Descriptor Address registers with the memory address, PCI bus address, read-write transfer direction,
boundary crossing points, end-of-transfer interrupt enable, and transfer enable information. Once config-
ured, the controller arbitrates for the memory and PCI bus and performs data transfers to or from memory
without host CPU intervention.

Throughout this chapter, the following terms are used as defined below:

Transfer — refers to the cumulative data that is moved via the entire descriptor chain.

Transaction — pertains to data that is transferred per descriptor block.

List of Features

* Four general purpose DMA channels

* Flexible descriptor based operation

* Memory-to-memory and memory-to-peripheral transfers

* Supports quad-word burst transfer

* Supports last partial word transfer

* Supports Endianness swapping

* Programmable DMA bus transaction burst size (1, 2, 4 or 16 bytes)
DMA Enhancements in Y Silicon Revision

The DMA controller is one of the modules that has been enhanced in the Y revision of the silicon. Table
13.1 outlines some of the significant differences between the Zand Y revisions. For more information on the
differences between the silicon revisions, refer to Application Note AN-350, RC32334/RC32332 Differences
Between Z and Y Revisions, and to the RC32334/RC32332 Device Errata, both posted on IDT's web site at
www.idt.com.

1.Although any of RC32334’s four DMA channels can be used for PCI master initiator reads or writes, channels 2
and 3 are recommended, because of the presence of the optional dma_ready_n pins for channels 0 and 1. Note
that the RC32332 only includes the dma_ready_n signal for channel 0.
79RC32334/332 User Reference Manual 13 -1 ww . Datashent aenm

DMA Controllers List of Features

Notes

Function

Z Revision

Y Revision

Comments

Readability of DMA
status registers

Not readable

Readable during
active channel oper-
ation provided this
function is enabled.

Memory to PCI transfer
behavior

Bus requested immedi-
ately when a memory
controller has data to be
transferred to the PCI
module

Internal bus only
requested once PClI
master FIFO has
enough space to
accept transfer.

Reduces lock ups of the inter-
nal bus.

Priority of PCI DMA

Highest priority

Option to move this
to lower priority level

Original user manual covering
the Z revision incorrectly
stated that PCl DMA was con-
figured for lowest priority. Low-
est priority level potentially
useful for applications
demanding high memory to
memory performance but with
relatively low PCI bandwidth
requirements.

Table 13.1 DMA Differences Between Z and Y Revisions

Two new fields, shown in Table 13.2, have been added to the Configuration Register.

Bits Field Name Description
29 New Feature Mode
Value Description
1 New Feature mode: Adds Status Register readabil-
ity.
0 backward compatibility mode
20 SDRAM to PCI Arb | SDRAM to PCI Arbitration Algorithm
Algorithm
Value Description
1 SDRAM to PCI write Arbitration waits for 4 words
free or 1 word free in PCI Master TX FIFO depending
on the burst size of the transfer.
0 backward compatibility mode (default).

79RC32334/332 User Reference Manual

Table 13.2 New Fields in DMA Configuration Register

13-2

www NataGhestdl oo

DMA Controllers Block Diagram

Notes Block Diagram
Functional units of the DMA device are shown in Figure 13.1.

| IP Bus

? |

Y
DMA

4* q |

DMA FIFO ¢ DMA
(8 words) —— REGISTER FILE

Figure 13.1 Diagram of DMA General Block with IP Bus Interface

DMA Operations

The RC32334 has four general purpose DMA channels to transfer data between memory, 1/0 and PCI.
Channels 2 and 3 are recommended for use of PCI Initiated read/write. 8/16/32 bit I/O devices are treated
as memory mapped word aligned devices.

The RC32334 DMA supports byte, half-word (16-bit), word, and quad-word burst transfer modes.
Quad-word burst transfers that cross over quad-word boundaries are automatically split into single word
transfers till a quad-word boundary is reached. The DMA automatically prevents burst transfers from
crossing page boundaries.

The flexible descriptor structure allows the DMA controller to efficiently perform data transfers to or from
memory without host CPU intervention. Each DMA channel has four registers to hold the current descriptor
information. These are the status, source address, destination address and the next descriptor address
registers. The functions of these registers are described later in the register definition section.

To begin a DMA transfer, the EnDMACH bit (bit 31 of the Configuration register) must first be set to 1 and
the Base Descriptor Address register set to point to the first descriptor of a chain of descriptors in memory.
The last descriptor in this chain is a dummy and as such is not affiliated with any valid data, but it is required
to aid in terminating the DMA transfer. The status field of this dummy descriptor is set to 0, which sets the
DMAOwn bit to 0.

The DMA loads the first descriptor from memory into its internal registers. The data transferred from the
source device in to an internal FIFO and from this internal FIFO to the destination device. A DMA done
interrupt can be generated. For this the user needs to set DMADnInt bit to 1, (i.e., bit 27 of the status
register) for each transaction to tell the host that the current transaction has completed. The DMA will
proceed to load the next descriptor via the address in the next descriptor address register to start a new
transaction. This will continue until a dummy descriptor is detected in the chain.

The DMAOwn bit informs the DMA if the current descriptor is a valid data transaction descriptor. The
LastDesc bit (bit 28 of the status register) informs the DMA if the current descriptor is the last valid data
descriptor. If the DMA detects the dummy descriptor (i.e., when the DMAOwn bit is set to 0) the DMA will
exit. However, if the DMA detects the dummy descriptor and does not detect the last valid data descriptor
beforehand, then the DMA will still exit but will generate a DMA_not_owner interrupt via the external
interrupt_n[2] pin. Please see Figure 13.2 for a detailed diagram of a DMA transfer configuration.

The RC32334 DMA internally supports byte swapping between little endian and big endian devices,
which bridges the compatibility problems between two systems with different endianness. The RC32334
DMA supports last partial word accesses in any mode by generating the appropriate byte enable signal for
the last partial data. In this way, a transfer of any byte length can occur in any DMA mode.

79RC32334/332 User Reference Manual 13-3 _ June 4. 2002 1.

DMA Controllers DMA Transfer Modes

Notes Two DMA modes (ready and done) are available for data transfer when accessing slow I/O devices. In
the ready mode, when a slow 1/O device is ready, the slow device asserts the dma_ready_n pin (low active)
to initiate the data transfer. In the done mode, when a slow I/O device is done, the slow device asserts the
dma_ready_n pin to signal to the DMA that the slow device is done receiving the current data. In both
modes, the slow I/O device can keep the dma_ready_n pin de-asserted (high) if the slow device is not
ready. This holds the DMA engine in the current state and does not start a new data transfer. Only DMA
channels 0 and 1 have the dma_ready_n pins, so only these channels may be used to transfer data to or
from slow 1/O devices.

The DMA module includes a option (enabled via bit 20 in the configuration register) to allow SDRAM to
PCI DMA transfers to occur without locking up the internal bus. When enabled, the bus is only requested
once the PCI Master TX FIFO has enough space to accept the transfer. This feature is specifically designed
to improve SDRAM to PCI transfers. However the read operation may occur from any type of memory,
including that located on the local bus. Note that when this mode of operation is selected, the user must set
up descriptors for that channel such that all destination addresses point to the memory space mapped to
the PCI Master TX FIFO. If incorrectly configured, unnecessary delays may occur, since the arbitration for
that channel will always check the PCI Master TX FIFO status, without checking whether the destination
address resides in the PCI Master TX FIFO range or (for example) SDRAM memory. Thus, for example, if
the destination is SDRAM memory, the PCI TX FIFO may be full due to an independent access from the
CPU or other DMA channel. This would delay the SDRAM access, even though it is independent from the
PCI Master TX transaction.

Endianness Swapping

The RC32334 DMA internally supports byte swapping between little-endian and big-endian devices,
which bridges the compatibility issues that occur between two systems with different endianness. The
RC32334 DMA supports last partial word accesses in any mode by generating the appropriate byte enable
signal for the last partial data. In this way, a transfer of any byte length can occur in any DMA mode. The
user must program the SrcEnd bit (Source Endianness) and the DstEnd bit (Destination Endianness).
Examples of endianness swapping for word or half-word transfers are shown below.

31..24 23...16 15...8 7.0
Big Endian A B C D
Little Endian D C B A
K 16 (T 0
Big Endian B A D C
Little Endian D C B A
DMA Transfer Modes

For word/burst transfers (32<->32), the starting address must be word aligned. However, the RC32334
DMA will complete unaligned transfers also (32<->32) by automatically converting to the byte transfer
mode, independent of the word or the quad-word burst transfer settings.

1. Byte transfers: used for non-word aligned transfers
* Program MaxburstSz = 000, 1 byte.

* Both source and destination devices can have any starting address. Depending on the address and
endianness, the data will show up on the proper byte lanes.

* For each transfer, the DMA will request the bus, read one byte from the source into internal fifo,
write that byte from internal fifo to the destination, then release the bus. The DMA will repeat this
procedure until all the data are transferred.

79RC32334/332 User Reference Manual 13-4 _ June 4. 2002 1.

DMA Controllers DMA Transfer Modes

Notes 2. Half-word transfers: typically used for data that are represented as a 16-bit integer
* Program MaxBurstSz = 001, 2 bytes.

* Both source and destination starting addresses must be half-word aligned. Depending on the
address and endianness (must be 32 bits wide), the data will show up in the proper byte lanes.

* For each transfer, the DMA will request the bus, read one half-word from the source into an internal
fifo, write that half-word from this internal fifo to the destination, then release the bus. The DMA will
repeat this procedure until all the data are transferred.

* Ifthe last data is one byte only, the DMA will generate the appropriate byte enable signal for that
byte.
3. Word transfers with word-aligned starting address
* Program MaxburstSz = 010, 4 bytes.
* Both source and destination have word-aligned starting addresses.

* For each transfer, the DMA will request the bus, read one word from the source into internal fifo,
write that word from this internal fifo to the destination, then release the bus. The DMA repeats this
procedure until all the data are transferred.

* Ifthe last data is a partial word, the DMA will generate the appropriate byte enable signal for that
partial word.

4. Quad-word burst transfers with word-aligned starting address
* Program MaxburstSz = 100, 16 bytes.
* Both source and destination starting addresses are word-aligned and not decremented.

* For burst transfer, the DMA will request the bus, read four words from the source into an internal
fifo, write four words from this internal fifo to the destination, then release the bus. The DMA will
repeat this procedure until all the data are transferred.

* If either the source or the destination starting address is not at a quad-word boundary, then the
DMA will read or write single words until the address reaches a quad-word boundary. Then the
DMA will start quad-word burst transfers.

* Ifthe last data is a partial word, the DMA will generate the appropriate byte enable signal for that
partial word.

5. Unaligned word/burst transfers

* The DMA will automatically detect unaligned transfers and ignore the user-programmed Max-
burstSz and degrade the DMA transfer into the byte mode transfer.

* For each transaction, the DMA will request the bus, read one byte from the source into an internal
fifo, write that byte from this internal fifo to the destination, then release the bus. The DMA will
repeat this procedure until the data are transferred.

DMA Transfer Operations

A DMA sequence begins after the DMA channel has been enabled via its Configuration register. The
DMA engine begins by accessing the Base Descriptor Register to locate the physical address pointer for
the first descriptor, which consists of 4 words and is usually located in a large memory buffer. Each
descriptor has four fields. Fields one and two describe the Status and Source Address that are to be read.
Fields three and four describe the Destination Address that are to be written and the Next Descriptor
Pointer.

Descriptors are often located one after another; however, because each descriptor contains a full 32-bit
pointer in the Next Descriptor Address register, they can be located anywhere in memory on a quad-word
aligned boundary. The Next Descriptor Address register points to the memory location from which the next
descriptor is to be fetched. The DMA engine then uses the Base Descriptor to fetch (read) the first
descriptor. Thus, a 4-word burst read of the descriptor will occur.

79RC32334/332 User Reference Manual 13-5 _ June 4. 2002 1.

DMA Controllers DMA Transfer Modes

Notes Note that the Bus Turnaround on the physical system data bus after a descriptor fetch is hardcoded to
1.0 clock. Thus, descriptor memory tables should be set up in physical memory that uses 1.0 clock BTA or
less.

Once the first descriptor is fetched, the DMA engine arbitrates for the System Data bus; when granted,
the DMA engine executes a read to the Source Address as pointed to by the descriptor. A write is then
immediately issued to the Destination Address, as pointed to by the descriptor. The DMA engine continues
to request/grant/read/write until its Status indicates that the transaction is complete. When the DMA engine
completes the request/grant/read/write loop for a descriptor, then the Status is written back to the Status
Word within the descriptor’s 4-word memory location. If more descriptors are pending, then the DMA engine
uses the Next Descriptor Address register to fetch the next descriptor from memory, via a burst 4-word
read. A diagram of the DMA transfer configuration details is provided in Figure 13.2.

The DMA engine is often instructed by the descriptor chains to endlessly loop through the descriptor
pool. One exception is to run out of descriptors “owned” by the Controller; for example, to run out of
memory buffers. In this case, after fetching the next descriptor, the DMA engine examines the previous
“LastDesc” status bit and ends/disables if “LastDesc” is set to”1.” This method is also the typical way to end
a fixed-size chain of descriptors, such that the DMA engine fetches one extra dummy descriptor with the
DMA Own status bit set to the CPU.

A second exception is to fetch a Controller owned descriptor with the “LastDesc” status bit set to ‘0", to
indicate an unexpected last condition such that a “LastDesc” interrupt is generated. In this case, DMA may
be restarted/re-enabled with the “continuation” control set by the Interrupt Handler when a descriptor
becomes available, such that a new descriptor is re-fetched from the Next Descriptor Address register. This
optional restart feature allows software to maintain the DMA channels with a Base Descriptor Address as a
constant, if desired.

RC32334 DMA Channel 1 Registers

Configuration: bLOXX_XXXX_XXXX_XXXX

Base Descriptor Address: 0x100 3

0x100 Status: Ox8xxx
0x104 Source Address Transfer #1
0x108 Destination Address
0x10c Next Descriptor Address: 0x120
0x120 Status: 0x8xxx
0x124 Source Address
v Transfer #2
0x128 Destination Address

0x12c Next Descriptor Address: y \

X Status: 0X9xxx
X Source Address “ Transfer #n
X Destination Address Last DMA transfer
X Next Descriptor Address: 0x200 \
0x200 Status: OX0xxx)
0x204 Source Address)
Dummy Descriptor
0x208 Destination Add
X estination Address DMA transaction done
0x20c Next Descriptor Address: z

Figure 13.2 DMA Transfer Configuration

79RC32334/332 User Reference Manual 13-6 _ June 4. 2002 1.

DMA Controllers DMA Arbitration Methods

Last Partial Word Transfers

For word or burst transfers, if the last data is a partial word (for example, 1, 2 or 3 bytes), the DMA will
always read the data from the low address of the source and write it to the low address of the destination, if
the address is incremented (or high address if the address is decremented). For example, if the last transfer
is one byte and the address is incremented, the last byte will show up on the following byte lane:

Notes

31..24 23..16 15..8 7.0

Big Endian A
Little Endian A

For half-word transfers, if the last data is a byte, the DMA will always read the last byte from the low
address (in little endian order) of the source and write it to the low address (in little endian order) of the
destination. For example, if A1 is 0, the last byte will show up on the following byte lane:

31..24 23..16 15...8 7.0

Big Endian A
Little Endian A

If A1is 1, the last byte will show up on the following byte lane:

31..24 23..16 15..8 7.0

Big Endian A
Little Endian A

Transfer Restrictions
When implementing DMA operations, the following transfer restrictions must be considered:

* When the source or destination address is a constant (such as in /O devices), the address must be
word-aligned, and the I/O devices must be connected to the appropriate byte lanes according to
endianness

* The following transfers are not supported:

— (1) Source is incremented and destination is decremented
- (2) Source is decremented and destination is incremented

* Unaligned word/burst transfers can only be done in byte mode (user-programmed MaxburstSz is
ignored for unaligned word/burst transfer)

* When an address is decremented or constant, the DMA will not support burst transfers
* The starting address must be half-word aligned for half-word transfers
* Devices must have the same port width when doing DMA transfers from /0 to 1/O

* DMA channels 2 and 3 do not have the dma_ready_n pins, therefore they can not be used to do
DMA transfers with slow I/O devices.

DMA Arbitration Methods

The RC32334’s four independent DMA channels are functionally identical—with the exception of priority
coding—and initialized with a set of chaining registers to determine the DMA source start base address, the
DMA target start base address, the data transfer number, and the protocol style selection.

As discussed earlier in the transfer operations section of this chapter, to begin a data transfer operation,
the channel will first arbitrate for the System Data bus. With multiple DMA requests pending, after a DMA
access, the System Data bus is granted to the Controller instead of the next highest requestor; as such,
there are two priority tiers: bus requestors and Controller. If DMA receives the bus, the DMA will use either

the fixed or rotating priority schemes." The rotating arbitration scheme is illustrated in Figure 13.3.

79RC32334/332 User Reference Manual 13-7 _ June 4. 2002 1.

DMA Controllers DMA Arbitration Methods

Notes

DMA3
s NS

Figure 13.3 Diagram Showing the Rotating Arbitration Scheme

The fixed priority encoding scheme is illustrated in Table 13.3.

Fixed Priority Agent

Highest BIU
. PCI
. DMAQ
. DMA1
. DMA2
Lowest DMA3

Table 13.3 Fixed Priority Encoding

Once arbitration is settled, the DMA channel generates a read cycle with the source base address. The
control register determines whether it is a burst. Typically, the source address will be through an internal
memory controller, which will take the address and generate data, acknowledges, etc., back to the DMA
controller channel. The DMA controller uses the DMA 4-word deep buffer FIFO to absorb the potential burst
read data.

After the read is completed, the DMA channel initiates a write to the target address by emptying the read
buffer FIFO. As in the read, the write is typically through an internal memory controller on the 1/0 Controller.
This internal memory controller takes the address and data from the DMA FIFO and generates a write
transaction. At the end of the transaction, the DMA channel's Block Size register is decremented by the
transaction length.

If the Block Size register has not reached 0, the source and target addresses are incremented to their
next value (which could be by +0, +1, +2, +4, or +16, depending on whether incrementing is enabled and
whether a mini-burst or burst occurred). If the Block Size register has reached 0, then the DMA channel is
finished with its current descriptor link chaining register assignment and the Status Word is written back to
the memory descriptor. If the control register so instructs, the channel may set an interrupt and/or stop,
and/or it may reload a new descriptor of chaining registers. If a new descriptor is loaded, then the DMA
channel will repeat the basic DMA channel transaction by copying the new descriptor’s instructions into the
current instructions and then executing them.

1.DRAM refreshes occur in the background and may override an access to DRAM by delaying the start of the
access.

79RC32334/332 User Reference Manual 13-8 _ June 4. 2002 1.

DMA Controllers Signal Definitions

Bus Turnaround (BTA) clock cycles will only be inserted if the DMA write after a read is going to take

Notes
less than the BTA value programmed. See bus interface unit register descriptions for more information.

DMA Access

On a DMA access that results in an IPBus Error, such as to a non-existent PCI target, the BIU Arbiter
behavior is changed to more gracefully generate an IPBus Timeout rather than a Watchdog Timeout.

Signal Definitions

Two modes are available to the user for completing data transfers to or from slow I/O devices:
dma_done_n and dma_ready_n'.

DMA Ready

The RC32334 DMA Controller has a DMA throttling option called DMA Ready. The DMA Ready option is
typically used for one of several cases:

* External read I/O device where overall data rate is much slower than CPU, such that occasional
reads are done in the process background on a request demand basis

* FExternal write I/0 device where overall data rate is much slower than CPU, such that occasional
reads are done in the process background on a request demand basis

* External read /O FIFO device that has FIFO almost Full Flag
* External write I/O FIFO device that has FIFO almost Full Flag.

The dma_ready_n input signal can be used by an external I/O device to demand that the RC32334 DMA
Controller initiate one transfer of data to or from the I/O device. dma_ready_n[0] can be used to control
DMA Channel 0, and dma_ready_n[1] can be used to control DMA Channel 1.

Note: On the RC32332, there is one flow control signal, dma_ready_n[0] for DMA Channel 0.

dma_ready_n is first sampled 1.0 clock after the fourth/last debug_cpu_ack_n asserts from the DMA
Channel Descriptor fetch. This is similar to Figure 13.4, except that the transaction is a four-word burst
read. dma_ready_n can be a 1.0 clock pulse, or it can be asserted longer, as long as it is de-asserted (if it is
intended to be de-asserted) before the next dma_ready_n sampling point for the next DMA transfer. If
dma_ready is kept asserted at this sampling point, then the DMA Controller will assume that the next
transfer is to occur (as might be the case if the external 1/O device is a FIFO device that keeps
dma_ready_n asserted until empty).

As shown in Figure 13.4, the next dma_ready_n sampling point first occurs on the clock after write
debug_cpu_ack_n occurs for the current DMA transaction write. Note that if the transaction has multiple
data, then the sampling point is after the last data. Whether or not the external 1/O device is reading or
writing (source or destination), the sampling always occurs after the read portion of the DMA transaction
and the write portion have both occurred. After the sampling point occurs, if dma_ready_n is not asserted,
then the DMA Controller will pause on that channel until dma_ready_n is asserted. Finally, after being
sampled, dma_ready_n is internally double registered. Thus the next DMA transaction cannot possibly
occur until at least 2.0 clocks after dma_ready_n is asserted.

1.As noted under DMA restrictions, only DMA channels 0 and 1 have the dma_ready_n pin, making these two
channels the only DMA channels available for this type of data transfer. Channels 2 and 3 are restricted from this
type of DMA transfer operation. The RC32332 only includes the dma_ready_n pin for DMA channel 0.

79RC32334/332 User Reference Manual 13-9 _ June 4. 2002 1.

DMA Controllers Signal Definitions

Notes
—1 2 3 4 5 6 T 8 9 10—
+ tHLD
e tSU
» [¢tSU [[« tHLO
cpu_masterclk [_ % _ ¥ __F _|F] JE FANE BN BN §
dma_ready_n[x] \ |/
({tP | PP
debug_cpu_ack_n \
o tP »{tP
mem_addr[25:2]<<2 X 40000 X X Next DMA tran$action
| tP (P
mem_data[31:0] | }tFcooood) ABCD0000 D \cxt DMA tran$action
BtP | [tP
mem_cs_n[0] \
»{tP | P
mem_oe_n
o tP | tP
mem_we_n[3:0] 1111 X 0000 X 1111
cpu_dt r_n
| tP o tP
mem_245 _oe_n \ /
mem_wait_n

Figure 13.4 DMA Ready Sampling Point

Figure 13.4 shows the end of a DMA transaction, where the read portion has already occurred and the
write portion is occurring via the 32-bit Memory Controller location. Note that the SDRAM Controller, as well
as the other modes of the Memory Controller, have similar cases relative to the final assertion of
debug_cpu_ack_n. The first possible point at which dma_ready_n is sampled to initiate another DMA trans-
action occurs 1.0 clock after debug_cpu_ack_n occurs.

Note that if the Enable DMA Channel bit in the channel Configuration Register is disabled during a burst
transfer where dma_ready_n is being used, the burst transfer may abort the writeback of words from the
DMA FIFQ if the write is not block aligned. If the Enable DMA Channel is to be used (to disable the channel)
in conjunction with the dma_ready_n mode, the transfer address should be aligned with the MaxBurstSz so
that the final writes are flushed to memory.

DMA Done

DMA Done mode uses the dma_ready_n pin. The DMA channel configuration register bit 27, DMADone
bit turns this mode on or off. Block devices which initially request or send more data than may be necessary
can benefit from the use of the DMA Done mode.

DMA Pin Type Function

dma_ready_n[1:0] | Input dma_ready mode: Input pins for DMA channels 0 and 1 to indicate that the I/O
device is ready for the next data in the current DMA descriptor transaction

dma_done_n[1:0] | Input dma_done mode: Input pins for DMA channels 0 and 1 to indicate that the I/O
device is finished with the current descriptor transaction

Table 13.4 DMA Signal Pins and Definitions

79RC32334/332 User Reference Manual 13-10 __ June 4. 2002 1.

DMA Controllers

Signal Definitions

Notes

79RC32334/332 User Reference Manual 13 - 11 __ June 4. 2002 1.

The DMA Done mode allows the dma_done_n pin to abort and disable the DMA channel either:
* at the end of the current DMA bus transaction or
* at the end of the next DMA bus transaction.

DMA channel interrupt #3 is asserted and an Interrupt Service Routine can setup and re-enable the
DMA channel as desired.

The dma_done_n pin is required to be asserted for at least one clock cycle. It is internally synchronized
by double clocking to help avoid metastability issues if asserted asynchronously. As shown in Figure 13.5,
at the end of clock state cycle #11, dma_done_n is sampled by each DMA bus transaction exactly 5.0
clocks previous to the final internal cpu_ack_n signal which can be seen on the RC32334 as the
debug_cpu_ack_n signal. Both single data and burst accesses sample the dma_done_n signal 5.0 clocks
previous to the final debug_cpu_ack_n of the read/writeback phase. For example, in a 4 word burst DMA
bus transaction, the final debug_cpu_ack_n is the 8th ack, which occurs after the 4 word DMA read ack's,
on the 4th word of the DMA writeback.

If the dma_done_n pin is asserted after the dma_done_n internal sample point, then the DMA channel
will cease after the next DMA bus transaction from this DMA channel. The next DMA bus transaction
address cycle which can be started from the same DMA channel will take at least 11.0 clocks from the
previous dma_done_n internal sample point.

The DMA channel interrupt #3 for the dma_done_n pin occurs concurrently with the final
debug_cpu_ack_n assertion and will occur whether or not the DMA channel coincidently ends because of
the descriptor finishing normally. Note that interrupt #3 is different from the DMA Done Interrupt as setup by
the descriptor status field which typically is used to denote the end of a normal descriptor finish.

After the interrupt for the dma_done_n pin occurs, an Interrupt Service Routine can setup or reuse a
new descriptor and restart the DMA channel by re-enabling it.

12 3——4- 5 &

8—9—-10-+11+12-4-13-14-+15--16-1 718192012122

= tSU
tHLD
cpu_masterclk F\JF\JF\JF\JWNNF\JF\JNF\;HRJF\JF\JF\JWF\JF\JF\JF\JF\JNf

dma_done_n[x] (dma_ready_n[x]) /
debug_cpu_ack_n
_/ I/
mem_data[31:0][X1Fodooo{__ dma read data)ﬁ(ooommawritebackdatax X Next bus transagdtion
epu_int_nf3] (internal signal =] Tl

Figure 13.5 DMA Done Timing Diagram

Internal DMA Interrupt Signals

Each of the four DMA channels has 3 interrupts that are routed to the Expansion Interrupt Controller,
which provides the logic for software to analyze the various interrupts generated by the overall system.
These internal interrupts perform the functions described in Table 13.5. More details on the Expansion
Interrupt Controller are provided in Chapter 14 of this manual.

Internal DMA Tvpe Function

Interrupt Pin yp

interrupt_n[0] Output | DMADnInt, DMA Done interrupt, which is generated at the end of each descriptor
frame if the descriptor status register has the DMADnInt interrupt bit 27 enabled.

interrupt_n[1] Output | Dma_end_early interrupt, which is caused by bus error or timeout.

interrupt_n([2] Output | Dma_not_owner interrupt, which is caused by the following situation: DMAOwn = 0

for current descriptor frame and LastDesc = 0 for the previous descriptor frame.

Table 13.5 DMA Interrupt Definitions (Part 1 of 2)

DMA Controllers Register Mapping and Descriptions

Notes InternalDMA | .. Function
Interrupt Pin yp
interrupt_n[3] Output | Dma Done pin asserted when in the dma_ready_n pin’s Dma_done mode and

dma_done_n is asserted and once the current DMA transaction completes. Still
asserted even if the channel completes simultaneously or if the channel is dis-
abled.

interrupt_n[4] Output | Dma Halt asserts DMA interrupt bit 4 when the DMA channel completes all
descriptor frames, including the flushing of the FIFO of a final transfer and the
dummy descriptor fetch. This interrupt is also asserted when the Enable DMA-
Channel bit in the DMA Channel Configuration Register is cleared while the chan-
nel is active and allows software to monitor when the channel has completed its
current transfer.

Table 13.5 DMA Interrupt Definitions (Part 2 of 2)

Restarting DMA Channels

DMA channels are restarted by re-enabling the EnDMACh field in the DMA Channel Configuration
Register after this field has been cleared by the DMA Engine. An idle DMA channel can be detected using
one of the following methods:

1. Use the DMA_clr_en interrupt. After the interrupt occurs, clear the interrupt and re-enable the DMA
channel. After the interrupt occurs, clear the interrupt and re-enable the DMA channel.

2. Program DMA Done Interrupt to occur on the Last Descriptor. Then clear the interrupt and wait until
the dummy descriptor is fetched before re-enabling the DMA channel. Usually, the interrupt handler
has sufficient delay for the dummy descriptor to be fetched. Alternatively, the DMA channel’s Config-
uration Register (or any other DMA channel register) can be polled (if any of the fields beside the
Configuration Register's EnDMACH field were initially set to non-zero) because the registers return
zeroes until the dummy descriptor fetch is finished. If the DMA Configuration Register's New
Feature field is set, the EnDMACHh field (in the Configuration Register) itself can be polled to detect
if the dummy descriptor fetch is finished.

3. Program the Last Descriptor to not have the LastDesc field set. The dummy descriptor will be fetched
and DMA_not_owner interrupt will occur. From context, if the descriptors are not added dynamically,
or if the interrupt does not occur immediately after a descriptor is added dynamically, the interrupt
can be cleared, and the DMA channel can be re-enabled using the Configuration Register's
EnDMACH field. Note that, if applicable, in the interrupt after a dynamic descriptor case, either of the
following may occur:

- Update (if necessary) the Next Descriptor Register and set the Configuration Register Cont
field
- Update the Base Descriptor Register and set the Configuration Register Cont field.

Then, the interrupt can be cleared and the DMA channel can be re-enabled using the Configura-
tion Register's EnDMACH field.

Register Mapping and Descriptions

Each of the four DMA channel’s control registers determines channel usage, data transfer modes, and
descriptor ownership of the four independent, general purpose channels. As programmed, these channels
move data between source and destination ports, such as system memory, PCI, or external I/O devices.
For the address mapping tables listed in this section, the effective address for a specific set of registers for
that channel is the Base Address plus the Offset, as indicated in the tables that follow.

79RC32334/332 User Reference Manual 13-12 __ June 4. 2002 1.

DMA Controllers

Notes

Register Mapping and Descriptions

Base Address Reaister Name Offset Effective Address
Channel 0 9 Address Channel 0
Configuration Register 00
Base Descriptor Register 04
Current Address Register 08
1800_1400 - - Base + Offset
Status/Block Size Register 10
Source Address Register 14
Destination Address Register 18
Next Descriptor Address Register 1C

Table 13.6 DMA Channel 0 Register Address Map

Base Address Register Name Offset Effective Address
Channel 1 9 Address Channel 1
Configuration Register 00
Base Descriptor Register 04
Current Address Register 08
1800_1440 - - Base + Offset
Status/Block Size Register 10
Source Address Register 14
Destination Address Register 18
Next Descriptor Address Register 1C

Table 13.7 DMA Channel 1 Register Address Map

Base Address Reaister Name Offset Effective Address
Channel 2 9 Address Channel 2
Configuration Register 00
Base Descriptor Register 04
Current Address Register 08
1800_1900 - - Base + Offset
Status/Block Size Register 10
Source Address Register 14
Destination Address Register 18
Next Descriptor Address Register 1C

Table 13.8 DMA Channel 2 Register Address Map

79RC32334/332 User Reference Manual 13-13 __ June 4. 2002 1.

DMA Controllers Configuration Register

Notes Base Address Register Name Offset Effective Address
Channel 3 9 Address Channel 3
Configuration Register 00
Base Descriptor Register 04
Current Address Register 08
1800_1940 - - Base + Offset
Status/Block Size Register 10
Source Address Register 14
Destination Address Register 18
Next Descriptor Address Register 1C

Table 13.9 DMA Channel 3 Register Address Map

Configuration Register

The Configuration Register is a 32-bit register containing the data used to implement and manage DMA
controller functions, as shown in Table 13.10. When set to 1, bit 31 of this register is used to enable a DMA
channel after the descriptor information and address have been established. Once initiated, DMA transfers
can only be disabled after the current transaction is complete. When the DMA channel is active, this
register reads as 0.

On DMA channels 0 and 1, the DMA Done (bit 27) and DMA Ready (bit 28) modes are available for data
transfers from slow 1/O devices. In the ready mode, once a slow I/O device is ready to begin a data transfer,
the 1/0 device will set the dma_ready_n pin, which initiates the transfer. In the done mode, the slow device
asserts the dma_ready_n pin to signal the DMA that the slow device is done receiving the data.

In both modes the slow device can hold the dma_ready_n pin high if the device is not ready, which holds
the DMA engine in the current state and a new data transfer is not initiated. Note that if the DMA transfers
are to be modulated using the dma_ready_n pin, with the DMA enable bit in the configuration register
disabled, burst transfers should be word (4 bytes) sized. Figure 13.6 illustrates the fields of the Configura-
tion register and Table 13.10 provides the description and initial value of those fields.

The DMA status registers are readable during active channel operation whenever the New Feature
mode is turned on.

31 30 29 28 27 26 24 23 212 19 0
New DMA| DMA SDRAM
EnDMACh| Cont Feature | R dy Done MaxBurstSz | Reserved i PGl Arb Reserved

Figure 13.6 Configuration Register Fields

. Field e Initial
Bits Name Description Value
31 EnDMACh Enable DMA Channel 0

Used to enable a DMA channel after descriptor information and address is set up.
Note: This bit is not normally cleared (DMA disabled) by the user after a DMA
transfer has started. Usually, the DMA engine itself will clear this bit after the
transaction has been completed.

Value Description
1 Enable DMA channel
0 DMA channel is idle

Table 13.10 Configuration Register Field Descriptions (Part 1 of 3)

79RC32334/332 User Reference Manual 13-14 __ June 4. 2002 1.

DMA Controllers Configuration Register

Notes . Field e Initial
Bits Description
Name Value
30 Cont Continuation 0
After a DMA transfer failure, this bit specifies which descriptor to restart the trans-
fer from.
Value Description
1 Restart from failed descriptor
0 Restart from the first descriptor
29 New Feature 0
Mode Value Description
1 New Feature Mode: Adds Status Register readability.
0 Backward compatibility mode.
28 DMARdy DMA Ready 0
External Pin Wait for dma_ready_n input (in ready mode). Wait for the
dma_ready_n input before the next bus arbitration. DO NOT assert
bits 28 and 27 simultaneously, since it will lead to undefined behavior.
Value Description
1 Enable dma_ready_n pin
(in ready mode)
0 Ignore dma_ready_pin
(in ready mode)
27 DMADone DMA Done 0

External Pin Wait for dma_ready_n input (in done mode).

Put the dma_ready_n pin into dma_done_n mode. If asserted, dma_done_n will
stop the DMA Channel immediately after the current DMA bus transaction com-
pletes and disable the DMA Channel (also see EnDMACh bit 31). If the DMA
Channel is waiting for bus mastership, then asserting dma_done_n will stop the
DMA Channel immediately after the next DMA bus transaction completes and
disable the DMA Channel. DO NOT assert bits 28 and 27 simultaneously, since it
will lead to undefined behavior

Value Description

1 Enable dma_ready_n pin
(in done mode)

0 Ignore dma_ready_pin
(in done mode)

Table 13.10 Configuration Register Field Descriptions (Part 2 of 3)

79RC32334/332 User Reference Manual 13 -15 __ June 4. 2002 1.

DMA Controllers Base Descriptor Address Register

Notes Bi Field L Initial
its Name Description Value
26:24 | MaxBurstSz | Maximum Burst Transaction Size Bit Field 000
Value | Description
111 Reserved
110 Reserved
101 Reserved
100 16 bytes
011 Reserved
010 4 bytes
001 2 bytes
000 1 byte
23:21 | Reserved 0

20 SDRAM to SDRAM to PCI Arbitration Algorithm

PCI Arb Algo- | Note: For PCI master write transactions only, this field should be enabled. For all
rithm other types of transactions, such as memory to memory transactions or PCl mas-
ter read transactions, this field should be disabled.

Value Description

1 SDRAM to PCI write Arbitration waits for 4 words
free or 1 word free in PCI Master TX FIFO depending
on the burst size of the transfer.

0 Backward compatibility mode (default).

19:0 | Reserved 0

Table 13.10 Configuration Register Field Descriptions (Part 3 of 3)

Base Descriptor Address Register

This 32-bit register is used in conjunction with bit 31 of the Configuration Register, to initiate a DMA
transfer. However, before a DMA transaction can begin, the Base Descriptor Address register must be set
to point to the physical address of the first descriptor in a chain of descriptors in memory. The base address
does not change after the transfer has started. When the DMA channel is active, this register reads as 0.

Fields of the Base Descriptor Address register are shown in Figure 13.7. Fields of this register are
described in Table 13.11.

31 0

Base Descriptor Address I

Figure 13.7 Base Descriptor Address Register Field

79RC32334/332 User Reference Manual 13 -16 __ June 4. 2002 1.

DMA Controllers Base Descriptor Address Register

Notes

Bits Field Name Description

31:0 | Base Descriptor Address | Used in conjunction with bit 31 of the Configuration regis-
ter, this Quad-word boundary physical address pointer
points to the first descriptor of a chain of descriptors in
memory

Table 13.11 Base Descriptor Address Field Description
DMA Example

I
Use DMA Channel 0 to read/write 3 words, 1 word at a time to/from
SRAM Memory buffer A, to/from SRAM Memory buffer B, and from
buffer B to SRAM Memory buffer C.

¥/

[* algorithm:

1. SETUP DMA COMMAND REGISTERS
2. INITIALIZE DESCRIPTORS

2.1. INITIALIZE DESCRIPTORS

2.2. INITIALIZE DUMMY DESCRIPTOR
3. SETUP INTERRUPT CONTROLLER
4. ENABLE DMA

5. WAIT FOR DMA DONE INTERRUPT

¥

/*1. SETUP DMA COMMAND REGISTERS */
$display($stime,": CPU 32bit 1wd write to DMA Config Reg");
I address data be
cpu_wr_1wd('h1800_1400, "DWIDTH'h0000_0000, ‘BWIDTH'h0);

$display($stime,": CPU 32bit 1wd write to DMA Base Desc Reg");
I address data be
cpu_wr_1wd('h1800_1404, "DWIDTH'h1fc0_0200, 'BWIDTH'h0);

*2.1. INITIALIZE DESCRIPTOR 0 */
$display($stime,": CPU 32bit 1wd write to Mem0: Desc.0.0 (Status)");
I address data be
/I DMAOwn bit31 needs to be set to DMA, no DMADnInt bit27
/I Read/Write 1 wd at a time for 3 wds
cpu_wr_1wd('h1fc0_0200, "DWIDTH'h8000_000c, ‘BWIDTH'hO);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.0.1 (Source)");
I address data be
cpu_wr_1wd('h1fc0_0204, "DWIDTH'h1fc0_0100, "BWIDTH'hO);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.0.2 (Dest)");
! address data be

cpu_wr_1wd('h1fc0_0208, ‘DWIDTH'h1fc0_0600, ‘BWIDTH'h0);
$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.0.3 (Next)");

79RC32334/332 User Reference Manual 13 -17 __ June 4. 2002 1.

DMA Controllers Base Descriptor Address Register

Notes I address data be
cpu_wr_1wd('h1fc0_020C, "DWIDTH'h1fc0_0210, ‘BWIDTH'hO);

[*2.2. INITIALIZE DESCRIPTOR 1:LAST ¥/
$display($stime,": CPU 32bit 1wd write to MemO0: Desc.1.0 (Status)");
I address data be
/I DMAOwn bit31 needs to be set to DMA, DMADnInt bit27

/I DMA LastDesc bit 28 needs to be set

{// DMA Dnint bit 27 optionally set
/I Read/Write 1 wd at a time for 3 wds
cpu_wr_1wd('h1fc0_0210, "DWIDTH'h9800_000c, ‘BWIDTH'hO);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.1.1 (Source)");
! address data be
cpu_wr_1wd('h1fc0_0214, "DWIDTH'h1fc0_0600, "BWIDTH'h0);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.1.2 (Dest)");
! address data be
cpu_wr_1wd('h1fc0_0218, 'DWIDTH'h1fc0_1000, "BWIDTH'h0);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.1.3 (Next)");
! address data be
cpu_wr_1wd('h1fc0_021C, "DWIDTH'h1fc0_0260, ‘BWIDTH'h0);

/*2.3. INITIALIZE DUMMY DESCRIPTOR */
$display($stime,": CPU 32bit 1wd write to Mem0: Desc.0.0 (Status)");
I address data be
/I DMAOwn bit31 needs to be set to CPU
cpu_wr_1wd('h1fc0_0260, "DWIDTH'h0000_0000, ‘BWIDTH'h0);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.0.1 (Source)");
I address data be
cpu_wr_1wd('h1fc0_0264, ‘DWIDTH'hffff_ffff, 'BWIDTH'h0);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.0.2 (Dest)");
! address data be
cpu_wr_1wd('h1fc0_0268, ‘DWIDTH'hffff_ffff, 'BWIDTH'h0);

$display($stime,": CPU 32bit 1wd wr to Mem0: Descriptor.0.3 (Next)");
I address data be
cpu_wr_1wd('h1fc0_026C, ‘DWIDTH'hffff_ffff, 'BWIDTH'h0);

/* 3. SETUP INTERRUPT CONTROLLER */
$display($stime,": CPU 32bit 1wd write to INT Clear Reg");
! address data be
cpu_wr_1wd('h1800_0578, ‘DWIDTH'hfff_ffff, ‘BWIDTH'h0);
#(10.0°CLK_PERIOD+000); // align for next transaction;

79RC32334/332 User Reference Manual 13-18 __ June 4. 2002 1.

DMA Controllers Current Address Register

$display($stime,": CPU 32bit 1wd write to INT Mask Reg");
I address data be
cpu_wr_1wd('h1800_0574, "DWIDTH'h0000_0001, "BWIDTH'h0);

Notes

[*4. ENABLE DMA ¥/
$display($stime,": CPU 32bit 1wd write to DMA Config Reg");
I address data be
/11 wd at atime
cpu_wr_1wd('h1800_1400, ‘DWIDTH'h8200_0000, ‘BWIDTH'h0);

Current Address Register

This 32-bit register is managed by the DMA and contains the physical address of the descriptor in
memory associated with the current transaction. When the DMA channel is active, this register reads as 0.

31 0

Current Descriptor Address I

Figure 13.8 Next Descriptor Address Field

Bits Field Name Description

31:0 Current Descriptor Address | Quad-word boundary physical address pointer
points to the current descriptor in the chain of
descriptors

Table 13.12 Current Descriptor Address Field Description

Source Address Register

This 32-bit register contains the physical address of the memory location from which the next data is to
be read. Figure 13.9 and Table 13.13 describe and illustrate the fields of this register. This register is inter-
nally updated after each DMA read transfer. However, the register can only be accessed by software when
the DMA channel is idle. When the DMA channel is active, this register reads as 0.

31 0

Source Address I

Figure 13.9 Source Address Field

Bits Field Name Description

310 Source Address Points to the next physical address to be read

Table 13.13 Source Address Register Field Description

Destination Address Register

This 32-bit register contains the physical address of the memory location where data is to be written.
Fields of the Destination register are illustrated and described in Figure 13.10 and Table 13.14. This register
is internally updated after each DMA read transfer. However, the register can only be accessed by software
when the DMA channel is idle. When the DMA channel is active, this register reads as 0.

79RC32334/332 User Reference Manual 13-19 __ June 4. 2002 1.

DMA Controllers

Next Descriptor Address Register

Notes

31 0

Destination Address I

Figure 13.10 Destination Address Fields

Bits Field Name Description

31:0 Destination Address Points to the next physical address to be written to

Table 13.14 Destination Address Field Description

Next Descriptor Address Register

This 32-bit register contains the physical address of the descriptor in memory that is next in line to be
operated on. This register is illustrated and described in Figure 13.11 and Table 13.15. When the DMA
channel is active, this register reads as 0.

31 0

Next Descriptor Address I

Figure 13.11 Next Descriptor Address Field

Bits Field Name Description

31:0 Next Descriptor Address | Quad-word boundary physical address pointer points
to the next descriptor in the chain of descriptors

Table 13.15 Next Descriptor Address Field Description

Status Register

Each descriptor of 4 words contains a status register that is subdivided into 11 fields, which are illus-
trated in Figure 13.12 and described in Table 13.16. This register is internally updated after each DMA read
transfer. However, the register can only be accessed by software when the DMA channel is idle. When the
DMA channel is active, this register reads as 0.

31 30 29 28 27 26 2524 23 22 21 20 16 15 0

DMAOwn | ErrDesOwn | ErrBusTO |Last Desc| DMADNInt | InDeSrc | InDeDst | SrcEnd | DstEnd | Reserved BlockSize

Figure 13.12 Status Register Fields

Bits :;T‘I‘de Description I\;‘;:Lael
31 DMAOwn | DMA is Owner 0
Value | Description
1 DMA controller owns the current descriptor
0 The processor owns the current descriptor

Table 13.16 Status Register (Part 1 of 3)

79RC32334/332 User Reference Manual 13 - 20 __ June 4. 2002 1.

DMA Controllers Status Register

Notes . Field L Initial
Bits Description
Name Value
30 ErrDes- Error On Descriptor Ownership (descriptor under flow) 0
Own If DMA does not own the current descriptor and the previous descriptor is

not the last one, then this error bit is set in this register, but it is not writ-
ten back to the descriptor in memory.

1 - Error on the descriptor ownership

0 - No Error

29 ErrBusTO | Error due to Bus Error or Timeout 0
If a bus error or timeout occurs during a descriptor fetch, during a DMA
transaction, or during a descriptor write back, then this error bit is set.
This register is not written back to the descriptor in memory.

Note that errors (for example, to undecoded memory space) during reads
are always reported, but errors during writes may not be reported, espe-
cially in cases where the write occurs to a write buffer (FIFO). For exam-
ple, PCI Master Write errors may not necessarily report an error to DMA,
but will report a PCI Interface Master Abort error.

Value | Description

1 Bus error or bus timeout
0 No error
28 LastDesc | Last valid data descriptor 0

This field indicates whether or not the descriptor is the last descriptor in
the list of descriptors. If LastDesc is set and the next descriptor's
DMAOwn bit is not set, the DMA channel terminates normally. If Last-
Desc is not set and the next descriptor's DMAOwn bit is not set, the
ErrDesOwn Descriptor Ownership Error status bit will be set. If the next
descriptor's DMAOwn bit is set, the LastDesc bit is ignored.

Value | Description

1 Is the last descriptor
0 Is not the last descriptor
27 DMADnInt | Assert DMA Done Interrupt 0

This field generates an interrupt after all the transactions associated with
the current descriptor are done.

Value Description

1 Generate interrupt

0 Do not generate interrupt

26:25 InDeSrc Increment/Decrement Source Memory 0

Value | Description
11 Reserved
10 Constant
01 Decrement
00 Increment

Table 13.16 Status Register (Part 2 of 3)

79RC32334/332 User Reference Manual 13- 21 __ June 4. 2002 1.

DMA Controllers Timing Diagrams

Notes . Field . Initial
Bits Description
Name Value
24:23 InDeDst Increment/Decrement Destination Memory 00
Value Description
11 Reserved
10 Constant
01 Decrement
00 Increment
22 SrcEnd Source Endianness 0

This field specifies endianness of the source/data/part/device. PCI DMA
has endianness controlled via the PCI Bridge and will always swap PCI
from Little-endian to Big-endian.

Value Description
1 Big Endian
0 Little Endian
21 DstEnd Destination Endianness 0

This field specifies endianness of the destination part/device. PCI DMA
has endianness controlled via the PCI Bridge.

Value Description

1 Big Endian

0 Little Endian
20:16 Reserved 0
15:.0 BlockSize | Block Size 0

This field specifies the number of bytes to be transferred in the current
transaction descriptor. This field is internally updated after each DMA
write transfer. However, the field can only be accessed by software when
the DMA channel is idle. When the DMA channel is active, this field
reads as 0. The value ‘0’ is reserved and should not ordinarily be written
to this field/descriptor if the descriptor is intended for an actual transfer.
The value ‘0’ will transfer 4 bytes rather than a zero length transfer of 0
bytes.

Table 13.16 Status Register (Part 3 of 3)

Timing Diagrams

Figure 13.13 illustrates an entire DMA transaction transferring 2 words of memory to another memory
location. The transaction begins with a bus request/grant assertion. Then a 4-word burst read of the 1st
descriptor is fetched. The bus request/grant is de-asserted. At this time, another DMA channel or the
Controller could take over the system. Note that the Bus Turnaround after the descriptor fetch is hardcoded
to 1.0 clock.

Another bus request/grant assertion occurs. Then the DMA source read occurs, in this case 1 word.
After the DMA read, Bus Turnaround idle cycles occur. Then the DMA destination write occurs, in this case
1 word. Another bus request/grant de-assertion occurs. At this time, another DMA channel or the Controller
could take over the system bus. In cases were the length of the transaction and the burst size allow, a burst
read and burst write may occur at this step.

Another bus request/grant assertion occurs. The DMA read/write pair repeats.

79RC32334/332 User Reference Manual 13 -22 __ June 4. 2002 1.

DMA Controllers Timing Diagrams

Notes Another bus request/grant assertion occurs. In this case, the length of the DMA transfer is only 2 words,
so the DMA is complete. If more words were to be transferred, DMA would continue to loop through the
DMA read/write sequence until the transfer was complete. Since DMA has completed, a status writeback of
1 word occurs, writing 1 word back to the descriptor. Another bus request/grant de-assertion occurs. At this
time, another DMA channel or the Controller could take over the system.

Another bus request/grant assertion occurs. Even if the current descriptor is the last valid descriptor, one
more “dummy” descriptor burst read fetch occurs in order to support descriptor memory buffer underflow
algorithms. Another bus request/grant e-assertion occurs. At this time, another DMA channel or the
Controller could take over the system bus.

§ « 8 & s g §

5 - - - — IS 5
o =] o o
g S 2 &« 7 5
5 T o« 2 T o« 2 2 5
2 2|0 E £ |2lo |El S |2 & |2 2 g
= |l @ 2|2 o 2 (2| & |Z = Z
2 < || € || < €] € o] & o 2 o
@ 2| El =12l 5l =2 |2] = |a @ o
o O o |al & |[ola |al o |Oo] o (@)] (@)
cpu_masterclk
mem_data[31:0] 8 E,l, 1234 01284500 E, 345 01284504 1853 DO0P0
(internal cpu_int_n[3]) \

mem_addr[25:2]<<2 | 0000¥ X)()(40 00000% 400100 X 400 000X_400104 X400 00000 400K 0000¥ 4X X X 40 004000

mem_cs_n[0] [L i L i I L]
mem_oe_n / \/ \/]
mem_we_n[3:0] b1111 X 1111 XbK b1111 XbX b1111 |
cpudtrn [V [T H 1| N H N [T
mem_245_oe_n / _/___/ _/_ _/ _]

mem_wait_n

Figure 13.13 Two Word SRAM to SRAM Access by DMA

79RC32334/332 User Reference Manual 13 -23 __ June 4. 2002 1.

DMA Controllers Timing Diagrams

Notes

79RC32334/332 User Reference Manual 13-24 - dume 4. 2002 .

Chapter 14

Expansion Interrupt

Controller
®
Notes Introduction

The RC32334 Expansion Interrupt Controller provides the logic for software to process the overall
system interrupts generated by the RC32334, and it adds to the circuitry and control already provided by
the RC32300's CPU Core Coprocessor 0 (CP0) registers. The RC32334 Expansion Interrupt Controller
registers each system interrupt and provides the pending status, which can be used to automatically
generate a hardware interrupt to the CPU core via the individual mask bits for each interrupt. These mask
bits enable software to allow/disallow each individual interrupt and to propagate or not propagate to the
overall interrupt.

The pending interrupt status can also be optionally set or cleared by a direct software write. Also, for
software convenience, a masked write to the Interrupt Clear register allows a per bit clearing of pending
interrupts. In addition to the CPU interrupt generation, a dedicated register for PCI interrupt generation is
provided. The same software interface is provided so that interrupts are steered to generate a hardware
interrupt on the pci_inta_n (pci_gnt_n[2]) pin, when PCl is in the satellite mode.

Features
5 Combines all interrupts into a single CPU interrupt
5 Combines all CPU- to- PCI mailbox interrupts into a single PCI interrupt
. Pending Register Bit for each interrupt
D Mask Register Bit for each interrupt
5 Software Clear Register for clear per bit writes
Block Diagram
The Expansion Interrupt Controller diagram is shown in Figure 14.1 and the Group/Bit-Slice diagram is
shown in Figure 14.2
| IP_BUS A
datain[3L:0] v dateout[31:0]
IP SLAVE INTERFACE
slave_dataout[31:0] A slave_datain[31:0]
data in[] data__out[]
DATA MUX
INTERRUPT-
@»| giTSLICEO
[4
o
INTERRUPT-
P> BIT SLICEX
INTERRUPT_BLOCK
INTERRUPT_BLOCK_WITH_IP
INTERRUPT _IN[] A INT_N[3] v
Figure 14.1 Expansion Interrupt Controller Block Diagram
79RC32334/332 User Reference Manual 14 -1 W, DAtaShest 2leom

Expansion Interrupt Controller Operational Overview

Notes
data in[] data_out[]

A

AND/OR GATE \

MASK_REG -

PENDING REG/
CLEARREG [P

INTERRUPT BIT SLICE A

INTERRUPT IN_N[] | INTERRUPT oUT N Y

Figure 14.2 Expansion Interrupt Block Diagram Group/Bit-Slice

Operational Overview

The Expansion Interrupt Controller extends the RC32300’s CPU Core CPO interrupt control by collating
the RC32334 generated interrupts into a single CPU interrupt. When a general purpose interrupt is
received, the Interrupt Service Routine (ISR) first saves CPU registers, checks its Cause Register and then
checks its Pending Interrupt Register. If the pending interrupt is from the on-chip peripheral modules, then
the ISR checks the Expansion Interrupt Controller Pending Interrupt Register. After treating/noting the inter-
rupt condition, the ISR resets the pending interrupt by writing to the corresponding bit in the Expansion
Interrupt Clear Register. The ISR can then exit by restoring the CPU registers and executing an RFE
instruction.

Interrupts can be independently masked by the Expansion Interrupt Mask Register. When an ISR is first
called, the general RC32334 CPU CPOQ Global Interrupt Enable bit is disabled. The ISR can then implement
priority interrupts by first changing the RC32334 Expansion Interrupt Mask bits accordingly and re-enabling
the RC32334 CPU CPO Global Interrupt Enable bit.

Device specific interrupt conditions are discussed in the chapter appropriate for the device. For more
information on bus errors and their causes, see Chapter 8, RC32334 Internal Bus; for PCI, see Chapter 12,
PCI Interface Controller; DMA interrupts are discussed in Chapter 13, DMA Controllers; I/O causes and
handling options in Chapter 15, Programmable 1/O (PIO) Controller; Timer conditions and causes in
Chapter 16, Timer Controller; UART conditions are defined in Chapter 17, UART Controller; SPI conditions
are defined in Chapter 18, Serial Peripheral Interface.

Signal Definitions

Table 14.1 defines the signals and pins used by the interrupt controller to service and clear both
RC32334 and externally generated interrupts. The internal cpu_int_n[3] signal is used by the majority of the
Expansion Interrupt Pending registers and when the PCI bus writes a “1” to one of the four low order bits in
the PCI_to_CPU mailbox pending register in Group 12. The pci_gnt_n[2] is mode dependent and is used as
either a bus grant signal to an external device or a CPU to PCl interrupt output pin. For more information on
the PCl interface controller, refer to Chapter 12, PCI Interface Controller.

79RC32334/332 User Reference Manual 14 -2 _ June 4. 2002 1.

Expansion Interrupt Controller Registers and Address Mapping

Notes
Pin Type Function

cpu_int_n[3]| Input | CPU Interrupt #3 Negated
This active-low signal is an interrupt indication to the CPU from RC32334'’s Interrupt Controller.
Note: This signal is internally hooked up to the CPU’s interrupt 3.

pci_gnt_n[2] | Output | PCI Bus Grant #2 Negated. Recommend external pull-up resistor.

In Host mode, this active-low signal is an output indicating a grant to an external device. In Sat-
ellite mode, pci_gnt_n[2] is used as the pci_inta_n output pin.

Note: In host mode, cpu_int_n[1] on the RC32334 can be used for a pci_inta_n input and
pci_int[d:c:b]_n can use cpu_int_n[5:4:2] on the RC32334 Bus Interface. Interrupts are gener-
ated from the Expansion Interrupt Controller's Group 12.

Table 14.1 Interrupt Signal Pins and Definitions

Registers and Address Mapping

As shown in Table 14.2, each group’s interrupt conditions are managed through three registers. These
register functions are the same from group to group; however, the functions performed by the specific inter-
rupt are type-specific. Group ‘0’ (refer to Table 14.20) is a special set used as a starting point to determine
which group to service. Each interrupt indicated in group ‘0’ is also included in groups 1 through 14. The
address mapping for groups 1 through 14 is provided in Tables 14.3 through 14.16.

The functional descriptions of the Interrupt Pending, Interrupt Mask, and Interrupt Clear registers are
shown in Table 14.17, Table 14.18, and Table 14.19, respectively. The fields of each register are illustrated
in Figures 14.3 through 14.5.

Base Address Register Function Offset Effective
Group 0 Address | Address Group 0
1800_0500 Expansion Interrupt Pending Register 0 00 Base + Offset
Expansion Interrupt Mask Register 0 04
Expansion Interrupt Clear Register 0 08

Table 14.2 Expansion Interrupt Register Group 0 Address Map

Base Address Register Function Offset Effective
Group 1 Address | Address Group 1
1800_0510 Bus Error Interrupt Pending Register 1 00 Base + Offset
Bus Error Interrupt Mask Register 1 04
Bus Error Interrupt Clear Register 1 08

Table 14.3 Bus Error Register Group 1 Address Map

Base Address Register Function Offset Effective
Group 2 Address | Address Group 2
1800_0520 PIO Low Interrupt Pending Register 2 00 Base + Offset
PIO Low Interrupt Mask Register 2 04
PIO Low Interrupt Clear Register 2 08

Table 14.4 PIO Low Register Group 2 Address Map

79RC32334/332 User Reference Manual 14 -3 _ June 4. 2002 1.

Expansion Interrupt Controller

Notes

79RC32334/332 User Reference Manual 14 -4 _ June 4. 2002 1.

Registers and Address Mapping
Base Address Register Function Offset Effective
Group 3 Address | Address Group 3
1800_0530 PIO High Interrupt Pending Register 3 00 Base + Offset
PIO High Interrupt Mask Register 3 04
PIO High Interrupt Clear Register 3 08
Table 14.5 PIO High Register Group 3 Address Map
Base Address Register Function Offset Effective
Group 4 Address | Address Group 4
1800_0540 Timer Rollover Interrupt Pending Register 4 00 Base + Offset
Timer Rollover Interrupt Mask Register 4 04
Timer Rollover Interrupt Clear Register 4 08
Table 14.6 Timer Rollover Interrupt Register Group 4 Address Map
Base Address Register Function Offset Effective
Group 5 Address | Address Group 5
1800_0550 UART 0 Interrupt Pending Register 5 00 Base + Offset
UART 0 Interrupt Mask Register 5 04
UART 0 Interrupt Clear Register 5 08
Table 14.7 UART 0 Interrupt Register Group 5 Address Map
Base Address Register Function Offset Effective Address
Group 6 Address Group 6
1800_0560 UART 1 Interrupt Pending Register 6 00 Base + Offset
UART 1 Interrupt Mask Register 6 04
UART 1 Interrupt Clear Register 6 08
Table 14.8 UART 1 Interrupt Register Group 6 Address Map
Base Address Register Function Offset Effective Address
Group 7 Address Group 7
1800_0570 DMA 0 Interrupt Pending Register 7 00 Base + Offset
DMA 0 Interrupt Mask Register 7 04
DMA 0 Interrupt Clear Register 7 08

Table 14.9 DMA Channel 0 Register Group 7 Address Map

Base Address Register Function Offset Effective
Group 8 Address | Address Group 8
1800_0580 DMA 1 Interrupt Pending Register 8 00 Base + Offset
DMA 1 Interrupt Mask Register 8 04
DMA 1 Interrupt Clear Register 8 08

Table 14.10 DMA Channel 1 Register Group 8 Address Map

Expansion Interrupt Controller

Registers and Address Mapping

Notes

79RC32334/332 User Reference Manual 14 -5 _ June 4. 2002 1.

Base Address Register Function Offset Effective
Group 9 Address | Address Group 9
1800_0590 DMA 2 Interrupt Pending Register 9 00 Base + Offset
DMA 2 Interrupt Mask Register 9 04
DMA 2 Interrupt Clear Register 9 08
Table 14.11 DMA Channel 2 Register Group 9 Address Map
Base Address Register Function Offset Effective Address
Group 10 Address Group 10
1800_05A0 DMA 3 Interrupt Pending Register 10 00 Base + Offset
DMA 3 Interrupt Mask Register 10 04
DMA 3 Interrupt Clear Register 10 08
Table 14.12 DMA Channel 3 Register Group 10 Address Map
Base Address Register Function Offset | Effective Address
Group 11 Address Group 11
1800_05B0 PCI Controller Interrupt Pending Register 11 00 Base + Offset
PCI Controller Interrupt Mask Register 11 04
PCI Controller Interrupt Clear Register 11 08
Table 14.13 PCI Controller Interrupt Register Group 11 Address Map
Base Address Register Function Offset | Effective Address
Group 12 Address Group 12
1800_05C0 External Interrupt Pending Register 12 00 Base + Offset
External Interrupt Mask Register 12 04
External Interrupt Clear Register 12 08
Table 14.14 External Interrupt Register Group 12 Address Map
Base Address Register Function Offset | Effective Address
Group 13 Address Group 13
1800_05D0 PCl to CPU Interrupt Pending Register 13 00 Base + Offset
PCl to CPU Interrupt Mask Register 13 04
PCl to CPU Interrupt Clear Register 13 08
Table 14.15 PCl to CPU Interrupt Register Group 13 Address Map
Base Address Register Function Offset | Effective Address
Group 14 Address Group 14
1800_05EQ SP! Interrupt Pending Register 14 00 Base + Offset
SP!I Interrupt Mask Register 14 04
SP!I Interrupt Clear Register 14 08

Table 14.16 SPI Interrupt Register Group 14 Address Map

Expansion Interrupt Controller Interrupt Pending Register

Notes

79RC32334/332 User Reference Manual 14 -6 _ June 4. 2002 1.

Interrupt Pending Register

Note that a write to any of the Pending Registers, with a Bit Field set, will set that particular Pending bit
until cleared by an appropriate write to the Interrupt Clear Register. This allows software debug to test an
Interrupt Service Routine (ISR), without generating the actual interrupt condition which often depends on an

infrequent external condition.

31 0
Interrupt Pending I
32

Figure 14.3 Interrupt Pending Register Fields

Bits | Field Name Description

31:0 Pending Interrupt | Internal interrupts are registered on each rising clock edge, active low,
and remain low for at least one clock cycle

1 = Interrupt pending

0 = Interrupt not pending

Table 14.17 Interrupt Pending Field Description

Interrupt Mask Register

Note that by default, RC32300 CPU core Interrupt Mask bits are set to allow interrupts but are disabled
by the global enable bit being disabled by default. In contrast, RC32334 Interrupt Masks are un-set to
disallow interrupts by default, in addition to having the RC32300 CPU core global enable bit disabled.

31 0

Interrupt Mask I

Figure 14.4 Interrupt Mask Register

Bits | Field Name Description
31:0 Interrupt Clear 1 = Interrupt enabled/allowed
0 = Interrupt disabled/disallowed (default)

Table 14.18 Interrupt Mask Register

Interrupt Clear Register

The Interrupt Clear Register is a write only register that clears the pending interrupt bit. A masked write
to the Interrupt Clear register allows a per bit clearing of all pending interrupts.

31 0

Interrupt Clear I

32

Figure 14.5 Interrupt Clear Register Field

Bits | Field Name Description

31:0 Interrupt Mask 1 = Clear pending bit
0 = Leave pending bit unchanged (default)

Table 14.19 Interrupt Clear Register Field Descriptions

Expansion Interrupt Controller Register Group Settings

Notes Register Group Settings

Register Group 0 Settings
Group ‘0’ is a special set of registers used as a starting point to determine which group to service. Each
interrupt indicated in group ‘0’ is also included in groups 1 through 14.

Bit Register Group 0 Expansion Register Setting
14 Interrupt Controller[14] Indicates that the group indicated has at
13 Interrupt Controller[13] least one active, unmasked interrupt source
12 Interrupt Controller[12]

1 Interrupt Controller[11]
10 Interrupt Controller[10]
09 Interrupt Controller[9]
08 Interrupt Controller[8]
07 Interrupt Controller(7]
06 Interrupt Controller[6]
05 Interrupt Controller{5]
04 Interrupt Controller[4]
03 Interrupt Controller[3]
02 Interrupt Controller[2]
01 Interrupt Controller[1]

Table 14.20 Group 0 Register Settings
Register Group 1 Settings

Bit Register Group 1 Expansion Register Setting
13:01 Reserved. Must be written as ‘0. Returns ‘0’ when read.
00 Bus Error “1” if Bus Error (Group 1) bits are set

Table 14.21 Group 1 (Bus Error) Register Settings

Register Group 2 Settings
Note: Only PIO pins 10:0 have a direct active low interrupt connection.

Bit Register Group 2 Expansion Register Setting

1 PIO[10] is low “1”if any of Parallel I/0 (Group 2) bits are set
10 PIO[9] is low
09 PIO[8] is low
08 PIO[7] is low
07 PIO[6] is low
06 PIO[5] is low
05 PIO[4] is low
04 PIO[3] is low
03 PIO[2] is low
02 Reserved
01 PIO[1] is low
00 PIO[0] is low
Table 14.22 Group 2 (PIO Low) Register Settings

79RC32334/332 User Reference Manual 14 -7 _ June 4. 2002 1.

Register Group Settings

Expansion Interrupt Controller

Notes Register Group 3 Settings

Note: Only PIO pins 6:0 have a direct active high interrupt connection.
Bit Register Group 3 Expansion Register Setting
07 PIO[6] is high “1” if any of PIO High (Group 3) bits are set
06 PIO[5] is high
05 PIO[4] is high
04 PIO[3] is high
03 PIO[2] is high
02 Reserved
01 PIO[1] is high
00 PIO[0] is high

Table 14.23 Group 3 (PIO High) Register Settings

Register Group 4 Settings

Bit

Register Group 4

Expansion Register Setting

07

Timer7 Rollover Interrupt for ColdReset

“1” if any of the Timer Rollover Interrupt

06

Timer6 Rollover Interrupt for DramRefresh

(Group 4) bits are set

05

Timer5 Rollover Interrupt for IP BusTimeout (BusError)

04

Timer4 Rollover Interrupt for CPU BusTimeout (BusError)

03

Timer3 Rollover Interrupt for Watchdog (uses ColdReset_n

instead of Reset_n)

02

Timer2 Rollover Interrupt

01

Timer1 Rollover Interrupt

00

Timer0 Rollover Interrupt

79RC32334/332 User Reference Manual 14 -8 _ June 4. 2002 1.

Table 14.24 Group 4 (Timer Rollover Interrupt) Register Settings

Register Group 5 Settings

Bit Register Group 5 Expansion Register Setting
02 UARTO Interrupt 2 RxRdy “1” if any of the UARTO (Group 5) bits are
01 | UARTO Interrupt 1 TxRdy set
00 UARTO Interrupt 0 1IR(0)

Table 14.25 Group 5 (UART 0 Interrupt) Register Settings

Register Group 6 Settings

Bit Register Group 6 Expansion Register Setting
02 UART1 Interrupt 2 RxRdy “1” if any of the UART1 (Group 6) bits are set
01 UART1 Interrupt 1 TxRdy

00 UART1 Interrupt 0 1IR(0)

Table 14.26 Group 6 (UART 1 Interrupt) Register Settings

Expansion Interrupt Controller

Notes

79RC32334/332 User Reference Manual 14 -9 _ June 4. 2002 1.

Register Group 7 Settings

Register Group Settings

Bit Register Group 7

Expansion Register Setting

04 | DMA ChO DMA Clear Interrupt

03 | DMA Ch0 DMA Transaction Complete

02 | DMA ChO Descriptor Not Owned Error Interrupt

01 | DMA Ch0 End Too Early Error Interrupt

00 | DMA Ch0 Done Interrupt

“1” if any of the DMA ChO Interrupt 0
(Group 7) bits are set

Table 14.27 Group 7 (DMA Memory2l/O Interrupt 0) Register Settings

Register Group 8 Settings

Bit Register Group 8

Expansion Register Setting

04 DMA Ch1 DMA Clear Interrupt

“1” if any of the DMA Ch1 Interrupt 1

03 | DMA Ch1 DMA Transaction Complete

(Group 8) bits are set

02 | DMA Ch1 Descriptor Not Owned Error Interrupt

01 DMA Ch1 End Too Early Error Interrupt

00 | DMA Ch1 Done Interrupt

Table 14.28 Group 8 (DMA Memory2IO Interrupt 1) Register Settings

Register Group 9 Settings

Bit Register Group 9

Expansion Register Setting

04 | DMA Ch2 DMA Clear Interrupt

“1” if any of the DMA Ch2 Interrupt 0

03 | DMA Ch2 DMA Transaction Complete

(Group 9) bits are set

02 | DMA Ch2 Descriptor Not Owned Error Interrupt

01 DMA Ch2 End Too Early Error Interrupt

00 | DMA Ch2 Done Interrupt

Table 14.29 Group 9 (DMA PCI Master Interrupt 0) Register Settings

Register Group 10 Settings

Bit Register Group 10

Expansion Register Setting

04 | DMA Ch3 DMA Clear Interrupt

“1” if any of the DMA Ch3 Interrupt 1

03 | DMA Ch3 DMA Transaction Complete

(Group 10) bits are set

02 | DMA Ch3 Descriptor Not Owned Error Interrupt

01 | DMA Ch3 End Too Early Error Interrupt

00 | DMA Ch3 Done Interrupt

Table 14.30 Group 10 (DMA PCI Master Interrupt 1) Register Settings

Register Group 11 Settings

Group 11 pending interrupts indicate a PCI controller error condition as detailed in Table 12.10 in the
PCI Controller Interrupt Pending Register 11 section of Chapter 12, PCI Interface Controller.

Expansion Interrupt Controller Register Group Settings

Notes Bit Register Group 11 Expansion Register Setting

03 | PCI Controller Interrupt 3 “1” if any of the PCI Controller (Group 11) bits are set
02 | PCI Controller Interrupt 2
01 | PCI Controller Interrupt 1
00 | PCI Controller Interrupt 0

Table 14.31 Group 11 (PCI Controller) Register Settings

Register Group 12 Settings

When PCl is in the Satellite Mode, Pending Interrupts in Register 12 affect the PCI Interrupt pin. This
register does not affect the internal cpu_int_n[3] signal directly. The output always goes to bit 12 of the
Interrupt0 Register, which then may be masked/unmasked to cause the internal cpu_int_n[3] signal to
assert.

Note: The pci_interrupt_n (pci_gnt_n[2]) signal is internally synchronized with the pci_clk signal
twice. And as such the output propagation is relative to the rising edge of pci_clk instead of
cpu_masterclk.

Bit Register Group 12 Expansion Register Setting

15 PCI CPU2PCI Mailbox Interrupt 3 “1” if any of the External Interrupt (Group
14| PCI CPU2PCI Mailbox Interrupt 2 12) bits are set

13 PCI CPU2PCI Mailbox Interrupt 1

12 PCI CPU2PCI Mailbox Interrupt 0

1 DMA MEM2I0 Descriptor Not Owned Error Interrupt 1
10 DMA MEM2I0 End Too Early Error Interrupt 1

09 DMA MEM2I0 Done Interrupt 1

08 DMA MEM2I0 Descriptor Not Owned Error Interrupt 0
07 DMA MEM2I0 End Too Early Error Interrupt 0

06 DMA MEM2I0 Done Interrupt 0

05 | UART1 Interrupt 2!

04 | UART1 Interrupt 1!

03 | UART1 Interrupt 0'

02 UARTO Interrupt 2 “1” if any of the External Interrupt (Group
01 | UARTO Interrupt 1 12) bits are set

00 UARTO Interrupt 0

Table 14.32 Group 12 Register Settings
1 Not in RC32332.
Register Group 13 Settings

Group 13 pending interrupts indicate a PCI controller PCl initiated interrupt to the RC32334 CPU, as
detailed in Chapter 12, Table 12.12.

79RC32334/332 User Reference Manual 14-10 __ June 4. 2002 1.

Expansion Interrupt Controller Timing Diagrams

Notes Bit Register Group 13 Expansion Register Setting

03 | PCIPCI2CPU Mailbox Interrupt 3 “1” if any of the PCI PCI12CPU Mailbox (Group

02 | PCIPCI2CPU Mailbox Interrupt 2| 12) bits are set

01 PCI PCI2CPU Mailbox Interrupt 1

00 PCI PCI2CPU Mailbox Interrupt 0
Table 14.33 Group 13 Register Settings

Register Group 14 Settings

Bit Register Group 14 Expansion Register Setting

00 SPI Interrupt 0 “1” if the SPI (Group 14) bits are set

Table 14.34 Group 14 Register Settings

Timing Diagrams

For the timing of various transactions asserting/de-asserting internal cpu_int_n[3], see Figures 14.6
through 14.9. The timing behaviors of transactions asserting/de-asserting PCI are shown in Figures 14.10
and 14.11. The timing requirements for cpu_int_n[5,4,2,1,0] and cpu_nmi_n are shown in Figure 14.12.

1 2 3 4 5
SU*
=l {HLD
cpu_masterclk \ i ‘ \ " \ \] \ B
dma_ready_n[0]
tP
(internal cpu_int_n[3]), _.{

Figure 14.6 PIO Input Asserting Internal cpu_int_n[3]

1 2 3 4 5

cpu_masterclk ! " \ T

(internal dma cho int[2:0]) 7 X 6 X 7 |
(internal cpu_int_n[3]) _’IIP

Figure 14.7 Internal Condition Asserting Internal cpu_int_n[3] Interrupt

cpu_masterclk —_)‘ \ !‘
(internal write_n) \

(internal pending_reg3[7:0]) 00 X 80 X

—{ Tdo2
\

(internal cpu_int_n([3])

Figure 14.8 Pending Register Write Asserting Internal cpu_int_n[3]

79RC32334/332 User Reference Manual 14 - 11 __ June 4. 2002 1.

Expansion Interrupt Controller Timing Diagrams

Notes
1 2 3 4 5
cpu_masterclk \ ! \ ! ! N AN B
(internal write_n) \ J
(internal pending_reg3[7:0]) 80 X 00 X
—{ Tdoh2
(internal cpu_int_n([3]) /

Figure 14.9 Pending or Clear Register Write De-Asserting Internal cpu_int_n[3] Interrupt

1 2 3 4 5
cpu_masterclk ’ \ \ ¥
(internal write_n) \ L/
(internal interrupt_out_n) TN
pending_reg12[15:0] 0012 X___ 1000 X 1012 |
peick |/ | I/ T /1
(internal int_pci_int_n_syncl) \

(internal int_pci_int_n_sync2) |

—itp .
pci_gnt_n[2] (pci_int_n)
Figure 14.10 Internal Condition Asserting PCI Interrupt
1 2 3 4 o)
cpu_masterclk \ \ \ -
(internal write_n) \ |
pending_reg12[15:0] 2012 X 0012

(internal interrupt_out n) |— |
pci_clk / _\— / _\—_/ I

(internal int_pci_int_n_sync1) /

(internal int_pci_int_n_sync2)

e

pci_gnt_n[2] (pci_int_n) L

Figure 14.11 Pending or Clear Register Write De-Asserting PCI Interrupt

1 2 3

[Tsu9

* [Thid13
O\ | ¥ ‘ N R B
cpu_int_n[5,4,2,1,0], cpu_nmi_n \ / |

N
al

cpu_masterclk \)

Figure 14.12 CPU Interrupts

79RC32334/332 User Reference Manual 14 -12 __ June 4. 2002 1.

Expansion Interrupt Controller RC32334 Interrupt Flow

Notes RC32334 Interrupt Flow

1. Initialize Interrupts

1. Disable CPU CPO Status Register Global Interrupt Enable Bit.

2. Enable CPU CPO Status Register Interrupt Mask Bit 3. (Optionally disable the other seven CPU inter-
rupts.)

3. Enable the appropriate RC32334 Expansion Interrupt Mask Register Bit. (Optionally disable the
other interrupt mask bits.)

4. Clear the appropriate RC32334 Expansion Interrupt Clear Register Bit (for all unmasked interrupt
bits).

5. Enable CPU CPO0 Status Register Global Interrupt Enable Bit.

2. Wait for Interrupt

1. Hardware Interrupt generated by pulsing the appropriate signal/pin low for at least 1.0 clock, either
internally or externally; or by Software writing to the appropriate Pending Interrupt Register Bit.

2. The RC32334 Expansion Interrupt hardware will set the appropriate Expansion Interrupt Pending Bit.
The Pending Bit will remain set until Software clears it.

3. If the appropriate Expansion Interrupt Mask Bit is not set, then no further hardware action occurs,
otherwise an internal interrupt is sent to Expansion Interrupt Register set 0 and to the RC32334
cpu_int_n pin.

4. Theinternal cpu_int_n signal asserts and on a clock by clock basis asserts the internal CPU interrupt
port causing it to assert the CPU CP0Q Cause Register Interrupt Pending Bit 3. The cpu_int_n pin
remains asserted until Software clears the appropriate Expansion Interrupt Pending Bit (or disables
the appropriate Expansion Interrupt Mask bit).

5. Ifthe CPU CPO Status Register Interrupt Mask Bit 3 is enabled, then CPU takes exception and jumps
to Exception Vector. CPU CPO Status Register Global Interrupt Enable Bit is automatically disabled.

3. Software Interrupt Service Routine (ISR)

1. If Software ISR read of CPU CP0 Cause Register Interrupt Pending Bit 3 is set, then continue with
ISR.

2. If Software ISR read of the appropriate RC32334 Expansion Interrupt Pending Register Bit is

3. set, then continue with ISR.

4. Clear the appropriate interrupt source (device dependent, for instance read UART data), causing the
interrupt source to become de-asserted.

5. Clear the appropriate RC32334 Expansion Interrupt Clear Register Bit. If no other non-masked inter-
rupts exist, this will cause the RC32334 pin to de-assert.

6. Either check for more interrupts or return from exception (ERET instruction automatically re-enables
CPU CPO0 Status Register Global Interrupt Enable Bit).

Optional Algorithm for Priority Interrupts

The first Expansion Interrupt Register set 0 combines the interrupt output from each of the other Expan-
sion Interrupt Register sets. If Expansion Register set 0 is used, then the Software ISR can more quickly
find the cause of an expansion interrupt by then jumping directly to the Expansion Interrupt Pending
Register that has a Register set 0 Interrupt Pending bit pending. In this case, after receiving the interrupt, do
the following:

1. Service all the interrupts associated with the Expansion Interrupt Set and clear the original causes.

2. Clear the Interrupt Pending bits using the Expansion Interrupt set’s Interrupt Clear Register.

3. Clear the appropriate Expansion Interrupt Register set 0 entry using Interrupt Clear Register 0.

Optional Algorithm for Non-Prioritized Interrupts

The first Expansion Interrupt Register 0 set can be ignored (masked out) in which case the Software ISR
simply checks each Expansion Interrupt Pending Register in a linear search.

79RC32334/332 User Reference Manual 14 -13 __ June 4. 2002 1.

Expansion Interrupt Controller RC32334 Interrupt Flow

Notes

79RC32334/332 User Reference Manual 14 -14 _ June 4. 2002 .

Programmable 1/0 (P10)
Controller

®
Notes Introduction

The RC32334 provides software programmable 1/0 (PIO) pins, so that unused pins can be used as
general purpose discrete /O pins. As such, if a pin’s function—for example, Timer Output—is not required,
then that pin can be programmed for use as a general purpose PIO pin.

Once programmed to a general purpose function, pins can then be software programmed as inputs or
outputs. When set in the output mode, the pin’s value becomes software programmable. When set to the
input mode, the pins are software readable. This chapter provides the signal descriptions, register mapping,
and programming information needed to use this software programmable feature.

Features
0 167 peripheral pins, reusable as PIO pins
5 Bidirectional pins
Output pins can be programmed hi/low, in parallel
Input pins can be read in parallel.
Overview

The RC32334’s P10 pins are programmable in both the input and output directions. When programming
to the input mode, data from the input pin are read by the RC32300 CPU core as required. In the output
mode, data can also control the output level of the pin at any time. The default state of most pins is input.

PIO pins are multiplexed between peripheral and general purpose use, as shown in the signal definition
tables that follow. As such, PIO pins on unused peripherals can be reused on a system basis for the
following general purpose uses:

U asa parallel port
U asan interrupt input/output from or to another device
U as status input/output from or to another device.

Switching between the four possible modes is accomplished through the following general algorithm:

1. Optional reset initialization by use of external pull-ups/pull-downs.

2. Write the PIO Direction Register bits to be in the input mode.

3. Write the PIO Function Register bits to the desired mode.

4. Write the PIO Direction Register bits to the desired mode.

5. The PIO Data register is ready for reading and writing and the internal peripherals are ready.

1-The RC32332 includes 12 PIO pins.
79RC32334/332 User Reference Manual 15-1 ww . Datashent aenm

Programmable 1/0 (P10) Controller Block Diagram

Notes

Block Diagram
Figure 15.1 shows the PIO block diagram and Figure 15.2 shows the PIO bit-slice block diagram.

IP_BUS
| A
datain[31:0] *

IP SLAVE INTERFACE |
Save dateout[31:0] MAdave datain[31:0]

dataout[31:0]

data_in[] data_out[]

/ DATA MUX \
£ %

PIO_BIT_SLICEO |

PIO BLOCK

PIO BLOCK WITH 1P

PAD_IN_N[], PAD_OUT_N[],
PERIPHERAL_OUT_N[] paD OUT_EN_N[]

PERIPHERAL_IN_N[]

Figure 15.1 PIO Block Diagram

data_in[] data_out[]
I A

PIO_BIT_SLICE *

| DIR_REG

DATA_BIT_REG

gy

| FUNCTION_SEL_REG FYJ

\

PAD_OUT_N[] v
PAD_OUT_EN_N[]

PERIPHERAL_IN_N[]

PAD_IN_N[] PERIPHERAL_OUT_N[]

79RC32334/332 User Reference Manual

Figure 15.2 PIO Block Diagram Bit-Slice

15-2

www NataSheatAll eqm

Programmable 1/0 (P10) Controller Performing Initialization Programming

Notes Performing Initialization Programming

Peripheral Function Input mode: At reset, the Input mode is the default state for most of the pins;
therefore, no additional programming is necessary and the PIO pins are ready for use by the internal
peripheral. However, in the case where the default is set to the Output mode, perform the following steps:

1. Write the PIO Direction register bits to be in the Input mode.

2. The PIO Function bits are already in the Function mode.

3. The PIO pins are ready for use by the internal peripheral.

Peripheral Function Output mode: At reset, some pins may be defaulted to the output mode and are
ready for use by the internal peripheral. However, in the case where the default has been set to the Input
mode, perform the following steps:

1. Optional reset initialization by use of external pull-ups/pull-downs.

2. Write the PIO Direction Register bits to be in the Output mode.

3. The PIO Function Register bits are already in the Function mode.

4. The PIO pins are ready for use by the internal peripheral.

General Purpose Input mode: Program the unused pins for use in the general purpose Input mode
function using the following steps:
1. Write the PIO Function Register bits to the General Purpose mode, so that unused internal peripheral
ports will be internally driven to their de-asserted value.
2. Ifthe pinis an output by default, write the PIO Direction Register bits to be in the Input mode.
3. The PIO Data Register is ready for reading.

General Purpose Output mode: Program unused pins for use in the general purpose output mode
function using the following steps:

1. Initialize optional reset by use of external pull-ups/pull-downs.

2. Write the PIO Function Register bits to be in the General Purpose mode.

3. Write the PIO Direction Register bits to be in the Output mode.

4. The PIO Data Register is ready for writing.

Note 1: Pins that are not in the general purpose output mode automatically mask their respective
Data Register bits from being written.

Note 2: When switching from the input mode to the output mode, the output will initially drive the
value registered by the Data Register, 1 clock previous to the input to output transition.

Signal Definitions

The signals listed in the tables that follow control the Serial Mode Protocol, UART Interface, Timer and
DMA Interface functions. Any active-low signals are noted by an _n. The alternate pin names—including
PIO multiplexed pins—and descriptions are also listed next to the main signal name. For a summary of the
differences between alternate PIO names in the RC32334 and RC32332, refer to Appendix G, Tables G.2
and G.3.

SPI Interface| Type| Alternate Descriptions

Spi_mosi 110 pio[10] SPI Data Output

Serial mode: Output pin from RC32334 as an Input to a Serial Chip for
the Serial data input stream.

PCl satellite mode: Output pin from RC32334 that connects as an
Input to a Serial Chip for the Serial data input stream for loading PCI
Configuration Registers in the RC32334 Reset Initialization Vector PCI
boot mode.

Alternate function: PIO[10]. Defaults to the output direction at reset
time.

Table 15.1 Serial Mode Protocol/Alternate Signal Descriptions (Part 1 of 2)

79RC32334/332 User Reference Manual 15-3 _ June 4. 2002 1.

Programmable 1/0 (P10) Controller

Signal Definitions

Notes SPI Interface| Type| Alternate Descriptions

Spi_miso 110 pio[7] SPI Data Input
Serial mode: Input pin to RC32334 from the Output of a Serial Chip for
the Serial data output stream.
PCl satellite mode: Input pin from RC32334 that connects as an output
to a Serial Chip for the Serial data output stream for loading PCI Config-
uration Registers in the RC32334 Reset Initialization Vector PCI boot
mode.
Defaults to input direction at reset time.
Alternate function: PIO[7].

spi_sck I/0 pio[9] SPI Clock
Serial mode: Output pin for Serial Clock.
PCI satellite mode: Output pin for Serial Clock for loading PCI Configu-
ration Registers in the RC323334 Reset Initialization Vector PCI boot
mode.
Alternate function: PIO[9]. Defaults to the output direction at reset time.|

spi_ss_n 110 pio[8] SPI Chip Select
Output pin selecting the serial protocol device as opposed to the PCI
satellite mode EEPROM device.
Alternate function: PIO[8]. Defaults to the output direction at reset time.

Table 15.1 Serial Mode Protocol/Alternate Signal Descriptions (Part 2 of 2)

16550 UART Interface| Type Aliiernate Descriptions
Signals

uart_rx[0] 110 pio[6] UART Receive Data Bus

uart_rx[1] pio[4] UART mode: Each UART channel receives data on their
respective input pin.

uart_tx[0] 110 pio[5] UART Transmit Data Bus Recommend external pull-up.

uart_tx[1] pio[3] UART mode: Each UART channel sends data on their
respective output pin. Note that these pins default to
inputs at reset time and must be programmed via the PIO
interface before being used as UART outputs.

uart_cts_n[O]1 110 pio[15] UART Transmit Data Bus

uart_dsr_n[O]1 110 pio[14] UART mode: Data bus modem control signal pins for

uart_dtr_n[O]1 110 pio[13] UART channel 0

uart_rts_n[O]1 110 pio[12] PIO mode: These pins are also multiplexed as PIO pins.

' Not in the RC32332.

Table 15.2 UART Interface/Alternate Signal Descriptions

Timer/Counter

Type | Alternate Signal

Description

timer_tc_n[0]’

110 pio[2]

Timer Terminal Count Overflow Negated
Output indicating that the timer has reached its count
compare value and has overflowed back to zero.

1 Not in the RC32332.

79RC32334/332 User Reference Manual 15-4 _ June 4. 2002 1.

Table 15.3 Timer/Alternate Signal Descriptions

Programmable 1/0 (P10) Controller Register Mapping and Definitions

Notes DMA Interface| Type| Alternate Signal Description

dma_ready_n[0] /0 pio[1], dma_done_n[0] | DMA Ready Negated Bus Requires external pull-up.
dma_ready_n[1]1 pio[0], dma_done_n[1]1 Input pin for general purpose DMA channels[1:0] that can
initiate the next data in the current DMA descriptor frame,

dma_done_n[1:0] 110 dma_ready_n[1:0] DMA Done Requires external pull-up.
Input pin for general purpose DMA channels[1:0] that can
terminate the current DMA descriptor frame.

Table 15.4 DMA Interface/Alternate Signal Descriptions
1Not in the RC32332.

PCI Interface | Type | Alternate Signal Description
pci_eeprom_cs 110 pci_gnt_n[1], pio[11] PCI EEPROM Chip Select
pci_gnt_n[1] 110 pci_eeprom_cs, pio[11] | PCI Bus Grant # 1 Negated

Table 15.5 PIO Interface/Alternate Signal Descriptions

Register Mapping and Definitions

Programming PIO pins to be used in the Peripheral Function Input/Output or General Purpose Input/
Output modes is handled through initialization and setup of the PIO Data, PIO Direction Control, and PIO
Function Control registers. The address mapping for each register is listed in Table 15.6. Each register’s
description includes the default value.

Base Address Register Name Offset Address | Effective Address
PIO Data Register 0 00
1800_0600 PIO Direction Control Register 0 04 Base + Offset
PIO Effect Select Control Register 0 08
PIO Data Register 1 00
18000610 PIO Direction Control Register 1 04
PIO Effect Select Control Register 1 08
1800_060C PIO New Feature Register 0 0C
1800_060C PIO New Feature Register 1 1C

Table 15.6 PIO Register Address Map

PIO register set 0 adds alternative PIO usage to the SPI, UART data, timer, and DMA pins.

PIO register set 1 adds alternative PIO usage to the modem control of UART0. Added are:
uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0] pins via PIO register set 1 (starting at physical
address 0x18000610) bits 4:1 respectively. All modem signals default to inputs. Systems may optionally
use external pull-ups or pull-downs to initialize pins that are to be used as outputs.

PIO register set 1 also adds PCI EEPROM writeability to the PCI EEPROM by allowing pci_eeprom_cs
to be controlled from a software bit-blasting driver. The pci_eeprom_cs signal defaults to an output.

PIO Data Register 0

Bits in this register clock data from the pins, if set in the input direction or the special function mode. Bits
can only be written if that bit is in both the output direction and general purpose mode. Figure 15.3 illus-
trates the fields of PIO Data Register 0, and Tables 15.7 and 15.8 describe the fields.

79RC32334/332 User Reference Manual 15-5 _ June 4. 2002 1.

Programmable 1/0 (P10) Controller Register Mapping and Definitions

Notes

31 1 10 9 8 7 6 5 4 3 2 1 0

o) dma_ dma
spi_mosi| spi_sck | spi_ss_n| spi_miso | uart_rx[0] | uart_tx[0] | uart_rx[1] | uart_tx[1] ttlénib] Reserved | r€ady_ | ready_
- n[0] n[1]

pio[7]

pio[10]

pio[8]

pio[6] pio[4]

pio[s]

pio[3]

pio[0]

Figure 15.3 PIO Data Register 0 Fields
Note: timer_tc_n[0], uart_rx[1], and uart_tx[1], shown in Figure 15.3, are not in the RC32332.

Bit Field Description
31:12 | Reserved to 1 Requires 1 to be written in these fields
1 Spi_mosi pio[10]

10 spi.sck pio[9] SPI control functions brought to external pins
9 spi_ss_n pio[8]

8 spi_miso pio[7]

7 uart_rx[0] pio[6]

6 uart_tx[0] pio[5]

5 uart_rx1]' pio[4] | UART data brought to external pins

4 uart_tx[1]" pio[3]

3 timerﬁtcﬁn[O]1 pio[2] | Timer function brought to external pin

2 Reserved to 1 Requires 1 to be written to this field

—_

dma_ready_n[0] pio[1] DMA control functions brought to external pins

0 dma_ready_n[1] pio[0]

Table 15.7 PIO Data Register 0 Field Description
! Not in the RC32332.

Bit Description

31:0 PIO Data Register 0

Value | Description

1 PIO pin is high (default)

0 PIO pin is low

Table 15.8 PIO Data Register 0 High/Low Descriptions
PIO Data Register 1

Bits in this register clock data from the pins, if set in the input direction or the special function mode. Bits
can only be written if that bit is in both the output direction and general purpose mode. Figure 15.4 illus-
trates the fields of PIO Data Register 1, and Tables 15.9 and 15.10 describe the fields.

31 4 3 2 1 0
Reserved uart_cts_n[0] uart_dsr_n[0] uart_dtr_n[0] uart_rts_n[0] | pci_eeprom_cs
pio[15] pio[14] pio[13] pio[12] pio[11]

Figure 15.4 PIO Data Register 1 Fields

79RC32334/332 User Reference Manual 15-6 _ June 4. 2002 1.

Programmable 1/0 (P10) Controller Register Mapping and Definitions

Notes

Note: uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], and uart_rts_n[0], shown in Figure 15.4, are
not in the RC32332.

Bit Field Description

31:5 | Reserved to 1 Requires 1 to be written in these fields

uart_cts_n[0]" pio[15]
uart_dsr_n[0]' pio[14]
uart_dtr_n[0]' pio[13]
uartrts_n[0]' pio[12]

UART modem control functions brought to external pins

N| W &>

—_

0 pci_eeprom_cs pio[11] | PCI EEPROM chip select brought to external pin

Table 15.9 PIO Data Register 1 Field Description
! Not in the RC32332.

Bit Description

31:.0 PIO Data Register 1
Value | Description

1 PIO pin is high (default)

0 PIO pin is low

Table 15.10 PIO Data Register 1 High/Low Descriptions

PIO Direction Register 0

This 32-bit register programs the Input/Output modes for both the general purpose and special function
modes. When programmed to the input mode, data from the input pin can be read by the RC32300 CPU
core as required. When in the output mode, data can also control the output level of the pin at any time.
Figure 15.5 illustrates the fields of PIO Direction Register 0, and Tables 15.11 and 15.12 describe the fields.

31 11 10 9 8 7 6 5 4 3 2 1 0

A . dma_ dma
i i i i Spi_miso timer =
spi_mosi| spi_sck | spi_ss_n | SPL uart_rx[0] | uart_tx[0] | uart_rx[1] | uart_tx[1] e Reserved | ready_ ready_

pio[7] pio[6] pio[4]

pio[8]

pio[5] pio[3]

pio[10]

Figure 15.5 PIO Direction Register 0 Fields
Note: timer_tc-n[0], uart_rx[1], and uart_tx[1], shown in Figure 15.5, are not in the RC32332.

Bit Field Description

31:12 | Reserved to 0 Requires 0 to be written in these fields

1" Spi_mosi pio[10]

10 Spi_sck piofd] SPI control functions brought to external pins

9 spi_ss_n pio[8]

8 spi_miso pio[7]

Table 15.11 PIO Function Direction Register 0 Field Description (Part 1 of 2)

79RC32334/332 User Reference Manual 15-7

www NataGhestdl oo

Programmable 1/0 (P10) Controller Register Mapping and Definitions

Notes Bit Field Description
7 uart_rx[0] pio[6]
6 uart_tx[0] pio[5]
5 uart_rx[1]' pio[4] UART data brought to external pins
4 uart_tx[1]’ pio[3]
3 timer_tc_n[O]1 pio[2] Timer function brought to external pin
2 Reserved to 0 Requires 0 to be written in this field
1 dma_ready_n[0] pio[1] DMA control functions brought to external pins
0 dma_ready_n[1] pio[0]

Table 15.11 PIO Function Direction Register 0 Field Description (Part 2 of 2)
! Not in the RC32332.

Bit Description

31:0 PIO Direction Register 0

Value | Description

1 PIO pin is an output (default for pci_eeprom_cs, spi_mosi, spi_sck, spi_cs)

0 PIO pin is an input (default for most pins)

Table 15.12 PIO Direction Register 0 Input/Output Descriptions

PIO Direction Register 1

This 32-bit register programs the Input/Output modes for both the general purpose and special function
modes. When programmed to the input mode, data from the input pin can be read by the RC32300 CPU
core as required. When in the output mode, data can also control the output level of the pin at any time.
Figure 15.6 illustrates the fields of PIO Direction Register 1, and Tables 15.13 and 15.14 describe the fields.

31 4 3 2 1 0
Reserved uart_cts_n[0] uart_dsr_n[0] uart_dtr_n[0] uart_rts_n[0] | pci_eeprom_cs
pio[15] pio[14] pio[13] pio[12] pio[11]

Figure 15.6 PIO Direction Register 1 Fields

Note: uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], and uart_rts_n[0], shown in Figure 15.6, are
not in the RC32332.

79RC32334/332 User Reference Manual 15-8 _ June 4. 2002 1.

Programmable 1/0 (P10) Controller Register Mapping and Definitions

Notes - - —
Bit Field Description
31:5 | Reserved to 0 Requires 0 to be written in these fields
4 |uart_cts_n[0]' pio[15]
1 .
3 uart_dsr_n[0]" pio[t4] UART modem control functions brought to external pins
2 | uart_dtrn[0]' pio[13]
1 |uartrts_n[0]' pio[12]
0 pci_eeprom_cs pio[11] | PCI EEPROM chip select brought to external pin

Table 15.13 PIO Direction Register 1 Field Description
! Not in the RC32332.

Bit Description

31:0 PIO Direction Register 1

Value | Description

1 PIO pin is an output (default for pci_eeprom_cs, spi_mosi, spi_sck, spi_cs)

0 PIO pin is an input (default for most pins)

Table 15.14 PIO Direction Register 1 Input/Output Description

PIO Function Select Register 0

When in the input direction, the pin goes to the general purpose data bit regardless of the value in the
Function Select Field; however, if the Function Select Field is selected, the pin also goes to the internal
module. If the Function Select Field is not selected, then the internal module input is held de-asserted high.
When in the output direction, the pin is generated from either the internal module or the data register,
depending upon the value of the PIO Function Select Bit Field. Figure 15.7 illustrates the fields of PIO Func-
tion Select Register 0, and Tables 15.15 and 15.16 describe the fields.

31 11 10 9 8 7 6 5 4 3 2 1 0

. dma
. .) . " timer. M
spi_mosi| spi_sck | spi_ss_n| spi_miso | uart_rx[0] | uart_tx[0] | uart_rx[1] | uart_tx[1] tcﬁn[f)] Reserved | ready_ ready_

pio[8] | pio[7] piof4]

pio[6]

pio[10] pio[5] pio[3]

Figure 15.7 PIO Function Select Register 0 Fields
Note: timer_tc_n[0], uart_rx[1], and uart_tx[1], shown in Figure 15.7, are not in the RC32332.

Bit Field Description
31:12 | Reserved to 1 Requires 1 to be written in these fields
1" spi_mosi pio[10]
10 spi_sck piof3] SPI control functions brought to external pins
9 spi_ss_n pio[8]
8 Spi_miso pio[7]

Table 15.15 PIO Function Select Register 0 Field Description (Part 1 of 2)

79RC32334/332 User Reference Manual 15-9 _ June 4. 2002 1.

Programmable 1/0 (P10) Controller Register Mapping and Definitions

Notes Bit Field Description
7 uart_rx[0] pio[6]
6 uart_tx[0] pio[5]
5 uart_rx[1]' pio[4] | UART data brought to external pins
4 uart_tx[1]" pio[3]
3 timer_tc_n[O]1 pio[2] | Timer function brought to external pin
2 Reserved to 1 Requires 1 to be written in this field
1 dma_ready_n[0] pio[1] DMA control functions brought to external pins
0 dma_ready_n[1] pio[0]

Table 15.15 PIO Function Select Register 0 Field Description (Part 2 of 2)
! Not in the RC32332.

Bit Description

31:0 PIO Function Select Register 0

Value | Description

1 PIO pin is a special function pin connected to/from an internal module (default)

0 PIO pin is a general purpose pin

Table 15.16 PIO Special Function/General Purpose Select Register 0 Description

PIO Function Select Register 1

When in the input direction, the pin goes to the general purpose data bit regardless of the value in the
Function Select Field; however, if the Function Select Field is selected, the pin also goes to the internal
module. If the Function Select Field is not selected, then the internal module input is held de-asserted high.
When in the output direction, the pin is generated from either the internal module or the data register,
depending upon the value of the PIO Function Select Bit Field. Figure 15.7 illustrates the fields of the PIO
Function Select Register 1, and Tables 15.17 and 15.18 describe the fields.

31 4 3 2 1 0
Reserved uart_cts_n[0] uart_dsr_n[0] uart_dtr_n[0] uart_rts_n[0] | pci_eeprom_cs
pio[15] pio[14] pio[13] pio[12] pio[11]

Figure 15.8 PIO Function Select Register 1 Fields

Note: uart_cts_n[0], uart_dsr_n[0], uart_dtr_n[0], and uart_rts_n[0], shown in Figure 15.8, are
not in the RC32332.

79RC32334/332 User Reference Manual 15-10 __ June 4. 2002 1.

Programmable 1/0 (P10) Controller

Notes

Register Mapping and Definitions

Bit Field Description

31:5 | Reserved to 1 Requires 1 to be written in these fields

4 | uart_cts_n[0]' pio[15]

3 uart_dsr_n[0]1 pio[14] UART modem control functions brought to external pins
2 |uart_dtrn[0]' pio[13]

1 |uartrts_n[0]' pio[12]

0 pci_eeprom_cs pio[11] | PCI EEPROM chip select brought to external pin

Table 15.17 PIO Function Select Register 1 Field Description
! Not in the RC32332.

Bit Description
310 PIO Function Select Register 1
Value | Description
1 PIO pin is a special function pin connected to/from an internal module (default)
0 PIO pin is a general purpose pin

Table 15.18 PIO Function Select Register 1 Special Function/General Purpose Description

New Feature Register
New Feature Register 0

New Feature Register 1

When the New Feature field is selected, the entire group of pins associated with PIO Register Set 0
becomes synchronized with double register sampling using the system clock.

When the New Feature field is selected, the entire group of pins associated with PIO Register Set 1
becomes synchronized with double register sampling using the system clock.

31

Reserved New feature mode I

Figure 15.9 PIO New Feature Register Fields

Bits

Field Name

Description

31:1

Reserved to 0

Requires 0 to be written in these fields

New Feature Mode

Value Description

1 New Feature mode: Adds double registering syn-
chronization on external inputs.

0 Backward compatibility mode

79RC32334/332 User Reference Manual 15 - 11 __ June 4. 2002 1.

Table 15.19 PIO New Feature Register Field Description

Timing Diagrams

Programmable 1/0 (P10) Controller

Notes Timing Diagrams
In Figure 15.10 and Figure 15.11, timing for pio[7:6] is shown. Note that the timing for all other PIO

signals, pio[15:8] and pio[5:0], is similar when the appropriate PIO Data Register and its bit fields are read

or written.
1 2 3] 4 5
[Tsu7 Tsu7
™ Tsy7 Tsu7
[Thid9 Thid9
[Thid9 Thid9
cpu_masterclk \ !] ! ’ F
(internal P10 Data Register 0) FFF | | E7F l | FFF |
pio[7:6] 3 0 0 3 3 |

Figure 15.10 PIO Input, Affecting Data Register

cpu_masterclk "

(internal write_n) —\—J
|

E7F

0

(internal P10 Data Register 0) FFF X
F|Td016, Tdoh7{
X

pio[7:6] 3

Figure 15.11 Data Register Write, Affecting PO Output

79RC32334/332 User Reference Manual 15-12 __ June 4. 2002 1.

Chapter 16

Timer Controller

®

Introduction

In addition to the timer on the RC32300 CPU core, the RC32334 has eight on-chip timers: Three general
purpose timers and five timers that are optionally dedicated to Watchdog, CPU bus timeout, IP bus timeout,
SDRAM refresh, and WarmReset. These eight timers are different and in addition to the timer available on
the RC32300 CPU core as part of CP0. These eight system timers count on each system clock beginning
from zero, timing out after reaching a programmable compare value and resetting to zero automatically.
Uses for these timers include real-time clock, cascaded real-time clock and time-slice clock.

Features

3 general purpose 32-bit timers

5 8/16-bit peripheral dedicated timers available for general reuse
Programmable compare/count roll over value

Selectable count mode versus input gate mode for timer0 and timer1
Timer 0 internally cascaded to Timer 1.

O

O O o g

Block Diagram

Figure 16.1 and Figure 16.2 show the Timing block diagram and Individual Timer Core block diagram,
respectively.

coldreset_n,

buserr_reset_n,
IP_BUS pus timeout_reset_n

datain[3L:0] v dataout[31:0]
IP SLAVE INTERFACE
slave_dataout[31:0] A slave_datain[31:0]

data_in[] data_out[]

@ > TIMERO |«&

L | TIMER?
TIMER_BLOCK

TIMER_BLOCK_WITH_IP A
GATE_IN[] | | ACEY

Figure 16.1 Timer Block Diagram

79RC32334/332 User Reference Manual 16 -1 . PataShert ddieo m

Timer Controller Overview

Notes
clk, .
r n reﬁet_count_n datai n[3l: 0]

| | A dataout[31:0]

A

COUNT_REG

v A

COMPARE_REG

A

COUNT_EN

A

y Y

—P» CONTROL_REG D-REG D-REG
TIMER_CORE A

GATE_IN | TCN v

Figure 16.2 Diagram of Individual Timer Core

Overview

The general purpose timers, Timer 0 and Timer 1, can be used as a real-time clock. To meet real-time
clock periods of 1 day or less, the timer 1 (internal signal timer_gate_n[1]) port is internally connected to the
timer O (internal signal timer_tc_n[0]) port. This cascades the overflow count from Timer 0 into the effective
clock for Timer 1, thus allowing a 64-bit count. General purpose Timer 2 can be used as a Time-Slice
clock. The general purpose timers are organized as:

5 count register [31:0]
compare register [31:0]
control register[1] gate/timer bit

O
O
5 control register[0] enable bit

In addition to the general purpose Timer 0, Timer 1, and Timer 2, there are five separate dedicated
timers for Watchdog, CPU bus time-out, IP bus time-out, SDRAM refresh, and WarmReset. WarmReset
Timer 7 is used to count out clocks between the de-assertion of ColdReset_n and the de-assertion of

Reset_n.

The timers are reset to 0X0000_0000 and count up to and equal to the value in their respective
compare register. For the 1 clock of compare, tc_n is asserted. The output pin for timers 0 and 1 are
synchronized (delayed) by one clock. At this point, the Count rolls over back to 0x0000_0000. Note that
Timer 7 is reset during a cold reset but not a warm reset.

Timers 0 and 1 contain an input gate mode, which uses the timer_gate_n pin as a clock enable for the
timer ticks. The input is not synchronized (delayed) by the clock and feeds directly into the counter. To use
the timer pins, the PIO Direction Register of the PIO Controller must first be programmed (for programming
specifics of the PIO Direction Register, see Chapter 15). The default function is the timer_gate_n input pin.
Timer pin functions are described in Table 16.1.

Timer 3 can only be used as a general purpose timer if the IP Bus Bridge Bus Error Control Register has
the Watchdog Enable bit disabled. Timers 4 and 5 can only be used as general purpose timers if the IP Bus
Bridge Bus Error Control Register has the CPU BusError and/or IP BusError Enable bits disabled, respec-
tively.

79RC32334/332 User Reference Manual 16 -2 _ June 4. 2002 1.

Timer Controller

Notes

79RC32334/332 User Reference Manual

Signal Definitions

Signal Definitions

- Alternative s s
Timer/Counter | Type Signals Descriptions
timer_tc_n[0] 110 pio[2], timer_gate_n[0] Terminal count mode (timer_tc_n): Output indicating

that the timer has reached its count compare value
and has overflowed back to 0.

timer_gate_n[0]

/0 timer_tc_n[0], pio[2]

Gate mode (timer_gate_n): input indicating that the
timer may count one tick on the next clock edge.

Table 16.1 Pin Definitions for the Timer/Counter Signals

Register Mapping

The register sets for Timers 0 through 3 are mapped as listed in Table 16.2, Table 16.3 and Table 16.4.
Register sets for the five timers dedicated to peripherals are mapped as listed in Table 16.5, Table 16.6,
Table 16.7, Table 16.8, and Table 16.9.

Base l_-\ddress Register Name Offset Effectiv_e Address
Register 0 Address Register 0
1800_0700 Timer Control Register 0 (32 bits) 00 Base + Offset
Timer Count Register 0 04
Timer Compare Register 0 08

Table 16.2 Timer Register 0 (General Purpose) Address Map

Base l_\ddress Register Name Offset Effectiv_e Address
Register 1 Address Register 1
1800_0710 Timer Control Register 1 (32 bits) 00 Base + Offset
Timer Count Register1 04
Timer Compare Register 1 08
Table 16.3 Timer Register 1 (General Purpose) Address Map
Base I.\ddress Register Name Offset Effectiv.e Address
Register 2 Address Register 2
1800_0720 Timer Control Register 2 (32 bits) 00 Base + Offset
Timer Count Register 2 04
Timer Compare Register 2 08
Table 16.4 Timer Register 2 (General Purpose) Address Map
Base l_\ddress Register Name Offset Effectiv_e Address
Register 3 Address Register 3
1800_0730 Timer Control Register 3 for Watchdog (32 bits) 00 Base + Offset
Timer Count Register 3 for Watchdog 04
Timer Compare Register 3 for Watchdog 08

Table 16.5 Register 3 for Watchdog Address Map

16 -3

www NataGhestdl oo

Timer Controller

Register Mapping

Notes

79RC32334/332 User Reference Manual

Base Address Register Name Offset | Effective Address
Register 4 9 Address Register 4
1800_0740 Timer Control Register 4 for CPU BusTimeout 00 Base + Offset
(BusError) (16-bits)
Timer Count Register 4 for CPU BusTimeout 04
(BusError)
Timer Compare Register 4 for CPU BusTimeout 08

(BusError)

Table 16.6 Register 4 for CPU Bus Time-out Address Map

Base Address Reaister Name Offset Effective Address
Register 5 9 Address Register 5
1800_0750 Timer Control Register 5 for IP BusTimeout 00 Base + Offset
(BusError) (16-bits)
Timer Count Register 5 for IP BusTimeout 04
(BusError)
Timer Compare Register 5 for IP BusTime- 08
out (BusError)
Table 16.7 Register 5 for IP Bus Time-out Address Map
Base Address Reaister Name Offset Effective Address
Register 6 9 Address Register 6
1800_0760 Timer Control Register 6 for DRAM Refresh 00 Base + Offset
(16-bits)
Timer Count Register 6 for DRAM Refresh 04
Timer Compare Register 6 for DRAM Refresh 08
Table 16.8 Register 6 for DRAM Refresh Address Map
Base Address Register Name Offset | Effective Address
Register 7 9 Address Register 7
1800_0770 Timer Control Register 7 for Warm Reset (8-bits) 00 Base + Offset
Timer Count Register 7 for Warm Reset 04
Timer Compare Register 7 for Warm Reset 08

Table 16.9 Register 7 for Warm Reset Address Map

Timer Control Register Description

To meet real-time clock periods of 1 day or less, the internal signal timer_gate_n[1] port is internally
connected to the internal signal timer_tc_n[0] port. (Note: on the RC32332, the signal timer_tc_n[0] is not
present.) This cascades the overflow count from Timer 0 into the effective clock for Timer 1, thus allowing a
64-bit count. Note: the five dedicated peripheral timers are hardwired internally to their respective module.

31

1 0

Reserved

Gate/Count Enable

Figure 16.3 Timer Control Register Fields

16 -4

www NataGhestdl oo

Timer Controller Register Mapping

Notes Bit Name Description

1 Gate/Count | Note that the Gate option requires that the tc_n_gate_n pin first be set to the input direction.

Value | Description
1 Gated Count
0 Timer Count (default)

Chapter 15 contains more programming specifics of the PIO Direction Register.

0 Enable Enabled or disabled timers with this bit.

Value | Description
1 Enabled (default)
0 Disabled

Table 16.10 Timer Controller Register Field Descriptions

Timer Count Register

Timers are reset to 0x0000_0000 and count up to and equal to the value in their respective compare
register. For the 1 clock of compare, Tc_n is asserted. The output pin for timers 0 and 1 are synchronized
(delayed) by one clock. The Count then rolls back to 0x0000_0000.

31 0

Current Value of the Count I

Figure 16.4 Count Register Fields

Bit Name Description

31:0 Timer Count Value of 32-, 16- or 8- bit wide count

Table 16.11 Count Register Fields Descriptions

Timer Compare Register

Each of RC32334’s eight timers count on each system clock, beginning from zero and time out after
reaching a programmable compare value, resetting back to zero automatically.

31 0

Value of Compare I

Figure 16.5 Compare Register Fields

Bit Name Description

31:.0 Timer Compare | Value of 32-, 16- or 8-bit wide compare

Table 16.12 Compare Register Fields Descriptions

79RC32334/332 User Reference Manual 16 -5 _ June 4. 2002 1.

Timing Diagrams

Timer Controller

Notes Timing Diagrams
1 2 3 4 5
cpu_masterclk \ | i ’ N\ §
(internal compare_reg0[31:0]) | | FFF | | | |
(internal count_reg0[31:0]) FFFF_FFFE__ X FFFF_FFFF X_ 0000 0000 X 0000 0001 X 0000 0002 |
_>|Td015, Tdo15,
Tdoh6 Fdeh6

timer_tc_n[0]

Figure 16.6 Timer Rollover Causing timer_tc_n to Toggle

1 2 3 4 5
Tsu8 Tsu8
<> Thid10 <= Thid10
cpu_masterclk \ ¥ | ¥ ‘ \ |] \] N
timer_gate_n[0] /
(internal count_reg0[31:0]) 0000_0001 X" 0000_0001 X_0000_0002 X 0000 0002 X 0000 0002 |

Figure 16.7 timer_gate_n Input Causing Timer to Count

79RC32334/332 User Reference Manual 16 -6 _ June 4. 2002 1.

UART Controller

®

Introduction

O

16 byte TX FIFO
16 byte RX FIFO

O o o o

Modem status

Block Diagra

Programmable Data Format
- 5,6, 7, 0r8Data Bit
= Odd, Even or No Parity
- 1, 11/2 or 2 Stop Bits
5 Modem control signal for channel 0?
-~ RTS, CTS, DTR, DSR

U Maskable Interrupt Conditions

Y Receive data available
Receive line status
Transmit holding register empty

The two UARTs' in the RC32334 are 16550 compatible. The 16550 UART is an enhanced version of the
16450 UART. Functionally similar to the 16450, at power-up, the UARTSs can be put into the 16550 mode,
which then relieves the CPU core of software overhead. This allows execution of 16450 or 16550 compat-
ible software. Two sets of 16-byte buffers are enabled during the 16550 mode: one set in the receive data
path and one set in the transmit data path.

At any time during operation, the CPU core can read the UART status information, which includes the
type and condition of the transfer operation as well as any error condition (parity, overrun, framing, or break
interrupt). A baud rate generator is included that divides down the system clock by 1 to 65K. The baud rate
generator provides the 16X clock for driving the transmitter and receiver logic. UART 0 is a full featured
16550 that supports the following features.

16-bit independent programmable Bit Rate Generator
Baud rates from DC to 1.5M

UART 12 does not include flow control support, supporting only data transmit and receive pins. It is
otherwise software compatible with UART 0. UART 0 registers begin at address location 0x18000800.
UART 1 registers begin at address location 0x18000820.

ADDRESS >

DATA

-

INTERRUPTS

-

REGISTERS
AND
CONTROL

— | o UART Tx
iy TRANSMIT [X g
— i ENGINE
2
o UART Rx
RECEIVE -
¢ e ENGINE
- 3
BAUD RATE
+—P»| GENERATOR

Figure 17.1 UART Block Diagram

2 Not in the RC32332.

79RC32334/332 User Reference Manual

" There is only one UART in the RC32332.

17 -1

L Jiiae 42002

UART Controller Overview

Notes Overview

The RC32334 provides two independent UARTSs, each with a serial data transmit output and a serial
data receive input. These UARTSs each contain a 16-byte transmit buffer and a 16-byte receive buffer in the
16550 mode, a one-byte Transmit Holding Register and a one-byte Receive Holding Register. Data flow
through the buffers only if enabled in the Buffer Control Register.

The user must set up the UART before operation. The transmit and receive parameters are set in the
Line Control Register. The baud rate can also be set in the Divisor Latch Most and Divisor Latch Least
Registers. The 16550 buffer mode may be enabled, if desired, in the Buffer Control Register, and should be
chosen after reset is applied. Note that dynamically altering the buffer mode during a transmit or receive is
not supported.

The UART contains a baud rate generator, and both the transmit and receive engines will run at the
baud rate determined by the Divisor Latches. The Divisor Latches determine the baud rate by a two-byte
divisor that divides down the RC32334 system clock. The divisor, in binary, loads into the Divisor Latch
Least and Divisor Latch Most Registers.

A divisor value of one will disable the system clock divider, and the transmit and receive circuits will run
at the system frequency. A divisor value of zero is modified to a divisor of 32 decimal (0020 hex) by the
baud rate generator. To calculate the baud rate, use the following formula (the constant, 16, is used in the
formula because the output frequency of the baud rate generator is 16 times the baud):

5 Baud rate = (system frequency) / (divisor * 16)

Or, to calculate the divisor to load into the Divisor Latches, use the following formula:
5 Divisor = system frequency / (baud rate * 16)

Example of a baud rate calculation: For a system frequency of 66 MHz and a baud rate of 9600
(values shown are decimal), calculate the divisor as follows:

Divisor = 66,000,000 / (9600 * 16) = 429.6875
Round off the ideal divisor to the nearest whole number, 430, and convert 430 to binary.

Load 0000_0001_1010_1110 into the Divisor Latches: 0000_0001 into the Most, and
1010 _1110 into the Least. Some divisors and system frequencies will give a more accurate baud rate
than others. Examples of other divisor values for typical baud rates are shown in Table 17.1.

To calculate the percent error of the divisor, use the following formula:

Percent error = ((difference of the whole divisor used and the ideal fractional divisor) / ideal fractional
divisor) * 100.

Example of percent error calculation: ((430 - 429.6875) / 429.6875)) * 100 = 0.073% error.

System Frequency | Baud Rate | Divisor (decimal)
75MHz 9600 488
75MHz 75 65535
75MHz 15 3
66MHz 19200 214
66MHz 9600 430
66MHz 2400 1719
50MHz 9600 326
40MHz 9600 260
33MHz 9600 215
25MHz 9600 163

Table 17.1 Divisor Value Examples for Typical Baud Rates.

79RC32334/332 User Reference Manual 17 - 2 _ June 4. 2002 1.

UART Controller User Interrupts

Notes The user can employ two methods of transmitter empty and receive byte ready notification: interrupt
driven or polling.

Also, by using the BCR DMA mode, the transmitter full and receive full conditions are available via the
interrupt pending register in the Expansion Interrupt Controller described in Chapter 14.

UART Operation

To transmit a byte, the user writes a byte of data to the Transmit Holding Register. The UART controls
inserting parity and the stop bit, then serially outputs the byte of data at the selected baud rate. When a byte
of received data is ready for reading, the UART will notify the user with an interrupt, if enabled, through the
Line Status Register. The byte of data is then read from the Receive Holding Register by the RC32300 CPU
core. Receive errors are revealed to the user at the appropriate time (see the Line Status Register).

User Interrupts

In the RC32334 Interrupt Controller, there is one interrupt available to the user, which, unless masked,
will activate the RC32334 interrupt pin to the CPU core (see Figure 17.2, Interrupt Flow). The Prioritized
Interrupt is bit (0) in the IIR, it is inverted then passed to the RC32334 Interrupt Controller. It must be
cleared in the UART first, then cleared in the RC32334 Interrupt Controller.

. Interrupt 0 - Prioritized Interrupt. Activated when one of the conditions in the IER is enabled. This is
bit (0) in the IIR, inverted and sent to the Interrupt Controller. Masking it in the IER will prohibit it
from being active in both the IIR and the Interrupt Controller. Masking it in the Interrupt Controller
will still prohibit the interrupt from being active in the Interrupt Controller and downstream to the
CPU; however, the IIR must still be cleared.

" Interrupt 1 - Tx Rdy. Transmit Ready. See BCR DMA mode for full description.
5" Interrupt 2 - Rx Rdy. Receive Ready. See BCR DMA mode for full description.

RC32334
N T B
| UART Interrupt Controller |
| RxRdy > 2 ,
) CPU
| PRIORITIZED PENDING | CORE
IR INTERRUPT
| —{>O—> 0 |
| 4 ENABLE 4 MASK |
: IER MASK :
L - — - - = .|
Figure 17.2 Interrupt Flow
Signal Definitions
Pin Name Type Description
UART Interface
uart_rx[0] I UARTO Serial data in
uart_tx[0] 0 UARTO Serial data out
uarLdsrfn[O]1 I UARTO Data Set Ready
uart_cts_n[O]1 I UARTO Clear to Send
uart_rts_n[O]1 0 UARTO Request to Send

Table 17.2 RC32334 Pin Descriptions (Part 1 of 2)

79RC32334/332 User Reference Manual 17 -3 _ June 4. 2002 1.

UART Controller

Signal Definitions

Notes Pin Name Type Description
uart_dtr_n[O]1 0 UARTO0 Data Terminal Ready
vart_rx[1]" | UART1 Serial data in
uart_tx[1]1 0 UART1 Serial data out

Table 17.2 RC32334 Pin Descriptions (Part 2 of 2)
! Not in the RC32332.

UART 0&1 Registers

These registers enable UART functionality such as interrupt indication, data flow modes, and data
receive/transmit formats. Some addresses are used more than once. To accomplish this, some register bits
control register selection.

The RC32332 has only one serial port (UARTO). All features in this user manual referencing UART1
should be ignored if the designer is planning to use the RC32332. Additionally, for UARTO, all of the modem
signals that were bonded out to the external pads in the RC32334—Request to Send (RTS), Clear to Send
(CTS), Data Terminal Ready (DTR), and Data Set Ready (DSR)—are not accessible on the RC32332 pins.
Therefore, the programming of these bits in the modem control registers does not perform any usable func-

79RC32334/332 User Reference Manual 17 -4 _ June 4. 2002 1.

tion in the RC32332.

UART O Registers

Address | Register Name Descriptions

1800_0800 | RBR/THR Receiver Buffer Register/Transmitter Holding Register
1800_0804 | IER Interrupt Enable Register

1800_0800 | DLL Baud Divisor Latch, LS

1800_0804 | DLM Baud Divisor Latch, MS

1800_0808 | IIR/BCR Interrupt Identity Register/Buffer Control Register
1800_080C | LCR Line Control Register

1800_0810 | MCR MODEM Control Register

1800_0814 | LSR Line Status Register

1800_0818 | MSR MODEM Status Register

1800_081C | SCR Scratch Register

1800_0840 | RR Reset Register

Table 17.3 UARTO0 Register Address Map

UART 1 Registers’

Address | Register Name Descriptions

1800_0820 | RBR/THR Receiver Buffer Register/Transmitter Holding Register
1800_0824 | IER Interrupt Enable Register

1800_0820 | DLL Baud Divisor Latch, 8 LSB

1800_0824 | DLM Baud Divisor Latch, 8 MSB

1800_0828 | IIR/BCR Interrupt Identity Register/Buffer Control Register

Table 17.4 UART1 Register Address Map (Part 1 of 2)

1 Not in the RC32332.

UART Controller Signal Definitions

Notes Address | Register Name Descriptions
1800_082C | LCR Line Control Register
1800_0830 | MCR MODEM Control Register
1800_0834 |LSR Line Status Register
1800_0838 | MSR MODEM Status Register
1800_083C | SCR Scratch Register
1800_0860 | RR Reset Register

Table 17.4 UART1 Register Address Map (Part 2 of 2)

Receive Buffer Register (RBR)

This is a read-only register, accessed when the DLAB bit in the Line Control Register is set to zero. Bit 0
is the LSB and is the first bit serially received.

7 0

Rx data I

Figure 17.3 Receive Buffer Register

Transmit Buffer Register (TBR)

This is a write-only register, accessed when the DLAB bit in the Line Control Register is set to zero. Bit 0
is the LSB and is the first bit serially transmitted.

7 0

Tx data I

Figure 17.4 Transmit Buffer Register

Interrupt Enable Register (IER)

This is a read/write register, accessed when the DLAB bit in the LCR is set to zero. Disabling an interrupt
in the IER prevents it from being indicated active in the IIR and from activating the interrupt signal to the
Interrupt Controller.

7 4 3 2 1 0
Reserved ‘ MSC RLS THRE | RDA

Figure 17.5 Interrupt Enable Register

79RC32334/332 User Reference Manual 17 -5 _June 4. 2002 W

UART Controller Signal Definitions

Notes —
Bit | Field Name Description nitia
Value
74 Reserved 0x0
3 MSC 1= Enable MODEM status change interrupt 0x0
0 = Disable interrupt
2 RLS 1 = Enable receiver line status interrupt 0x0
0 = Disable interrupt
In the 16550 mode, enables character timeout interrupt.
1 THRE 1 = Enable transmitter holding register empty interrupt 0x0
0 = Disable interrupt
0 RDA 1 = Enable received data available interrupt 0x0
0 = Disable interrupt
Table 17.5 Interrupt Enable Register Field Descriptions
Divisor Latch Least Register (DLL)

This read/write register is accessed when the DLAB bit in the Line Control Register is set to one. Writing
to the DLL or DLM will immediately change the baud rate. See Table 17.1 for additional baud rate informa-
tion.

7 0
The least significant baud divisor bits I
Figure 17.6 Divisor Latch Least Register (DLL)
Divisor Latch Most Register (DLM)

This read/write register is accessed when the DLAB bit in the Line Control Register is set to one. Writing
to the DLL or DLM will immediately change the baud rate. See Table 17.1 for additional baud rate informa-
tion.

7 0
The most significant baud divisor bits I
Figure 17.7 Divisor Latch Most Register (DLM)
Interrupt Identity Register (IIR)

This is a read-only register. The UART encodes four levels of priority and indicates the code in the IIR.
When the software accesses the IIR, all interrupts are frozen and the highest pending interrupt is indicated
in this register. The UART continues to record new interrupts while this access is taking place but does not
change the contents of the IIR until the current access is complete.

7 6 5 4 3 10
16550 Buffer Mode Reserved Current Interrupt IP
Figure 17.8 Interrupt Identity Register
79RC32334/332 User Reference Manual 17 -6

e Datasheetdieom

UART Controller Signal Definitions

Notes Field Initial
Bit Name Description Value
7:6 | 16550 These two bits are set to ‘1" when BCR(0) is set to ‘1’ 0x0
Buffer
Mode Value | Status
1 Enable 16550 Buffer Mode
0 Disable 16550 Buffer Mode
5:4 | Reserved 0x0

3:1 | Current | A code describing the highest priority interrupt pending. Note that bit 3 is setto a “1"in | 0x0
Interrupt | the 16550 Buffer Mode only.

Value| Status Priority Level
000 |Modem status Fourth (lowest)
001 | Transmitter Holding Register Empty Third

Writing to the THR will reset this interrupt

010 |Received Data Available Second
Rx data are available to read or the specified trigger level is
reached. Either reading the RBR or if the buffer level drops
below the trigger point resets the interrupt. The trigger level
is specified in the BCR.

011 | Receiver Line Status First (highest)
Occurs during an overrun error, parity error, framing error, or
break interrupt. Reading the LSR resets the interrupt.

100 |Reserved
101 |Reserved

110 | Character TimeOut Indication Second
No characters have been removed from or input to the

receiver buffer during the last four character times and there
is at least 1 character in it during this time. Buffer mode only,

111 | Receiver Line Status First (highest)
Occurs during an overrun error, parity error, framing error, or
break interrupt. Reading the LSR resets the interrupt.

0 Interrupt | This bit is inverted and mirrored in the RC32334 Interrupt Controller. This bit is active | 0x0
Pending | low in the IIR and active high in the Interrupt Controller.

0x1
Value Status
1 No interrupt pending
0 Interrupt pending

Table 17.6 Interrupt Identity Register Fields and Descriptions

79RC32334/332 User Reference Manual 17 -7 _ June 4. 2002 1.

UART Controller

Signal Definitions

Notes Buffer Control Register (BCR)

The BCR register is a write-only register that enables and controls the use of the 16-byte receive and
16-byte transmit buffers.

7 6 5 4 3 2 1 0
Rx Buffer Tx/IRx
Byte Status Buffers

Tx Rx
Reserved DMA Mode| Byffer Pointer | Buffer Pointer

Figure 17.9 Buffer Control Register (BCR) Fields

Note: Changing from FIFO mode to non-FIFO mode does not automatically flush the FIFO.
Switching FiFO modes dynamically while sending or receiving data is not supported.

. Field e Initial
Bit Name Description Value
7:6 | Receive Buffer | The receive buffer interrupt trigger level describes how many bytes are in the 0x0

Byte Status receive buffer. The setting of these bits affects the IIR.

Value | Status

11 14 bytes in the receive buffer

10 8 bytes in the receive buffer

01 4 bytes in the receive buffer

00 1 byte in the receive buffer

54 | Reserved 0x0

3 DMA Mode The TXRDY and RXRDY signals go to the Interrupt Controller, where they can act | 0x0
as an interrupt to the CPU. Masking these signals can only be accomplished in the
Interrupt Controller

Value | Status

1 TXRDY is activated when there are no bytes in the 16-byte buffer and
is deactivated only when the buffer is full (16 bytes have been written
to the buffer). RXRDY is activated when there are 16 bytes in the
buffer and is deactivated only when the buffer is empty.

0 TXRDY is activated when there are no bytes in the buffer and is
deactivated when there is at least one byte in the buffer. RXRDY is
activated when there is at least one byte in the buffer and is deacti-
vated only when the buffer is empty.

2 Transmit Buffer | A one resets the transmit buffer pointer 0x0
Pointer

1 Receive Buffer | A one resets the receive buffer pointer 0x0
Pointer

0 Receive/Trans- | Enables the 16-byte transmit and receive buffers for 16550 mode operation. 0x1

mit Buffers When switching between 16550 and 16450 modes, always reset the buffers.

Table 17.7 Buffer Control Register Field Descriptions

79RC32334/332 User Reference Manual 17 -8 _ June 4. 2002 1.

UART Controller

Signal Definitions

Line Control Register (LCR)

Notes

The LCR is a read/write register that controls the format of the data received and transmitted.

7 5 4 3 2 1 0
i i Parity ParityGeneration .
DLAB SetBreak | Stick Parity 7 Stop Bits
Control Control Select Chggking p Word Length

Figure 17.10 Line Control Register Fields

Bit | Field Name Description Initial Value
7 Divisor Latch 0=RBR,THR and IER registers selected 0x0
Access Bit 1 =DLL and DLM registers selected
6 Set Break Control | 0 = Normal transmit data 0x0
1 = Transmit data will be forced to a zero (spacing state), causing a
break condition to be transmitted
5 Stick Parity 0x0
Control Bit Value | Status
53 111 Parity bit transmitted and checked as a zero
53 101 Parity is transmitted and checked as a one
5 0 Stick parity disabled
4 Parity Select 1 = Even parity 0x0
0 = Odd parity
3 Parity Generation | 1 = Enable parity generation and checking 0x0
and Checking 0 = Disable parity generation and checking
2 Stop Bits Controls the number of stop bits generated 0x0
Value | Status
0 One stop bit generated
1 5-bit word length: 1 1/2 stop bits generated
6, 7 or 8-bit word length: 2 stop bits generated
1:0 | Word Length 0x0
Value Status
00 5-bits
01 6-bits
10 7-bits
11 8-bits

Table 17.8 Line Control Register Field Descriptions

Modem Control Register (MCR)

This is a read/write register that controls the MODEM operation. For UARTO, the Data Terminal Ready
(DTR) and Request to Send (RTS) bits in the modem status register for this UART are muxed with P1O pins
of the RC32334 device. For UART1, none of the modem signals in the related modem status register are

connected to the external pins and, therefore, do not perform any usable function.

! For UARTO in the RC32332, no modem signals are connected to external pins and therefore do not perform any
usable function. Also, UART1 is not present in the RC32332.

79RC32334/332 User Reference Manual 17 -9 _ June 4. 2002 1.

UART Controller

Signal Definitions

Notes Refer to Chapter 15, “Programmable 1/0 (PIO) Controller,” to configure these signals to be enabled
externally.
7 5 4 3 2 1 0
Reserved L&‘;@‘;ac" out2 Out 1 RTS DTR
Figure 17.11 MODEM Control Register Fields
Bit | Field Name Description Initial Value

75 Reserved 0x0
4 Loopback mode 1 = Enable loopback mode for diagnostic testing of the UART| 0x0

In this mode, the transmit data pin is internally directed to the

receiver logic, replacing the receive data input of the CPU

0 = Disable loopback
3 Out 2 No connection to pin 0x0
2 Out1 No connection to pin 0x0
1 Request to Send Connected to pin B1, uart_rts_n[0] 0x0
0 Data Terminal Ready| Connected to pin C3, uart_dtr_n[0] 0x0

Table 17.9 MODEM Control Register Field Descriptions

Line Status Register (LSR)
The LSR is a read/write register that provides UART status information to software.

79RC32334/332 User Reference Manual 17 -10 __ June 4. 2002 1.

7 6 5 4 3 2 1 0
Receive TX Engine THR Break Framing Parity Overrun Data
Error Status Empty Interrupt Error Error Error Ready

Figure 17.12 Line Status Register Fields

Bit

Field Name

Description

Initial
Value

Receive Error

1 = Receive error detected on a character in the buffer
A receive error could be parity, framing, or break conditions
0 = No receive error

0x0

Transmit Engine Status|

1 = Transmit engine is not active
This means that the transmit buffer and the THR are both empty
0 = Transmit transfer in progress

0x1

THR Empty

1 = Transmit Holding Register is empty
0 = THR not empty

0x1

Break Interrupt

1 = Receive data is at the spacing (zero) level for more than a full
word transmission time

The bit is reset when software reads the LSR. The error is regis-
tered in the LSR when the associated character is at the top of
the buffer in the 16550 buffer mode

0 = No break interrupt

0x0

Table 17.10 Line Status Register Field Descriptions (Part 1 of 2)

UART Controller

Signal Definitions

Notes Bit| Field Name Description Initial
Value
3 Framing Error 1 = Received data did not have a valid stop bit 0x0

The bit is reset when software reads the LSR. The error is regis-
tered in the LSR when the associated character is at the top of
the buffer in the 16550 buffer mode

0 = No framing error

2 Parity Error 1 = Parity indication of the received data does not match the con{ 0x0
figuration in the LCR

The bit is reset when software reads the LSR. The error is regis-
tered in the LSR when the associated character is at the top of
the buffer in the 16550 buffer mode

0 = No parity error

1 = The data in the receive buffer were overwritten before the 0x0
CPU read them

This error is registered in the LSR as it occurs
0 = No overrun error

1 Overrun Error

0 Data Ready 1 = At least one byte of data is ready to read 0x0

0 = No data in THR or receive buffer

Table 17.10 Line Status Register Field Descriptions (Part 2 of 2)

Modem Status Register (MSR)

The MSR is a read/write register that controls MODEM operation. For UARTO, the Data Set Ready
(DSR) and Clear to Send (CTS) bits in the modem status register for this UART are connected to the
external pins of the RC32334 device. For UART1, none of the modem signals in the related modem status

register are connected to the external pins and, therefore, do not perform any usable function.!

79RC32334/332 User Reference Manual 17 - 11 __ June 4. 2002 1.

7 6 5 4 3 2 1 0
DCD RI DSR CTS DDCD TERI DDSR DCTS I
Figure 17.13 MODEM Status Register Fields
Bit Field Name Description
7 Data Carrier Detect No connection to pins
6 Ring Indicator No connection to pins
5 Data Set Ready Connected to pin B2, uart_dsr_n[0]
4 Clear to Send Connected to pin A1, uart_cts_n[0]
3 Delta Data Carrier Detect No connection to pins
2 Trailing edge of ring indicator No connection to pins
1 Delta Data Set Ready No connection to pins
0 Delta Clear to Send No connection to pins

Table 17.11 MODEM Status Register Field Descriptions

! For UARTO in the RC32332, no modem signals are connected to external pins and therefore do not perform any

usable function. Also, UART1 is not present in the RC32332.

UART Controller Timing Diagram

Notes Scratch Register (SCR)
The SCR is a read/write register that can be used as temporary storage by the user and has no affect on
the UART operation.
7 0

Data Bits I

Figure 17.14 Scratch Register Field

Bit | Field Name Description Initial Value

7:0 | Data Bits This register has no effect on UART operationand | 0x0
can be used as temporary storage

Table 17.12 Scratch Register Field Descriptions

Reset Register (RR)
Writing any data value to this register will reset the UART channel.

31 0

Reset Register I

Figure 17.15 Reset Register Field

Timing Diagram

Timing of the UART inputs and outputs are shown in Figure 17.16. Note that the UART data setup/hold
protocol itself implies asynchronous timing. uart_rx[0] and uart_tx[0] are shown in an input and output
respectively. The other UART signals, including uart_rx[1:0], uart_tx[1:0], uart_dsr_n[0], uart_cts_n[0],
uart_rts_n[0], and uart_dtr_n[0] have similar timing in their input and output modes.

1 2 3 4 5
Tsu7
<> Thid9
cpu_masterclk] \ | ¥ ’ \ TS N
uart_rx[0] \
Tdol6, Tdoh8
—| Tdo16, Tdoh8

uart_tx[0] [\

Figure 17.16 UART Timing

79RC32334/332 User Reference Manual 17 - 12 _June 4. 2002 W

Chapter 18

Serial Peripheral

Interface
®
Notes Introduction

The RC32334 supports the Serial Peripheral Interface (SPI) master capability, to provide an interface to
low-cost serial peripherals. This interface uses four pins: serial data in (spi_miso), serial data out
(spi_mosi), serial clock (spi_sck) and slave chip select (spi_ss_n), as shown in Figure 18.1. This serial
interface includes an 8-bit shift register, a system clock divider, a SCK generator, 4 registers, and a state
machine. The SPI interface provides the following features and capabilities:

5" Full-Duplex Operation
5 Master Modes only
5 System Clock to SPI Clock divider/prescalar
5 Four Programmable Master Mode Frequencies
' Serial Clock with Programmable Polarity and Phase
5 Write Collision Error Flag
IP_BUS
datain[31:0]v dataout[31:0]
IP SLAVE INTERFACE
dave dataout[31:0] A Save datain[31:0]
data in[] data_out[]
BAUD RATE
@—»| STATUSICONTROL [P GENEEATOR
| DATAOUT/IN MACHINE
110
SHIFTER _’} FORMATTER
SPI_BLOCK A
SPI_BLOCK_WITH_IP
SPI_MISO v
SPI_SCK, SPI_SS N, SPI_MOSI
Figure 18.1 SPI Block Diagram

The master SPI allows fully duplexed, synchronous serial communication between the RC32334 and
other peripheral devices, such as an ATMEL SPI or Serial E2PROMs. When an SPI transfer occurs, an 8-
bit data is shifted out of spi_mosi, simultaneously as an 8-bit data is shifted into spi_miso.

When a master device transmits data to a slave device via the spi_mosi line, the slave device responds
by sending data to the master device via the master’s spi_miso line. This implies full duplex transmission,
with both data out and data in synchronized with the same clock signal. Thus, the byte transmitted is
replaced by the byte received and eliminates the need for separate transmit-empty and receiver-full status
bits. A single status bit (SPIF) is used to signify that the 1/0 operation has been completed.

79RC32334/332 User Reference Manual 18 -1 ww . Datashent aenm

Serial Peripheral Interface

Signal Descriptions

Notes

79RC32334/332 User Reference Manual 18 - 2 _ June 4. 2002 1.

The SPI is double-buffered on read, but not on write. If a write is performed during data transfer, the
transfer occurs uninterrupted, and the write will be unsuccessful. This condition will cause the write collision
(WCOL) status bit in the SPSR to be set. After a data byte is shifted, the SPIF flag of the SPSR is set.

The spi_sck pin is an output pin that idles high or low, depending on the CPOL bit in the SPCR, until
data is written to the shift register, at which point eight clocks are generated to shift the 8 bits of data, and

then spi_sck goes idle again.

Signal Descriptions

Signal Name

Type

Alternate
Signal Name

Description

Spi_mosi

110

pio[10]

SPI Data Output

Serial mode: Output pin from RC32334 as an Input to a Serial
Chip for the Serial data input stream.

In PCl satellite mode, acts as an Output pin from RC32334 that
connects as an Input to a Serial Chip for the Serial data input
stream for loading PCI Configuration Registers in the
RC32334 Reset Initialization Vector PCI boot mode.

Defaults to the output direction at reset time.

1st Alternate function: PIO[10].

2nd Alternate function: pci_eeprom_mdo.

spi_miso

110

pio[7]

SPI Data Input

Serial mode: Input pin to RC32334 from the Output of a Serial
Chip for the Serial data output stream.

In PCI satellite mode, acts as an Input pin from RC32334 that
connects as an output to a Serial Chip for the Serial data output
stream for loading PCI Configuration Registers in the RC32334
Reset Initialization Vector PCI boot mode.

Defaults to input direction at reset time.

1st Alternate function: PIO[7].

2nd Alternate function: pci_eeprom_mdi.

spi_sck

110

pio[9]

SPI Clock

Serial mode: Output pin for Serial Clock.

In PCI satellite mode, acts as an Output pin for Serial Clock for
loading PCI Configuration Registers in the RC323334 Reset
Initialization Vector PCI boot mode.

Defaults to the output direction at reset time.

1st Alternate function: PIO[9].

2nd Alternate function: pci_eeprom_sk.

spi_ss_n

110

pio[8]

SPI Chip Select

Output pin selecting the serial protocol device as opposed to
the PCl satellite mode EEPROM device.

Alternate function: PIO[8]. Defaults to the output direction at
reset time.

Table 18.1 SPI Signal Descriptions

The RC32334’s SPI module initiates a transmission by writing to the SPI data register (SPDR), which
moves the data to a shift register and transmission immediately begins. After eight serial clock cycles, the
SPI sets the SPI flag (SPIF) and transmission ends.

Before the SPI begins another transmission, SPIF must be cleared by reading the SPI Status Register
and then the SPDR. Interrupts are generated at the end of a transmission, if the SPI Interrupt Enable Bit
has been set. Figure 18.4 lists and describes the SPI control register fields. Serial clock polarity and phase.
The RC32334’s SPI controller does not implement the SPI slave mode or SPI multimastering.

Serial Peripheral Interface SPI Setup and Register Descriptions

Notes Most peripherals require a multibyte command sequence. For multibyte commands, the spi_ss_n pin
must be programmed via the general purpose PIO output data mode to remain asserted through the
multiple bytes. To accommodate the various serial communication requirements of peripheral devices, soft-
ware can change the phase and polarity of the SPI serial clock.

The clock polarity bit (CPOL) and the clock phase bit (CPHA), both in the SPCR, control the timing rela-
tionship between the serial clock and the transmitted data. Most typical peripherals use either the (0,0)
mode or the (1,1) mode, where (CPOL CPHA) indicate the mode

| | | | |
spi_sck (CPOL=0) | |
_ T
spi_sck (CPOL=1) | |
. e e e D e A R A
M _\.!!!!!!!!!!!!!!!!/_
Sample Input —— | | I I | | | | |
s T G0 D (D D D D O,
Samplelnput—»'*'*'*'*|*|*|*|*||
(CPHAZO) | MISB | BITG | BITS | | | B|T3>I<B|T2>I<Blrl | | | !
Figure 18.2 Serial Peripheral Interface (SPI) Clock/Data Timing
SPI Data Setup/Hold and Delay Timing

The SPI protocol specifies its data input and output timing relative to spi_sck transitions. However, in
reality, the RC32334 SPI channel accepts input and delivers output data, based on the cpu_masterclk rising
edge, immediately after a spi_sck transition. Thus, if the SPI setup and hold time is met relative to
spi_sck—since spi_sck is much slower than cpu_masterclk—the setup and hold to the spi_sck enabled
cpu_masterclk input latch will also be met. Similarly, if the SPI slave device latches data with spi_sck, since
spi_sck is much slower than cpu_masterclk, the setup (and hold) to the slave is also met.

SPI Setup and Register Descriptions
79RC32334/332 User Reference Manual 18 -3

e Datasheetdieom

Serial Peripheral Interface SPI Setup and Register Descriptions

Notes The following describes the typical setup of SPI, which occurs during boot time:

1. The SPI shares data and clock pins with the PCI EEPROM if the RC32334 is booted in the boot-
from-PCl reset mode. An internal PCI EEPROM Busy Flag in the PCI Controller is used by the PCI
Controller to determine if the PCl is finished loading its data from the PCI EEPROM. The RC32334
internal PCI EEPROM Busy Flag automatically switches the pin effect usage to SPIin all boot reset
modes by the time of the first instruction fetch after a CPU reset.

Note: Even if the PCl is not used, SPI usage still requires the PCI to assert pci_rst_n in order to
properly set the internal PCI EEPROM Busy Flag.
SPI signal functions are routed via the PIO Controller, so the PIO Controller will generally be initial-
ized to the Effect Mode, with corresponding direction for each SPI pin. At reset time, the default
Effect Mode and Direction are set up for the PCI EEPROM and also for SPI.
The SPI Clock Register, SPCNT, is written.
The SPI Control Register, SPCNTL, including the SPE Enable Bit is written.
The data being sent to the SPI Slave are written to the SPI Data Register (SPDR).
The SPI Controller will initiate the hardware protocol on the SPI pins. The protocol has the Master
receive data from the Slave at the same time the Master sends data to the Slave.
Wait either for:
SPI Interrupt. After receiving an SPI Interrupt via the Interrupt Controller, read the SPI Status
Register SPIF and MODF Flags.
= Poll the SPI Status Register SPIF and MODF Flags.
8. Ifthe SPIF Flag is set, indicating the transaction is complete, reading the SPI Status Register resets
the SPIF Flag.
9. Read the data from the SPI Data Register.
10. Repeat Steps 5 through 10, as needed.

oo w N

~

SPI Interrupt Description

SPI produces a single interrupt. Before feeding into the Interrupt Controller, the interrupt is enabled/
disabled via the SPIE Interrupt Enable Bit in the SPI Control Register (SPCNTL). SPI asserts the interrupt
line if either the SPIF and/or the MODF bit of the SPI Status Register is set, indicating an unusual Slave
(mis-)operation or that the present transaction is complete.

By disabling SPI, via the SPI Control Register SPE Bit, the SPI signal pins may be reused for other func-
tions, including general purpose Programmable /O pins, or for bit-blasting the PCI EEPROM after PCI
initialization; for example, to write to the PCI EEPROM.

Base Register Offset Effective

Address Address Address
Serial Peripheral Clock Divisor/Prescalar Register (SPCNT) 00
Serial Peripheral Control Register (SPCNTL) 04

1800_0900 Serial Peripheral Status Register (SPSR) 08 Base + Offset
Serial Peripheral Data I/0 Register (SPDR) 0C

Table 18.2 SPI Register Address Map

Serial Peripheral Clock Register (SPCNT)

The SPCNT register is used to program the divide-down clock count prescalar, which then goes to the
basic SPI clock divisor controlled by the SPCNTL register SPR field. The SPCNT register is used as a
compare value to count the number of system clocks (cpu_masterclks) per 0.5 SPI divide-down/prescalar
clock. The default is 0x00.

spi_sck = system clock / [2*(SPCNT+1) * SPR]

79RC32334/332 User Reference Manual 18 -4 _ June 4. 2002 1.

SPI Setup and Register Descriptions

Serial Peripheral Interface

Notes

7

0

SPCNT I

Figure 18.3 SPI Clock Register Field

Bits

Field

Function

7.0

SPCNT Used to divide the system clock to the 1-4 MHz input clock rate required for SPI.

Table 18.3 SPI Clock Register (SPCNT) Field Description

Serial Peripheral Control Register (SPCNTL)

SPI enables features and interrupts through the Serial Peripheral Control Register, i.e., the slave mode
rates, clock phase and polarity, master/slave state, as listed in Table 18.4. Fields of the SPCNTL register
are shown in Figure 18.4. The default is 0x10.

7 6

5

4 3 2 1 0

SPIE SPE

Reserved | MSTR | CPOL CPHA SPR

Figure 18.4 Serial Peripheral Control (SPCNTL) Register Fields

Bits | Field Description
7 SPIE Interrupt Enable
Value | Description
0 SPl interrupts are disabled (default)
1 SPI interrupts are enabled if SPIF is set to one
6 SPE System On/Off
Value | Description
0 SPI system is off (default)
1 SPI system is on
5 Reserved
4 MSTR | Master/Slave Mode
Value | Description
0 Reserved
1 SPlis configured as a master (default)
3 CPOL | Clock polarity. When the clock polarity bit is cleared and data is not being transferred, a steady
state low value is produced at the SCK pin of the master device. Conversely, if this bit is set, the
SCK pin will idle high. This bit is also used in conjunction with the clock phase control bit to pro-
duce the desired clock-data relationship between master and slave.
Value | Description
0 spi_sck pin at logic zero between transmissions (default)
1 spi_sck pin at logic one between transmissions

79RC32334/332 User Reference Manual 18 -5 _ June 4. 2002 1.

Table 18.4 SPI Control Register Field Descriptions (Part 1 of 2)

SPI Setup and Register Descriptions

Serial Peripheral Interface

Notes Bits | Field Description
2 CPHA | The clock phase bit, in conjunction with CPOL bit, controls the clock-data relationship between
master and slave. The CPOL bit can be thought of as simply inserting an inverter in series with
the spi_sck line. The CPHA bit selects one of two fundamentally different clocking protocols.
Value | Description
0 First edge on spi_sck latches data (default)
1 Edge following first edge on spi_sck latches data
1:0 SPR These two bits select one of the following four bit rates when RC32334 is a master. These bits

have no effect when in slave mode.

Value | Description

00 Divided by 2 (default)
01 Divided by 4

10 Divided by 16

11 Divided by 32

Table 18.4 SPI Control Register Field Descriptions (Part 2 of 2)

Serial Peripheral Status Register (SPSR)

Note that during a transfer, writing to the SPDR register (see Table 18.6) causes a write collision error
and sets the WCOL bit of the status register. Clear the WCOL bit by reading the status register (SPSR) with
the WCOL bit set, and then reading or writing the SPI data I/O register. The default is 0x80.

7 6 5 4 3 0

SPIF WCOL | Reserved MODF Reserved

Figure 18.5 SPI Status Register (SPSR) Fields

Bits

Field

Description

SPIF

SPI Transfer Complete Flag

The serial peripheral data transfer flag bit is set upon completion of data transfer between the proces-
sor and external device. If SPIF goes high, and the SPIE is set, a serial peripheral interrupt is gener-
ated. Clearing the SPIF bit is accomplished by reading the SPSR (with SPIF set), followed by an
access of the SPDR. Unless SPSR is read (with SPIF set) first, attempts to write to SPDR are inhibited.

Value | Description

0 Ready to transfer

1 Transfer complete. SPDR writes inhibited.

79RC32334/332 User Reference Manual 18 -6 _ June 4. 2002 1.

Table 18.5 SPI Status Register (SPSR) Field Descriptions

Serial Peripheral Interface SPI Setup and Register Descriptions

Notes Bits| Field Description

6 WCOL | Write Collision

The write collision bit is set when an attempt is made to write to the serial peripheral data register
while data transfer is taking place. Clearing the WCOL bit is accomplished by reading the SPSR (with
WCOL set), followed by an access to SPDR.

Value | Description

0 Normal

1 An attempt to write to SPI while a transfer was in progress. The write is ignored.

5 Reserved

4 MODF | Master Error Flag

Asserts an error condition if a write to the SPDR is done while the SPI interface is in non-master
(slave) mode. Refer to the MSTR field in Table 18.4 for more information on the master mode. Clear-
ing the MODF bit is accomplished by optionally reading the SPSR first, followed by a srite of "1" to the
SPCR MSTR field.

Value | Description

0 Normal

1 This is an error condition.

3.0 Reserved

Table 18.5 SPI Status Register (SPSR) Field Descriptions

Serial Peripheral Data 1/0 Register (SPDR)

The serial peripheral data 1/O register is used to transmit and receive data on the serial bus. Only a write
to this register will initiate transmission/reception of another byte, and this will only occur in the master
device. At the completion of transmitting a byte of data, the SPIF status bit is set in both the master and
slave devices.

When the user reads the serial peripheral data /O register, a buffer is actually being read. The first SPIF
must be cleared by the time a second transfer of data from the shift register to the read buffer is initiated or
an overrun condition will exist. In cases of overrun, the byte that causes the overrun is lost.

A write to the serial peripheral data I/O register is not buffered and places data directly into the shift

register for transmission.
7 0
SPDR
Figure 18.6 SPI Data I/O Register
Bits | Field Description

7.0 SPDR | SPI Data I/O Register

A write to this register with the transmit data value automatically initiates simultaneous transmis-
sion and reception of data. At the completion of data transfer, the SPIF status bit is set and the
SPSR register is read. Then the receive data can be read from this register.

Table 18.6 SPI Data I/O Register (SPDR) Field Description

79RC32334/332 User Reference Manual 18 -7 _ June 4. 2002 1.

Serial Peripheral Interface Master Programming Example

Notes Interface to SPI Serial E2PROMs by ATMEL (AT25128)
ATMEL
RC32334 SPI Serial E2PROMs
VDD AT25128

L HOLD

spi_ss n f———p Cs
spi_miso [—— - SO
spi_mos |g— | S
spi_sck |—— puf SCK

SPI Master SPI Slave

Figure 18.7 lllustration of Glueless Connection Between RC32334 Processor and
ATMEL SPI Serial E2PROMs

Master Programming Example

The following sequence initializes the SPI to run at 2MHz (for this example, assume the system clock is

running at 67 MHz).
1. Write SPCNT register with 0x0000_0008. This will divide the internal SPI clock down to 3.7MHz
(67/[(8+1)*2]).

2. Write SPCR register with 0x0000_00f0. SPIE = 1, SPI interrupt enabled. SPE=1, enable SPI for
transmission. MSTR=1, this bit is always programmed to 1, since RC32334 SPI only supports
master mode. Use (0,0) mode where CPOL=0, clock is low when SPI is not active. CPHA=0, latch
data on the first active edge. SPR[1:0]=0, divide internal clock by 2 to generate SP!I clock
(3.7/2=1.85MHz).

3. Write Interrupt Mask Register 14 (0x1800_05e4) with 0x0000_0001. Enable SPI-generated system
interrupt.

4. Read SPSR and SPDR to clear SPIF bit.

Assert spi_ss_n by using the spi_ss_n pin in its general purpose PIO output mode and setting its

data low.

Write SPDR with the value to transmit to start the SPI transmission.

Wait until the SPI interrupt occurs, the interrupt routine will perform the following step:

Read SPSR. Make sure there is no error condition.

Read SPDR. Get the receive value from SPDR, which clears the SPIF bit in the SPSR register.

0. Write SPI Interrupt Clear Register (0x1800_05e8) with 0x0000_0001. Clear SPI Interrupt Pending

Register.

11. If finished with a (multi-) byte command sequence (i.e., a read command/address byte 1/address
byte 2/data 4-byte sequence), then de-assert the spi_ss_n pin via the PIO data register.

12. Repeat steps 5 - 11 as needed.

o

LN

Timing Diagrams

Timing of the SPI Clock-to-Data Output Relationship is shown in Figure 18.8, and timing of the relation-
ship of clock-to-data input is shown in Figure 18.9. Note that the SPI data setup/hold protocol itself implies
0.5 spi_sck clock setup/hold relative to the master and slave devices.

79RC32334/332 User Reference Manual 18 -8 _ June 4. 2002 1.

Serial Peripheral Interface Timing Diagrams

Notes
1 2 3 4 5
cpu_masterclk \ \ ! \ § N N
—>Tdo16, Tdoh9
spi_sck \
—»|Tdo16, Tdoh9
Spi_mosi /
Figure 18.8 SPI Clock-to-Data Output Relationship
1 2 3 4 5
k> Tsu7
+ Thidg
cpu_masterclk 1 ¥ |
—>{ Td¢16, Tdoh9
spi_sck /
Spi_miso \
Figure 18.9 SPI Clock-to-Data Input Relationship
79RC32334/332 User Reference Manual 18-9

e Datasheetdieom

Serial Peripheral Interface Timing Diagrams

Notes

79RC32334/332 User Reference Manual 18 - 10 - dume 4. 2002 .

Chapter 19

Clocking, Reset, and
Initialization

Introduction

This chapter provides a description of the clock signals (“clocks”) that are used on the RC32334
processor. For a discussion of the basic system clocks and system timing parameters, see Chapter 8.

Notes

Signal Terminology
In this chapter and throughout the manual, when describing signal transitions, the following terminology
is used:
. Rising edge indicates a low-to-high (0 to 1) transition.
Y Falling edge indicates a high-to-low (1 to 0) transition.
D' Clock-to-Q delay is the amount of time it takes for a signal to move from the input of a device (clock)
to the output of the device (Q).

These terms are illustrated in Figure 19.1 and Figure 19.2.

single clock cycle
I
high-to-low \
transition low-to-high
transition
Figure 19.1 Signal Transitions
data out
Q
data in
_»
clock input
Clock-to-Q delay
-

Figure 19.2 Clock-to-Q Delay

Basic System Clocks
The RC32334 processor has a single input clock, cpu_masterclk.

Cpu_masterclk

The cpu_masterclk input must meet the maximum rise time (Tycrise), Maximum fall time (Tycen),
minimum clock high (Tyickigh) time, minimum clock low (Tyicow) time, and input jitter (T jigern) parame-
ters for proper phase locked loop (PLL) operation.

L Jiiae 42002

79RC32334/332 User Reference Manual 19-1

Clocking, Reset, and Initialization Phase-Locked Loop (PLL) Operation

Notes The processor bases all internal clocking on the single cpu_masterclk (MCIk) input signal. The RC32334
uses cpu_masterclk to sample data at the system interface and to clock data into the processor system
interface output register.

The external agent should use cpu_masterclk for the global system clock and for clocking the output
registers of an external agent. Figure 19.3 shows the input, output and hold time parameters measured at
the midpoint of the rising clock edge.

cpu_masterck N\

*}‘ s |
Input |

) oy
Output 00
— J

v

toon

Figure 19.3 System Clocks Data Setup, Output, and Hold Timing

PClock

By multiplying cpu_masterclk 2, 3, or 4 times (programmed during the reset or initialization sequence
through the Clock Multiplier configuration mode bits), the processor generates the internal pipeline clock
rate, PClock, which is used by all internal registers and latches.

Figure 19.4 shows the clocks for a cpu_masterclk-to-PClock multiply by 2.

Cycle 1 | 2 | 3 | 4 |
cpu_masterclk I _/— I -
tvckHigh ‘
tMeKLow
tmekp

PClock I AU U R W A U WA U A

Figure 19.4 Timing lllustration of cpu_masterclk-to-PClock Multiply by 2

Phase-Locked Loop (PLL) Operation

The processor aligns the pipeline clock, PClock, to the cpu_masterclk by using an internal phase-locked
loop (PLL) circuit that generates aligned clocks. By their nature, PLL circuits are only capable of generating
aligned clocks for cpu_masterclk frequencies within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a clock aligned with
cpu_masterclk by the PLL can lead or trail cpu_masterclk by as much as the maximum clock jitter specified
in the clock parameters table in the data sheet for this device.

PLL Components and Operation

The storage capacitor required for the Phase-Locked Loop circuit is contained in the RC32334.
However, it is recommended that the system designer provide a filter network of passive components for
the PLL power supply.

The Phase Locked Loop circuit requires several passive components for proper operation, which are
connected to Ve, Vss, VecP, and VssP, as illustrated in Figure 19.5.

79RC32334/332 User Reference Manual 19-2 _ June 4. 2002 1.

Clocking, Reset, and Initialization PLL Analog Power Filtering

Notes CPU Board
RC32334

Vce

VccP 4

d

H

VssP

Vss Note: C1, C2, C3 are Board
Caps.

Figure 19.5 PLL Passive Components

It is essential to isolate the analog power and ground for the PLL circuit (VecP/VssP) from the regular
power and ground (Vce/Vss). Initial evaluations have yielded good results with the following values:

C1=1nF
C2=3.3uF
C3=10uF
Because the optimum values for the filter components depend upon the application and the system

noise environment, these values should be considered as starting points for further experimentation within
your specific application.

PLL Analog Power Filtering

For noisy module environments, a filter circuit of the following form is recommended as shown in Figure
19.6.

10 ohm
Vee —AW VecP
i Il 1

10 uF 0.1uF 100 pF
T VssP

s 1

Figure 19.6 PLL Filter Circuit for Noisy Environments

Reset Function

The RC32334 reset uses the cpu_coldreset_n input signal:

U Power-on reset starts when the power supply is turned on and completely re-initializes the internal
state machine of the processor without saving any state information. Then, the ModeBit[9:0]are
read, and the processor allows its internal phase locked loops to lock, stabilizing the processor
internal clock. After the internal clock is stabilized, the reset exception will be taken. The timing of
the cold reset signal is illustrated in Figure 19.7.

79RC32334/332 User Reference Manual 19-3 _June 4. 2002 W

Clocking, Reset, and Initialization

Reset Function

Notes

79RC32334/332 User Reference Manual

Reset and Initialization Interface

During the reset sequence, the CPU RC32300 core of the RC32334 obtains configuration information
using its mode configuration interface. The initialization values for the RC32334 are obtained from
ejtag_pcst [2:0], mem_addr [19:17], debug_cpu_i_d_n, debug_cpu_ads_n, debug_cpu_dma_n and

debug_cpu_ack_n signals which are ModeBit[9:0] during the power-on reset. The ModeBit[9:0] are latched
with the rising edge (negating edge) of the cpu_coldreset_n signal. Timing of the mode configuration inter-
face reset sequence is shown in Figure 19.7. Additional system controller configuration information is
obtained from mem_addr[22:20] as explained in section Reset of On-chip System Controller Logic later in

this chapter.

The boot-mode configuration settings are listed in Table 19.1.

VCC

cpu_masterclk
(MClk)

modebit[9:0]

cpu_coldreset_n

_

/S N\—/\. -/ N\ -/ \—
—

§>=10ms

>=110 ms

~ 120 ms '
- |

Figure 19.7 Mode Configuration Interface Reset Sequence

Boot-Mode Configuration Settings

Pin M;i(:e Description Value Mode Setting
ejtag_pcst[2:0] 2.0 Clock Multiplier 0 Multiply by 2
MSB (2) ;2:;2??;8”; CIE multiplied internally to 1 Multiply by 3
2 Multiply by 4
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved
debug_cpu_i_d_n 3 EndBit 0 Little-endian ordering
1 Big-endian ordering
debug_cpu_ack_ n |4 Reserved 0
debug_cpu_ads_n |5 Reserved 0
debug_cpu_dma_n |6 TmrintEn 0 Enables timer interrupt
Enaples/Disables the timer interrupt on 1 Disables fimer interrupt
cpu_int_n[5]

Table 19.1 Boot-Mode Configuration Settings (Part 1 of 2)

19 -4 ‘www DataShestAll cop

Clocking, Reset, and Initialization Reset Function

Notes Pin M;i':e Description Value | Mode Setting
mem_addr[17] 7 Reserved for future use. 1
mem_addr[19:18] 9:8 Boot-Prom Width 00 8 bits
MSB (9) | Specifies the memory port width of the -
. . 01 16 bits
memory space which contains the boot
prom. 10 32 bits
11 Reserved

Table 19.1 Boot-Mode Configuration Settings (Part 2 of 2)

reset_boot_mode Settings
The RC32334 reset-boot mode initialization setting values and mode descriptions are listed in Table

19.2.
mem_addr[22:21] | mem_addr[20] Description
11 X Tri-state memory bus and EEPROM bus during coldreset_n
assertion.
10 X Reserved
01 1 PCl-boot mode (pci_host_mode must be in satellite mode)

RC32334 will reset either from a cold reset or from a PCI
reset. Boot code is provided via PCI. PCl is initialized via the

PCI EEROM.
01 0 Not allowed
00 1 Standard-boot mode (satellite mode)

Boot from the RC32334’s memory controller (typical system).
Serial EEPROM not supported.

00 0 Standard-boot mode (host mode)
Boot from the RC32334’s memory controller (typical system).
Serial EEPROM not supported.

Table 19.2 RC32334 reset_boot_mode Initialization Settings

pci_host_mode Settings

During reset initialization, the RC32334’s PCl interface can be set to the Satellite or Host mode settings.
When set to the Host mode, the CPU must configure the RC32334's PCI configuration registers, including
the read-only registers. If the RC32334’s PCl is in the PCI-boot mode Satellite mode, read-only configura-
tion registers are loaded by the serial EEPROM.

Reset of On-chip System Controller Logic

For the on-chip system logic, the reset sequence occurs in conjunction with the RC32300 CPU core
reset sequence described above. On power up, cpu_coldreset_n is asserted. When cpu_coldreset_n is de-
asserted, the RC32300 CPU core reset vector mode bits are latched in. This is followed by the reset vector
from the on-chip system peripherals being latched in. After cpu_coldreset_n de-asserts, the cpu_reset_n
signal is provided, back to the RC32300 CPU core and remains asserted for 256 clocks.

After cpu_reset_n de-asserts, the CPU will first issue the reset boot address at physical address
0x1fc0_0000, then initiate a boot memory cycle using mem_cs_n[0] set to 32 wait-states. The RC32334
uses mem_addr[22:17] to read in part of the reset vector. As shown in Figure 19.8, mem_addr{22:17] is tri-
stated during coldreset and continues to be tri-stated until the 2nd clock after cpu_reset_n de-asserts. Typi-
cally, the system uses pull-up or pull-down resistors of 5K ohm to select the reset initialization vector when
cpu_coldreset_n de-asserts.

79RC32334/332 User Reference Manual 19-5 _ June 4. 2002 1.

Clocking, Reset, and Initialization Reset Function

Notes

coldrese Jdr IatchéHG clkevarmreset memaddr valig

[« Tsu22
<« ThldR2

cpu_masterclk m

y 4
cpu_coldreset_n s
f

set_n (internal_signal)

f
{
e

ven by System/pullu§< 'b000 driven by |R|

mem_addr[22:20] ><3

L)

Thid10

y 3 1
mem_addr[19:17] @< Driven by System‘ ‘Ilups/pulldowns 'b000 driven by |R|

Figure 19.8 Reset Vector Initialization Part 1 of 2

The RC32334 wusually drives debug_cpu_i_d_n, debug_cpu_ads_n, debug_cpu_dma_n, and
debug_cpu_ack_n. During boot time, these four debug signals are used as reset initialization vector bits.
Thus, the RC32334 tri-states these four debug signals during the assertion of cpu_coldreset_n, as shown in

Figure 19.9. During coldreset, the system can pull-up or pull-down these four debug signals.

—coldreset: RIV- 256 clocks—+warm reset
Tsu21
Thid21
cpu_masterclk \] \ ¥ \ ¥ i i ‘—_‘ _#
* Tsu20 [
Thid20
cpu_coldreset_n / ”
cpu_reset_n “ /
(internal signal)
—Tdph20—*] *Tdo20, Tdoh20
debug_cpu_ads_n X__RIV driven by R”32334
‘ *Tdo20, Tdoh20
debug_cpu_ack_n X__RIV driven by Rﬂ32334
‘ - Tdo20, Tdoh20
debug_cpu_dma_n X__RIV driven by R}j3233l
‘ *Tdo20, Tdoh20
debug_cpu_i_d_n X__RIV driven by R1$32334
‘ 1 Tdo20, Tdoh20
ejtag_pcst[2:0] X_RIV driven by R}32334

Figure 19.9 Reset Vector Initialization Part 2 of 2

79RC32334/332 User Reference Manual 19-6 _ June 4. 2002 1.

JTAG Boundary Scan

®

Introduction

As previously described, the RC32334 is a logical integration of both the RC32364 standalone CPU and
the RC32134 system controller. Because each of these discrete devices includes a TAP controller, there
are 2 TAP controllers on the RC32334, one for the CPU core (referred to as the RC32300 CPU core TAP
Controller), described in the next chapter, and one for System Logic controller, described in this chapter.

Notes

The System Controller TAP Controller is used to provide conventional standard JTAG Boundary Scan
access to the RC32334 pin interface. The RC32300 CPU Core TAP Controller is used to provide access to
the EJTAG interface on the CPU Core.

The two TAP Controllers are connected in parallel as shown in Figure 20.1 and share the JTAG control
pins, except for separate jtag_tms and ejtag_tms pins. Thus at least one of the two TAP Controllers must be
in Test-Logic-Reset at any given time, so that the jtag_tdo pin is only actively being driven from no more
than one of the TAP Controllers. For example, if neither TAP Controller is in use, they both can be reset by
asserting jtag_trst_n, or by asserting both jtag_tms and ejtag_tms high for 5 consecutive jtag_tck clocks. If
the RC32300 CPU Core TAP Controller is to be used, then the System Controller TAP Controller must be
reset by asserting jtag_tms high for 5 consecutive jtag_tck clocks. If the System Controller TAP Controller is
to be used, then the RC32300 CPU Core TAP Controller must be reset by asserting ejtag_tms high for 5
consecutive jtag_tck clocks.

The RC32300 CPU Core TAP Controller is one of the two TAP Controllers on the RC32334. As such,
the RC32300 CPU Core TAP Controller is used primarily for EJSTAG support, since many EJTAG functions
are accessed via the RC32300 CPU Core TAP Controller JTAG port. Note that the Boundary Scan
Register for the internal CPU Core must never be used, as it will access internally connected CPU
Core ports/pins. Instead the System Controller TAP Controller Boundary Scan Register is provided for
RC32334 conventional JTAG pin access, control, and boundary scan.

Boundary Scan Cells

£]
© ©
(@] (&]
C c
@ @
O O
o System Controller o
2 2
© ©
kel el
c c
=} >
<] <]
e} M
jtag_t
ffag_tms P Tap
jtag_tck, jtag_tdi, .
jtag_trst_n P jtag_tdo
ejtag_tms P TAP
EJTAG
CPU Core

Boundary Scan Cells

Figure 20.1 Dual TAP Controller Block Diagram

79RC32334/332 User Reference Manual 20 -1 W; 3 e

System Logic TAP Controller Overview

JTAG Boundary Scan

Notes

79RC32334/332 User Reference Manual 20-2 _ June 4. 2002 1.

System Logic TAP Controller Overview

The system logic utilizes a 16-state, four-bit TAP controller, a four-bit instruction register, and five dedi-
cated pins to perform a variety of functions. The primary use of the JTAG TAP Controller state machine is to
allow the five external JTAG control pins to control and access the RC32334's many external signal pins.
The JTAG TAP Controller can also be used for identifying the device part number. The JTAG logic of the
RC32334 is depicted in Figure 20.2.

—»‘ Boundary Scan Register }—>
—»{ Device ID Register |¥>
A

—>| Bypass Register

‘ Instruction Register Decoder

4 4 4 4 jtag_tdo
jtag_tdi
—>| 4-Bit Instruction Register

jtag_tms

tag_tck Tap Controller

jtag_trst_n

Figure 20.2 Diagram of the JTAG Logic

Signal Definitions

JTAG operations such as Reset, State-transition control and Clock sampling are handled through the
signals listed in Table 20.1. A functional overview on the TAP Controller and Boundary Scan registers is
provided in the sections following the table.

Pin Name | Type Description
jtag_trst_n Input JTAG RESET
Asynchronous reset for JTAG TAP.
jtag_tck Input JTAG Clock

Test logic clock. Jtag_tms and jtag_tdi are sampled on the rising edge. Jtag_tdo is output
on the falling edge.

jtag_tms Input JTAG Mode Select Requires an external pull-up.
Controls the state transitions for the TAP controller state machine (internal pull-up).

jtag_tdi Input JTAG Input
Serial data input for BSC chain, Instruction Register, IDCODE register, and BYPASS
register (internal pull-up).

jtag_tdo Output | JTAG Output
Serial data out. Tri-stated except when shifting while in Shift-DR and SHIFT-IR TAP con-
troller states.

Table 20.1 JTAG Pin Descriptions

The system logic TAP controller transitions from state to state, according to the value present on
jtag_tms, as sampled on the rising edge of jtag_tck. The Test-Logic Reset state can be reached either by
asserting jtag_trst_n or by applying a 1 to jtag_tms for five consecutive cycles of jtag_tck. A state diagram
for the TAP controller appears in Figure 20.3. The value next to state represent the value that must be
applied to jtag_tms on the next rising edge of jtag_tck, to transition in the direction of the associated arrow.

JTAG Boundary Scan Test Data Register (DR)

Notes
I
1 Test- Logic
Reset
v v0 1 1 !
0 | Run-Test/ »| Select- p| Select
Idle —p» DR-Scan IR-Scan
1 I
1| Capture-DR Capture-IR
v'3 v v
Shift-DR Shift-IR
v v
Extt-DR |1 » Exitl-R 1
v 3 vOy
Pause-DR Pause-IR
vi v
0 [Exit-DR 0 |Exit2R
1 1
0 1 0 1 0
Figure 20.3 State Diagram of RC32334’s TAP Controller
Test Data Register (DR)
The Test Data register contains the following:
' The Bypass register
5 The Boundary Scan registers
' The Device ID register
These registers are connected in parallel between a common serial input and a common serial data
output, and are described in the following sections. For more detailed descriptions, refer to IEEE Standard
Test Access port (IEEE Std. 1149.1-1990).
Boundary Scan Registers

The RC32334 scan chain is 330 bits long and comprises 171 logical elements--where each logical
element represents a signal pin. The five JTAG pins do not have scan elements associated with them, nor
does the EJTAG ejtag_tms pin. Of the 171 logical elements, 125 are two-bit bidirectional cells, 33 are two-
bit tri-statable outputs, and 14 are one-bit dedicated inputs.

The RC32332 scan chain is 303 bits long, has 157 elements: 116 bidirectional, 30 outputs, 11 inputs.
This boundary scan chain is connected between jtag_tdi and jtag_tdo when the EXTEST or SAMPLE/
PRELOAD instructions are selected. Once EXTEST is selected and the TAP controller passes through the
UPDATE-IR state, whatever value is currently held in the boundary scan register’s output latches is immedi-
ately transferred to the corresponding outputs or output enables.

Therefore, the SAMPLE/PRELOAD instruction must first be used to load suitable values into the
boundary scan cells, so that inappropriate values are not driven out onto the system pins. All of the
boundary scan cells feature a negative edge latch, which guarantees that clock skew cannot cause incor-
rect data to be latched into a cell. The input cells are sample-only cells. The simplified logic configuration is
shown in Figure 20.4.

79RC32334/332 User Reference Manual 20-3

www NataGhestdl oo

JTAG Boundary Scan Test Data Register (DR)

Inp'ut To core logic .
Pin >

< D Q To next cell

Notes

v

From previous cell

shift_dr /{ l7>

v

clock_dr

Figure 20.4 Diagram of Observe-only Input Cell

The simplified logic configuration of the output cells is shown in Figure 20.5.

EXTEST To Next Cell

Data from Core 4

MUX /{_

To OutputPad

»

MUX

Data Ifrom Previous Cell

shift_dr 4
clock_dr update_dr F

Figure 20.5 Diagram of Output Cell

The output enable cells are also basically output cells. The simplified logic appears in Figure 20.6.

EXTEST To next cell
Output Enable 4

From Core
% To output enable _
E | 4

3
Data from previous cell = D Q D Q
shift_dr /{ % 2%
clock_dr update_dr

Figure 20.6 Diagram of Output Enable Cell

79RC32334/332 User Reference Manual June 4, 2092

JTAG Boundary Scan Instruction Register (IR)

The bidirectional cells are composed of only two boundary scan cells. They contain one output enable
cell and one capture cell, which contains only one register. The input to this single register is selected via a
mux that is driven selected by the output enable cell and the EXTEST mode. When the output enable cell is
driving a high out to the pad (which enables the pad for output) and EXTEST is disabled, the single capture
register will be configured to capture from the output signal from the core to the pad.

Notes

However, in the case where the Output Enable is low, signifying a tri-state condition at the pad, then the
Capture Register will capture from the input from the pad. The configuration is shown graphically in Figure
20.7.

From previous cell

Output enable from core ¢
- Output Enable Cell A
EXTEST
v
‘\O/

v
Output from core

— P Capture Cell
Input to core | » Pin

]
N

MUX

v
To next cell

Figure 20.7 Diagram of Bidirectional Cell

Instruction Register (IR)

The Instruction register allows an instruction to be shifted serially into the processor at the rising edge of
jtag_tck. The instruction is then used to select the test to be performed or the test register to be accessed,
or both. The instruction shifted into the register is latched at the completion of the shifting process, when the
TAP controller is at the Update-IR state.

The Instruction register contains four shift-register-based cells that can hold instruction data. These
mandatory cells are located near the serial outputs and are the least significant bits. The values of the bits
are 0 and 1 (1 is the least significant bit). This register is decoded to perform the following functions:

U o select test data registers that may operate while the instruction is current. The other test data
registers should not interfere with chip operation and selected data registers.

' To define the serial test data register path used to shift data between jtag_tdi and jtag_tdo during
data register scanning.

The Instruction Register is comprised of 4 bits to decode instructions as follows in Table 20.2.

Instruction Definition Opcode

EXTEST Mandatory instruction allowing the testing of board level interconnections. Data is typ-| 0000
ically loaded onto the latched parallel outputs of the boundary scan shift register using
the SAMPLE/PRELOAD instruction prior to use of the EXTEST instruction. EXTEST
will then hold these values on the outputs while being executed. Also see the CLAMP
instruction for similar capability.

Table 20.2 Instructions Supported By RC32334’s JTAG Boundary Scan (Part 1 of 2)

79RC32334/332 User Reference Manual 20-5 _ June 4. 2002 1.

JTAG Boundary Scan Instruction Register (IR)

Notes Instruction Definition Opcode
SAMPLE/ Mandatory instruction that allows data values to be loaded onto the latched parallel | 0001
PRELOAD output of the boundary-scan shift register prior to selection of the other boundary-

scan test instruction. The Sample instruction allows a snapshot of data flowing from
the system pins to the on-chip logic or vice versa.

DEVICE_ID Provided to select Device Identification to read out manufacturers identity, part, and | 0010
version number

HIGHZ Tri-states all output and bidirectional boundary scan cells. 0011

RESERVED Behaviorally equivalent to the BYPASS instruction as per the IEEE std. 1149.1 speci-| 0100
fication. However, the user is advised to use the explicit BYPASS instruction.

RESERVED 0101
RESERVED 0110
RESERVED 0111
CLAMP Provides JTAG user the option to bypass the part’s JTAG controller while keeping the | 1000
part outputs controlled similar to EXTEST.
UNUSED The unused instructions are behaviorally equivalent to the BYPASS instruction as per | 1001
UNUSED the IEEE Std. 1149.1 specification. However, the user is advised to use the explicit 1010
BYPASS instruction, as the internal usage of these currently unused instructions
UNUSED could possibly vary in future implementations of the device. 1011
UNUSED 1100
VALIDATE Automatically loaded into the instruction register whenever the TAP controller passes | 1101
through the CAPTURE-IR state. The lower two bits ‘01’ are mandated by the IEEE
std. 1149.1 specification.
UNUSED Same as other UNUSED instructions above 1110
BYPASS The BYPASS instruction is used to truncate the boundary scan register as a single bit | 1111

in length

Table 20.2 Instructions Supported By RC32334’s JTAG Boundary Scan (Part 2 of 2)

Extest

The external test (EXTEST) instruction is used to control the boundary scan register, once it has been
initialized using the SAMPLE/PRELOAD instruction. Using EXTEST, the user can then sample inputs from
or load values onto the external pins of the RC32334. Once this instruction is selected, the user then uses
the SHIFT-DR TAP controller state to shift values into the boundary scan chain. When the TAP controller
passes through the UPDATE-DR state, these values will be latched onto the output pins or into the output
enables.

Sample/Preload

The sample/preload instruction has a dual use. The primary use of this instruction is for preloading the
boundary scan register prior to enabling the EXTEST instruction. Failure to preload will result in unknown
random data being driven onto the output pins when EXTEST is selected. The secondary function of
SAMPLE/PRELOAD is for sampling the system state at a particular moment. Using the SAMPLE function,
the user can halt the device at a certain state and shift out the status of all of the pins and output enables at
that time.

Bypass

The BYPASS instruction is used to truncate the boundary scan register to a single bit in length. During
system level use of the JTAG, the boundary scan chains of all the devices on the board are connected in
series. In order to facilitate rapid testing of a given device, all other devices are put into BYPASS mode.

79RC32334/332 User Reference Manual 20-6 _ June 4. 2002 1.

JTAG Boundary Scan Instruction Register (IR)

Notes Therefore, instead of having to shift 307 times to get a value through the RC32334, the user only needs to
shift one time to get the value from jtag_tdi to jtag_tdo. When the TAP controller passes through the
CAPTURE-DR state, the value in the BYPASS register is updated to be 0.

If the device being used does not have a DEVICE_ID register, then the BYPASS instruction will automat-
ically be selected into the instruction register whenever the TAP controller is reset. Therefore, the first value
that will be shifted out of a device without a DEVICE_ID register is always 0. Devices such as the RC32334
that include a DEVICE_ID register will automatically load the DEVICE_ID instruction when the TAP
controller is reset, and they will shift out an initial value of 1. This is done to allow the user to easily distin-
guish between devices having DEVICE_ID registers and those that do not.

Clamp

This instruction, listed as optional in the IEEE 1149.1 JTAG Specifications, allows the boundary scan
chain outputs to be clamped to fixed values. When the clamp instruction is issued, the scan chain will
bypass the RC32334 and pass through to devices further down the scan chain.

DevicelD

The DEVICEID instruction is automatically loaded when the TAP controller state machine is reset either
by the use of the jtag_trst_n signal or by the application of a ‘1’ on jtag_tms for five or more cycles of
jtag_tck as per the IEEE Std 1149.1 specification. The least significant bit of this value must always be 1.
Therefore, if a device has a DEVICE_ID register, it will shift out a 1 on the first shift if it is brought directly to
the SHIFT-DR TAP controller state after the TAP controller is reset. The board- level tester can then
examine this bit and determine if the device contains a DEVICE_ID register (the first bit is a 1), or if the
device only contains a BYPASS register (the first bit is 0).

However, even if the device contains a DEVICE_ID register, it must also contain a BYPASS register. The
only difference is that the BYPASS register will not be the default register selected during the TAP controller
reset. When the DEVICE_ID instruction is active and the TAP controller is in the Shift-DR state, the thirty-
two bit value that will be shifted out of the device-ID register is 0x10018067.

Bit(s) | Mnemonic Description R/W| Reset
0 reserved reserved Ox1 R 1
11:1 Manuf_ID Manufacturer Identity (11 bits) R 0x33
IDT 0x33
27:12 Part_number Part Number (16 bits) R impl.
This field identifies the part number of the processor derivative. dep.

For the RC32334 this value is: 0x0018
For the RC32332 this value is: 001Ah

31:28 Version Version (4 bits) R impl.
This field identifies the version number of the processor derivative. dep.
For the RC32334/RC32332, this value is 0x1

Table 20.3 System Controller Device Identification Register

Version Part Number Vendor ID LSB

0001 0000/0000[0001|1000 | 0000j0110[011 1

Figure 20.8 System Controller Device ID Instruction Format

Validate

The VALIDATE instruction is automatically loaded into the instruction register whenever the TAP
controller passes through the CAPTURE-IR state. The lower two bits ‘01’ are mandated by the IEEE Std.
1149.1 specification.

79RC32334/332 User Reference Manual 20-7 _ June 4. 2002 1.

JTAG Boundary Scan Usage Considerations

Notes Reserved
Reserved instructions implement various test modes used in the device manufacturing process. The
user should not enable these instructions.

Unused?!

The unused instructions are behaviorally equivalent to the BYPASS instruction as per the IEEE Std.
1149.1 specification. However, the user is advised to use the explicit BYPASS instruction as the internal
usage of these currently unused instructions could possibly vary in future implementations of the device.

Usage Considerations

As previously stated, there are internal pull-ups on jtag_trst_n, jtag_tms, and jtag_tdi. However, jtag_tck
also needs to be driven to a known value. However, it is best to drive a zero on the jtag_tck pin when it is
not in use or use an external pull-down resistor. In order to guarantee that the JTAG does not interfere with
normal system operation, the TAP controller should be forced into the Test-Logic-Reset controller state by
continuously holding jtag_trst_n low and/or jtag_tms high when the chip is in normal operation. If JTAG will
not be used, externally pull-down jtag_trst_n low to disable it.

1 Any unused instruction is defaulted to the BYPASS instruction

79RC32334/332 User Reference Manual 20-8 _June 4. 2002 W

EJTAG (In-circuit Emulator)
Interface

Introduction

As previously described, the RC32334 is a logical integration of both the RC32364 stand-alone CPU
and the RC32134 system controller. Because each of these discrete devices includes a TAP controller,
there are 2 TAP controllers on the RC32334, one for the CPU core (referred to as the RC32300 CPU core
TAP Controller), described in this chapter, and one for System Logic Controller, described in the previous
chapter.

Notes

The System Logic Controller TAP Controller is used to provide conventional standard JTAG Boundary
Scan access to the RC32334 pin interface. The RC32300 CPU core TAP Controller is used to provide
access to the EJTAG interface on the CPU core. The EJTAG version implemented in the RC32334 is 1.5.3.

The two TAP Controllers are connected in parallel as shown in Figure 21.1 and share the JTAG control
pins, except for separate jtag_tms and ejtag_tms pins. Thus at least one of the two TAP Controllers must be
in Test-Logic-Reset at any given time, so that the jtag_tdo pin is only actively being driven from no more
than one of the TAP Controllers. Thus for example, if neither TAP Controller is in use, they both can be reset
by asserting jtag_trst_n, or by asserting both jtag_tms and ejtag_tms high for 5 consecutive jtag_tck clocks.
If the RC32300 CPU core TAP Controller is to be used, then the System Controller TAP Controller must be
reset by asserting jtag_tms high for 5 consecutive jtag_tck clocks. If the System Controller TAP Controller is
to be used, then the RC32300 CPU core TAP Controller must be reset by asserting ejtag_tms high for 5
consecutive jtag_tck clocks.

Note that the Boundary Scan Register for the internal CPU Core must never be used, as it will
access internally connected CPU Core ports/pins. Instead the System Logic Controller TAP Controller
Boundary Scan Register is provided for RC32334 conventional JTAG pin access, control, and boundary
scan.

Boundary Scan Cells

System Controller

Boundary Scan Cells ‘
Boundary Scan Cells ‘

jtag_tms >

TAP

+ P jtag_tdo

ejtag_tms p| TAP

jtag_tck, jtag_tdi,
jtag_trst_n

B

EJTAG

£

CPU Core

Boundary Scan Cells

Figure 21.1 Dual TAP Controller Block Diagram

79RC32334/332 User Reference Manual 21 -1

Ui 6, 28020 0

EJTAG (In-circuit Emulator) Interface Overview

Notes On-chip support for low-cost in-circuit emulation (ICE) equipment is featured on the RC32334. The
RC32300 CPU core on the RC32334 implements the standard MIPS Enhanced JTAG (EJTAG) interface,
which includes the following key ICE interface capabilities:

. Breakpoints

' Debug exception handlers

' Execution trace capability

Overview

The following features are supported by the EJTAG:

5 Two additional instructions are added to the RC32300 CPU core: Set Software Debug Breakpoints
(SDBBP) and Return from Debug Exception (DERET).

U The EJTAG module doesn'’t support single step execution in hardware. However, it can be accom-
plished in software.

Y Hardware breakpoints can be set at:

virtual instruction address (with address bit masking)

virtual data address (with address bit masking) and data value (with byte lane masking)

physical processor core address (with lower address bit masking) and physical processor core

data (with data bit masking)

5 Trace Trigger points can be specified instead of hardware breakpoints. The trace trigger is limited
by the max speed of the ejtag_dclk that the EJTAG probe can sustain.

H Debug breaks can be initiated by the EJTAG Probe via a JTAG pin (jtag_tdi / ejtag_dint_n).
5 PC Trace information is provided by additional status pins and the processor clock.
The EJTAG unit on the RC32300 CPU core is used for debugging the state of the CPU core and is
unaware of the peripherals around the core (memory controller, DRAM controller, etc.) that are used to

create the RC32334. To access the peripherals around the CPU core, the ICE probe must execute standard
load and store instructions to interrogate the register contents of these modules.

The block diagram of the EJTAG Unit on the RC32300 CPU is given in Figure 21.2, and the simplified
block diagram is shown in Figure 21.3.

The following main blocks provide debug functionality:

Instruction Address Match Logic

Data Address & Data Value Match Logic

Processor Address Bus & Processor Data Bus Match Logic

PC Trace Logic

Software Debug Breakpoint (SDBBP) instruction and Debug Exception Return (DERET) instruction
Debug Registers

(]

O 0o o o o

79RC32334/332 User Reference Manual 21-2 _ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Block Diagrams

Notes Block Diagrams
MIPS Processor Core +cIrReaITime *ReaITi me
JtagRst
RC 32300 core < ProbEN |
0 Sas DM (debug mode) PRt
I—cause | »
31 £0C | other
_ exceptions Debug
— R
0 | ALU/Shifter|_ cntl [-
(A Cdesave] ~
DSU debig A A Run
¥ et Y depc Y Y | bore
TPc || pctrace type] [bus interface unit]
PCST || logic Ingr. Address Alnsr. Ingrl/Data DataAdress AData Proc. Address AProc. Data
[2:0]
20 | v v L2 L A
| Instruction Cache | | Data Cache | |on chip BusM/S |nterface|
TM Trace DM
Trigger Store Data Load Data
; L
OsU_TIE
T Inst.Addr.Brk Yvy Data Br* y y |
':S;—TTI%E)Iorﬁguction galgaAd\c/irajes grocéAddres step — R
> eS| InstAddr aavaue | naa I= JTAG
rslT_O; Mat_ch Trigger Match Logic Trigger Proc. Data.Bus Bk DM |
Dm& Logic Match Logic
r Jtagzk_ T T OR -
| 1 - —1 Trace
[DSU Slave Interface (read/write DSU registers) | — Trigger
on chip Bus

Figure 21.2 Block Diagram

Inst. VA

Data VA T
[(Phys. Addr Bipoint. J——

VA FF00_0000

|_>_mIFFFF7FFFF

VA 0000 0000 to
TDO TDI

To BIU

Figure 21.3 Simplified EJTAG Block Diagram

Debug Support Unit

This section describes the EJTAG Debug Support unit. It covers the debug instructions added to the
RC32300 CPU core instruction set as well as support functions and registers for debugging.

The debug unit is used to access the internal state of the RC32300 CPU Core, through a standard JTAG
interface that is compatible with the IEEE Std. 1149.1 specification (refer to Chapter 20 in this manual for
additional information). Additional status pins (for Run-time and Real-time data collection) along with

79RC32334/332 User Reference Manual June 4, 2092

EJTAG (In-circuit Emulator) Interface EJTAG Interface

external third-party hardware and software creates an enhanced JTAG interface - referred to as EJTAG -

Notes

which provides a Real-Time debugging system.

Information on instructions that have been added to the MIPS ISA instruction set and Real-time debug-

ging register descriptions are also included.

Instruction Address Match Logic

If a match occurs between the processor’s virtual Instruction Address and the address value set in the
Instruction Address Break register, a Debug Exception is generated to the core and/or a Trace Trigger code
is applied to the ejtag_pcst[2:0] lines. Address bits can be excluded from comparison by setting mask bits in

a Mask register.

Data Address & Data Value Match Logic

If a match occurs between the processor’s virtual Data Address and the address value set in the Data
Address Break register, then a Debug Exception is generated to the core and/or a Trace Trigger code is
applied to the ejtag_pcst[2:0] lines. Status bits in the Debug register indicate load or store access. Address

bits can be excluded from comparison by setting mask bits in a Mask register.

Processor Address Bus & Processor Data Bus Match Logic

If a match occurs between the Processor’s physical Address Bus and the address value set in the
Processor Address Bus Break register and there is also a match between the processor’s accompanying
data and the value in the Processor Data Bus Break register, then a Debug Exception is generated to the
core and/or a Trace Trigger code is applied to the ejtag_pcst[2:0] lines. The lower 24 Address bits can be
excluded from comparison by setting mask bits in a Mask register; the Processor Data Bus bits can be

excluded from comparison by setting mask bits in a Mask register.

The hardware Match Logic is not the only way to generate a Debug Exception. It can also be accom-

plished by the SDBBP instruction and by the EJTAG Probe (through JTAG).

The cause of the Debug Exception can be found in status bits of the Debug Register.

EJTAG Interface

The EJTAG interface consists of the standard JTAG signals (i.e. jtag_tck, jtag_tms, jtag_tdi, jtag_tdo,
jtag-trst), extended with extra signals that provide real time program counter output. A description of the

EJTAG pins is shown in Table 21.1.

Drive
Name Type| Strength/ Description
Capability
jtag_tck Input | — JTAG Test Clock Requires an external pull-down.

An input test clock used to shift into or out of the Boundary-Scan register
cells. jtag_tck is independent of the system and the processor clock with
nominal 50% duty cycle.

jtag_tdi,
ejtag_dint_n

Input

JTAG Test Data In Requires an external pull-up.

On the rising edge of jtag_tck, serial input data are shifted into either the
Instruction or Data register, depending on the TAP controller state. During
Real Mode, this input is used as an interrupt line to stop the debug unit
from Real Time mode and return the debug unit back to Run Time Mode
(standard JTAG). This pin is also used as the ejtag_dint_n signal in the
EJTAG mode.

79RC32334/332 User Reference Manual

Table 21.1 EJTAG Pins (Part 1 of 2)

21-4

www NataGhestdl oo

EJTAG (In-circuit Emulator) Interface EJTAG Interface

Notes Drive
Name Type| Strength/ Description
Capability

jtag_tdo, Output | High JTAG Test Data Out

ejtag_tpc The jtag_tdo is serial data shifted out from instruction or data register on
the falling edge of jtag_tck. When no data is shifted out, the jtag_tdo is tri-
stated. During Real Time Mode, this signal provides a non-sequential pro-|
gram counter at the processor clock or at a division of processor clock.
This pin is also used as the ejtag_tpc signal in the EJTAG mode.

jftag_tms Input | — JTAG Test Mode Select Requires an external pull-up.
The logic signal received at the jtag_tms input is decoded by the TAP con-
troller to control test operation. jtag_tms is sampled on the rising edge of
the jtag_tck.

jtag_trst_n Input | — JTAG Test Reset

The jtag_trst_n pin is an active-low signal for asynchronous reset of the
debug unit, independent of the processor logic. An external pull-up on the
board is recommended to meet the JTAG specification in cases where the
tester can not access this signal. However, specific systems ordinarily
should either:

1) drive low this signal

2) use an external pull-down on the board

3) clock jtag_tclk

ejtag_dclk Output | — EJTAG Test Clock

Processor Clock. During Real Time Mode, this signal is used to capture
address and data from the ejtag_tpc signal at the processor clock speed
or any division of the internal pipeline.

/0 Low EJTAG PC Trace Status Information

111 (STL) Pipe line Stall

110 (JMP) Branch/Jump forms with PC output

101 (BRT) Branch/Jump forms with no PC output

100 (EXP) Exception generated with an exception vector code output

011 (SEQ) Sequential performance
(
(

ejtag_pcst[2:0]

010 (TST) Trace is outputted at pipeline stall time
001 (TSQ) Trace trigger output at performance time
000 (DBM) Run Debug Mode

Alternate function: modebit[2:0].

ejtag_debugboot Input | — EJTAG DebugBoot Requires an external pull-down.

The ejtag_debugboot input is used during reset and forces the CPU core
to take a debug exception at the end of the reset sequence instead of a
reset exception. This enables the CPU to boot from the ICE probe without
having the external memory working. This input signal is level sensitive
and is not latched internally. This signal will also set the JtagBrk bit in the
JTAG_Control_Register([12].

ejtag_tms Input | — EJTAG Test Mode Select Requires an external pull-up.
The ejtag_tms is sampled on the rising edge of jtag_tck.

Table 21.1 EJTAG Pins (Part 2 of 2)
Note: All input signals require pull-ups at the bonding pads per the JTAG specifications.

Note: The sharing of the JTAG pins for scan chain and debug requires that the scan chain of the
board, if used, is disconnected from the EJTAG interface when it is being used for debugging.

Operating Modes

The RC32300 CPU core has two operating modes: Normal mode and Debug mode. The Normal mode
is when the processor is not executing the debug exception handler routine.

79RC32334/332 User Reference Manual 21-5 _ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface EJTAG Interface

Notes Figure 21.4 shows a state diagram where the processor modes and the EJTAG interface functions are
indicated.

The Debug mode is entered after a Debug Exception (derived from hardware breakpoints, single step
etc.) is taken and continues until the Debug Exception Return (DERET) has been executed. In this time the
processor is executing the Debug Exception handler routine.

In Debug Mode, the ProbEn bit determines the debug exception vector address: in case ProbEn=0 the
debug exception handler starts at 0xBFC0-0480 and a debug monitor program will be entered and
executed through regular system memory. When ProbEn=1, the debug exception vector address is
0xFF20-0200 and a debug monitor program can be executed in a “serial” way through the EJTAG protocol.
(In this case, the monitor program is located on the EJTAG Probe, not requiring any physical EPROM on
the target board).

In Debug Mode mode the standard IEEE 1149.1 Test Access Port (TAP) interface (referred to as JTAG)
is used to control the on-chip debug support unit block (DSU). All operations such as read and write to
internal registers, to external system memories and to other on-chip peripherals is performed by the EJTAG
protocol. In this case, the pins jtag_tdi/ejtag_dint_n* and jtag_tdo/ejtag_tpc function as jtag_tdi input and
jtag_tdo output.

By executing a PC Trace instruction, defined as an extended JTAG instruction, the PC Trace mode is
entered. This can only be done in Debug Mode and when the EJTAG Probe is present (ProbEn=1). Prior to
execution of the PC Trace instruction the TAP controller must be placed in Run-Test/Idle state by toggling
the jtag_tms signal. In PC Trace mode, Program counter trace information is output via additional status
pins in conjunction with the JTAG pins jtag_tdi/ejtag_dint_n* and jtag_tdo/ejtag_tpc. These pins now func-
tion as ejtag_dint_n* input and ejtag_tpc output. Non-sequential program counter data is available at the
jtag_tdo/ejtag_tpc pin clocked out at the processor speed using the ejtag_dclk pin. The type of execution is
available as status at the ejtag_pcst[2:0] pins. The PC Trace mode can be switched off by a Debug Excep-
tion caused e.g. by a breakpoint or when the EJTAG Probe activates the interrupt signal at the jtag_tdi/
ejtag_dint_n* pin (which sets the JtagBrk bit in the EJTAG_Control_register[12]). When the PC Trace mode
is switched off by a debug exception, the JTAG instruction register will be set to the BYPASS code (0x1F).

79RC32334/332 User Reference Manual 21-6 _ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes JTAG Operation
Debug Mode
ProbeEn=0 ProbeEn=1
PC = 0xBFCO0 0480 PC = 0xFF20 0200
PC Trace Mode off PC Trace Mode off
jtag_tdi/ejtag_dint_n pin: jtag_tdi input tag_tdi/ejtag_dint_n pin: jtag_tdi input
jtag_tdo/ejtag_tpc pin: jtag_tdo output jtag_tdo/ejtag_tpc pin: jtag_tdo output
DM = 1 (Debug Mode) DM = 1 (Debug Mode)
"Normal" Memory Execution CPU access Probe Memory
No CPU access to Probe Mem. .
If EJSTAG PC Trace Inst.:
PC Trace Mode On
jtag_tdifejtag_dint_n pin: ejtag_dint_n
jtag_tdo/ejtag_tpc pin: ejtag_tpc

DERET

ﬁ Debug Exception) _
struction

Normal Mode

PC = application program

No CPU access to Probe Mem.

DM = 0 (Normal Mode)

PC Trace Mode off
jtag_tdilejtag_dint_n pin: jtag_tdi input
jtag_tdo/ejtag_tpc pin: jtag_tdo output

PC Trace Mode on
jtag_tdi/ejtag_dint_n pin: ejtag_dint_n
jtag_tdo/ejtag_tpc pin: ejtag_tpc output

Figure 21.4 RC32334 Debug Operating Modes

Test Interface and Boundary-Scan Architecture

The IEEE 1149.1 architecture is shown in the shaded part of Figure 21.2. It consists of an Instruction
Register, a Bypass Register, a Device ID register, an Implementation register and several User Data Regis-
ters (like the EJTAG Address/Data/Control registers) and a test interface referred to as a Test Access Port
(TAP) controller.

The Instruction Register and Data Registers are separate scan paths arranged between the primary
Test Data Input (jtag_tdi) pin and primary Test Data Output (jtag_tdo) pin. This architecture allows the TAP
controller to select and shift data through one of the two types of scan paths, instruction or data, without
accessing the other scan path.

Test Access Port Operation

The TAP controller is controlled by the Test Clock (jtag_tck) and Test Mode Select (ejtag_tms) inputs.
These two inputs determine whether an Instruction Register scan or Data Register scan is performed. The
TAP consists of a small controller design, driven by the jtag_tck input, which responds to the ejtag_tms
input as shown in the state diagram in Figure 21.5. The IEEE 1149.1 test bus uses both clock edges of
jtag_tck. jtag_tms and jtag_tdi are sampled on the rising edge of jtag_tck, while jtag_tdo changes on the fall

The state diagram for the TAP Controller is shown in Figure 21.5.

79RC32334/332 User Reference Manual 21 -7 _ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes —
1 Test- Logic |,
Reset « 1
¢ 0 1 1
0 | Run-Test/ Select- Select-
Idle —p»| DR-Scan IR-Scan
A

L v0
1 | Capture-DR 1 Capture-IR

Shift*JR0 q Shift-i0 q

v v!

Exit1 -DR Exit1-IR

o] []
K I

0 | Exit2-DR 0 Exit2-IR

A 4

A 4

N
y
N

1 1
1 0 1 0

Figure 21.5 TAP Controller State Diagram

Refer to IEEE Standard Test Access port (IEEE Std. 1149.1), for the full state diagram.

The main state diagram consists of six steady states: Test-Logic-Reset, Run-Test/Idle, Shift-DR, Pause-
DR, Shift-IR, and Pause-IR. A unique feature of this protocol is that only one steady state exists for the
condition when jtag_tms is set high: the Test-Logic-Reset state. This means that a reset of the test logic can
be achieved within five jtag_tck(s) or less by setting the jtag_tms input high.

At power up or during normal operation of the processor, the TAP is forced into the Test-Logic-Reset
state by driving jtag_tms high and applying five or more jtag_tck(s). In this state, the TAP issues a reset
signal that places all test logic in a condition that does not impede normal operation of the processor. When
test access is required, a protocol is applied via the jtag_tms and jtag_tck inputs, causing the TAP to exit
the Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an
Instruction Register scan or a Data Register scan can be issued to transition the TAP through the appro-
priate states shown in Figure 21.5.

The states of the Data and Instruction Register scan blocks are mirror images of each other adding
symmetry to the protocol sequences. The first action that occurs when either block is entered is a capture
operation. For the Data Registers, the Capture-DR state is used to capture (or parallel load) the data into
the selected serial data path. In the Instruction Register, the Capture-IR state is used to capture status infor-
mation into the Instruction Register.

From the Capture state, the TAP transitions to either the Shift or Exit1 state. Normally the Shift state
follows the Capture state so that test data or status information can be shifted out for inspection and new
data shifted in. Following the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and
Update states or enters the Pause state via Exit1. The reason for entering the Pause state is to temporarily
suspend the shifting of data through either the Data or Instruction Register while a required operation, such
as refilling a host memory buffer, is performed. From the Pause state shifting can resume by re-entering the
Shift state via the Exit2 state or terminated by entering the Run-Test/Idle state via the Exit2 and Update
states.

79RC32334/332 User Reference Manual 21-8 _ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes Upon entering the Data or Instruction Register scan blocks, shadow latches in the selected scan path
are forced to hold their present state during the Capture and Shift operations. The data being shifted into
the selected scan path is not output through the shadow latch until the TAP enters the Update-DR or
Update-IR state. The Update state causes the shadow latches to update (or parallel load) with the new data
that has been shifted into the selected scan path. Limitations of TAP controller are RC32300 CPU core as
part of the RC32334.

TAP Controller State Assignments

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse and—depending
on the jtag_tms signal level (0 or 1)—it proceeds to the next state.
U Test-Logic-Reset
The test logic is disabled so that normal operation of the on-chip system logic can continue unhin-
dered.
' Run-Test/ldle
A controller state between scan operations.
5 Select-DR-Scan
= This is a temporary controller state in which all test data registers selected by the current instruc-
tion retain their previous state.
. Capture-DR
In this controller state, data may be parallel-loaded into test data registers selected by the current
instruction on the riding edge of TCLK.
" Shift-DR
In this controller state, the test data register connected between jtag_tdi and jtag_tdo, as a result
of the current instruction, shifts data one stage towards its serial output on each rising edge of
TCLK. The test data register content is being shifted out serially, LSB first, at the falling edge of
TCLK towards the jtag_tdo output.
" Exit1-DR
This is a temporary controller state. If jtag_tms is held high, a rising edge applied to TCLK while
in this state causes the controller to enter the Update-DR state, which terminates the scanning
process. If jtag_tms is held low and a rising edge is applied to TCLK, the controller enters the
Pause-DR state.
Y Pause-DR
This controller state allows shifting of the test data register in the serial path between jtag_tdi and
jtag_tdo to be temporarily halted.
" Exit2-DR
This is a temporary controller state. If jtag_tms is held high and a rising edge is applied to TCLK
while in this state, the scanning process terminates and the TAP controller enters the Update-DR
State.
U Update-DR
Data is latched onto the parallel output of these test data registers from the shift-register path on
the falling edge of TCLK.
U Select-IR-Scan
This is a temporary controller state in which all test data registers selected by the current instruc-
tion retain their previous state.
U Capture-IR
In this controller state, the shift-register contained in the instruction register loads a pattern of fixed
logic values on the rising edge to TCLK.
D Shift-IR
In this controller state, the shift-register contained in the instruction register is connected between
jtag_tdi and jtag_tdo and shifts data one stage towards its serial output on each rising edge to
TCLK. The instruction shift register content is being shifted out serially, LSB first, at the falling edge
of TCLK towards the jtag_tdo output.

79RC32334/332 User Reference Manual 21-9 _ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Y Exit1-IR
This is a temporary controller state. While in this state, if jtag_tms is held high, a rising edge
applied to TCLK causes the controller to enter the Update-DR state, which terminates the scan-
ning process. If jtag_tms is held low and a rising edge is applied to TCLK, the controller enters the
Pause-DR state.

Y Pause-IR
This controller state allows shifting of the instruction register to be halted temporarily.

Y Exit2-IR
This is a temporary controller state. While in this state, if jtag_tms is held high and rising edge is
applied to TCLK termination of the scanning process occurs. The TAP controller then enters the
Update-IR controller state. If jtag_tms is held low and a rising edge is applied to TCLK, the
controller enters the Shift-IR state.

U Update-IR
The instruction shifted into the instruction register is latched to the parallel output from the shift-
register path on the falling edge of TCLK, in this controller state. Once the new instruction has
been latched, it becomes the current instruction.

Notes

Instruction Register (IR)

The Instruction Register is responsible for providing the address and control signals required to access
a particular Data Register in the scan path. The Instruction Register is accessed when the TAP receives an
Instruction Register scan protocol. During an Instruction Register scan operation, the TAP controller selects
the output of the Instruction Register to drive the TDO pin. The Instruction Register consists of an instruc-
tion shift register and an instruction shadow latch. The instruction shift register consists of a series of shift
register bits arranged to form a single scan path between TDI and TDO. During Instruction Register scan
operations, the TAP controls the instruction shift register to capture status information and shift data from
TDI to TDO. Both the capture and shift operations occur on the rising edge of TCK; however, the data
shifted out from the TDO occurs on the falling edge of TCK. The status inputs are user-defined observability
inputs, except for the two least significant bits, which are always 01 for scan-path testing purposes. (The
Instruction Register has a minimum length of two bits.) In the Test-Logic-Reset state, the instruction shift
register is set to all ones. This forces the device into the functional mode and selects the Bypass Register
(or the Device Identification Register if one is present).

The instruction shadow register consists of a series of latches, one latch for each instruction shift
register bit. During an Instruction Register scan operation, the latches remain in their present state. At the
end of the Instruction Register scan operation, the Instruction Register update input updates the latches
with the new instruction installed in the instruction shift register. In the Test-Logic-Reset state, the latches
are set to all ones.

Test Data Register (DR)

The IEEE 1149.1 standard requires two Data Registers: Boundary-Scan Register and Bypass Register,
with a third, optional, Device Identification Register. Additional user-defined Data Registers may be
included. The Data Registers are arranged in parallel from the primary TDI input to the primary TDO output.
The Instruction Register supplies the address that allows one of the Data Registers to be accessed during a
Data Register scan operation. During a Data Register scan operation, the addressed scan register receives
TAP control signals to pre-load test response and shift data from TDI to TDO. During a Data Register scan
operation, the TAP selects the output of the Data Register to drive the TDO pin. When one scan path in the
Data Register is being accessed, all other scan paths remain in their present state.

However, additional specific test data registers are available for various operations during Run-Time and
Real-Time debugging. These registers are connected in parallel between a common serial input and a
common serial data output.

The following sections provide a brief description of these elements. For a complete description, refer to
IEEE Standard Test Access port (IEEE Std. 1149.1 - 1990).

79RC32334/332 User Reference Manual 21-10 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes Bypass Register

The Bypass Register is used to allow test data to flow through the device from TDI to TDO. It contains a
single-stage shift register for a minimum length in serial path. When an instruction selects the bypass
register and the TAP controller is in the Capture-DR state, the shift register stage is set to a logic zero on
the rising edge of TCLK. Bypass register operations should not have any effect on the device’s operation in
response to the BYPASS instruction.

Boundary Scan Register

The Boundary Scan Register allows serial data to be loaded into or read out of the processor input/
output ports. The Boundary Scan Register is a part of the IEEE 1149.1 - 1990 Standard JTAG Implementa-
tion. The boundary scan register for the internal CPU core must never be used.

Device Identification Register

The Device Identification Register is an optional register defined by IEEE 1149.1, to identify the device's
manufacturer, part number, revision, and other device-specific information. Table 21.2 shows the bit assign-
ments defined for the (read only) Device Identification Register. These bits can be scanned out of the Iden-
tification Register after being selected. Although the Device Identification Register is optional, IEEE 1149.1
specification has dedicated an instruction to select this register. The Device Identification Register is
selected when the Instruction Register is loaded with the IDCODE instruction.

Bit(s)| Mnemonic Description R/W| Reset
0 reserved reserved Ox1 R 1
11:1 Manuf_ID Manufacturer Identity (11 bits) R 0x33
IDT 0x33
27:12 Part_number Part Number (16 bits) R impl.
This field identifies the part number of the processor derivative. dep.
For the RC32300 CPU core, this value is: 0x0026
31:28 Version Version (4 bits) R impl.
This field identifies the version number of the processor derivative. dep.
For the RC32300 CPU core, this value is 0x0

Table 21.2 CPU Core Device Identification Register

Version Part Number Vendor ID LSB

0000 0000[0000|0010/0110 | 0000|0110]011 1

Figure 21.6 CPU Core Device ID Instruction Format

Implementation Register

This is a 32-bit read only register to identify the features of the Debug Support Unit which are imple-
mented by the RC32334.

79RC32334/332 User Reference Manual 21 -11 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes Bit(s) | Mnemonic Description R/W | Reset

0 MIPS32/64 MIPS 32-bit or 64 indicates the type of MIPS CPU, informing the | R 0
width of the MIPS CPU datapath, the debug registers implemented
in the DSU, and the EJTAG_Data_register.

0: 32-bit wide data registers

1: 64-bit wide data registers

Set to 0 for RC32334

4.1 Ch[3:0] Number of Break Channels: these 4 bits used to indicate the R 0001
number of break channels implemented in the DSU.

Debug SW should check InstrBrk, DataBrk and ProcBrk to know
what break types are implemented.

0000 = no break channels

0001 = 1 break channel (Default)

11 11 =15 break channels

5 NolInstBrk Instruction Address Break: this bit indicates if the Instruction R 0
Address Break function is implemented in the DSU.
0: Instruction Address Break is implemented

1: Instruction Address Break is not implemented

6 NoDataBrk Data Address Break: this bit indicates if the Data Address Break | R 0
function is implemented in the DSU.

0: Data Address Break is implemented

1: Data Address Break is not implemented

7 NoProcBrk Processor Bus Break: this bit indicates if the Processor Bus R 0
Break function is implemented in the DSU.
0: Processor Bus Break is implemented

1: Processor Bus Break is not implemented

10..8 | PCSTW PCST Width and DCLK Division Factor R 000
000,111 3 bits (DCLK is 1/1 of CPU pipeline CLK
001 6 bits (DCLK is 1/2 of CPU pipeline CLK
010 9 bits (DCLK is 1/3 of CPU pipeline CLK
011 12 bits (DCLK is 1/4 of CPU pipeline CLK
others reserved

13.11 TPCW TPC Width R 000
000,111 1 bit 000 is Standard EJTAG
001 2bits Reserved

010 4 bits Reserved

011 8 bits Reserved

others reserved

14 NoDMA No EJTAG DMA Support R 1
0: EJTAG DMA is supported by implementation
1: EJTAG DMA is not supported by implementation

15 NoPCTrace No PC Trace Support R 0
0: PC Trace is supported by implementation
1: PC Trace is not supported by implementation

16 MIPS16 MIPS16 Support R 0
0: MIPS CPU does not support MIPS16
1: MIPS CPU supports MIPS16

17 ICacheC Instruction Cache Coherency R 0
0: Instruction Cache does not keep DMA coherency
1: Instruction Cache keeps coherency with DMA

18 DCacheC Data Cache Coherency R 0
0: Data Cache does not keep coherency with DMA
1: Data Cache keeps coherency with DMA

RN NS NS}

Table 21.3 Implementation Register (Part 1 of 2)

79RC32334/332 User Reference Manual 21-12 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes Bit(s) | Mnemonic Description R/W | Reset

19 PhysAW Physical Address Width R 0
Informs the size of EJTAG_Address_register

0: Physical addresses are 32-bit in length

1: Physical addresses is from 33 to 64-bits in length The exact
length of can be determined by shifting a pattern through the

EJTAG Address Register.
22..20 reserved reserved, EJTAG Probe must shift Os in R 0
23 SDBBPCode SDBBP uses Special2 Opcode (for MIPS-I/II/II/IV) R 0

0: SDBBP is encoded according to EJTAG rw 1.3 specification
1: SDBBP is encoded using a Special2 Opcode

31.24 reserved reserved, EJTAG Probe must shift Os in R 0

Table 21.3 Implementation Register (Part 2 of 2)

EJTAG Address Register

The length of the EJTAG Address Register is 32 bits. The length is identical to the length of the physical
processor address bus, and is determined by shifting a pattern through the register. This register can be
used as follows:

5 Processor Access: In this mode the RC32334 can access memory on the EJTAG Probe in a serial
way through the JTAG interface. A 32 bit address is captured and is shifted out via the jtag_tdo/
gjtag_tpc pin to the EJTAG Probe. Depending on the direction of the access, data is shifted into the
jtag_tdi pin (processor read) or shifted out of the jtag_tdo/ejtag_tpc pin (processor write).

EJTAG Data Register
This register is used with the EJTAG_Address_register in the following mode:

5 Processor Access: In this mode the RC32334 can access memory located on the EJTAG Probe in
a serial way through the JTAG interface. A 32 bit data word is captured and is shifted out via the
jtag_tdo/ejtag_tpc pin to the EJTAG Probe for a Processor Write action; for a Processor Read
action 32 bits of data is shifted into the jtag_tdi /ejtag_dint_n* pin and is made available to the pro-
cessor.

The organization of the bytes in the 32 bit EJTAG Data Register depends on the endianess of the CPU,
as shown in Figure 21.7 and Figure 21.8.

M S B LS B
bit 31 24 23 16 15 8 7 0
A 0] = 4 5 6 7 A 2]1=1
516 ENDIAN [Atn:0g |]] | tn:2]
[Amm:0)=0 | 1 | 2 | 3 | A[n:2]= 0
M ostsignificantbyte is atlowestaddress
W ord is addressed by byte address of mostsignificantbyte
M S B LSB
bit 31 24 23 16 15 8 7 0
LITTLE-ENDIAN IA[n:0]=7 I 0 I 2 I 2 I Afnizl=
| Amoy=13 | 2 | 1 | 0 | Aln:2]=0
Least significant byte is atlowestaddress
W ord is addressed by byte address ofleastsignificantbyte

Figure 21.7 Byte Organization in a 32-bit EJTAG Data Register

79RC32334/332 User Reference Manual 21-13 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface

JTAG Operation

Notes

EJtag_Data_Reg

bit 31 EJtag_Data_Reg bit 0

EJtag_Data_Reg

bit 31 bit 0 bit 31 bit 0
I I ET || | [il | I | =
bit 7 0 Memory bit 7 0 Memory bit 7 0 Memory
address 0 a address 0 a address 0 a
address 1 b address 1 b address 1 b
address 2 [address 2 c address 2 c
address 3 d address 3 d address 3 d

MIPS CPU Big Endian
Transfer size = Half word
EJtag_Address_Reg[1:0] =10

MIPS CPU Big Endian
Transfer size = Byte
EJtag_Address_Reg[1:0] = 00

MIPS CPU Big Endian
Transfer size = Byte
EJtag_Address_Reg[1:0 = 11

Dsz[1:0]=01 Dsz[1:0]=00 Dsz[1:0]=00
bit 31 EJtag_Data_Reg bito | bit 31 EJtag_Data_Reg bit 0 bit 31 EJtag_Data_Reg bit 0
I I | T | I Py | [d | I |
bit 7 0 Memory bit 7 0 Memory bit 7 0 Memory
address 0 a address 0 a address 0 a
address 1 b address 1 b address 1 b
address 2 [address 2 c address 2 c
address 3 d address 3 d address 3 d

MIPS CPU Little Endian
Transfer size = Half word
EJtag_Address_Reg[1:0] =10
Dsz[1:0]=01

MIPS CPU Litlle Endian
Transfer size = Byte
EJtag_Address_Reg[1:0] = 00
Dsz[1:0]=00

MIPS CPU Litlle Endian
Transfer size = Byte
EJtag_Address_Reg[1:0] = 11
Dsz[1:0]=00

Figure 21.8 Examples of Byte Organization in a 32-bit EJTAG Data Register

EJTAG Control Register

This is a 32 bit register to control the various operations of the debug support and the JTAG unit. This
register is selected by shifting in the JTAG_CONTROL_IR instruction. Bits in the EJTAG_Control_register
can be set/cleared by shifting in data; status is read by shifting out this register.

This EJTAG_Control_register, shown in Table 21.4, can only be accessed by the JTAG interface.

Bit(s)| Mnemonic Description R/W| Reset

0 CIkEn DCLK output Enable bit RW |0
When this bit is set to 0 it disables the DCLK output (making it high
impedance or 0). When it is set to 1 it will enable the DCLK output dur-
ing Real Time Tracing mode.

1 Unused WOR | 0
This bit is always 0.

2 Unused W1R | 0
This bit is always 0.

3 BrkSt Break Status R 0
This bit is set to 1 when the processor takes a debug exception and is
cleared when the processor executes the DERET instruction. This bit is
the same as the DM (Debug Mode) bit in Debug Register [30].

4 Unused RW |0
This bit is always 0.

5 Unused RW |0
This bit is always 0.

6 reserved R 0

8,7 Dsz[1:0] Unused RW | 00
These bits are always 00.

Table 21.4 EJTAG_Control_Register (Part 1 of 3)

79RC32334/332 User Reference Manual

June 4. 2002

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes Bit(s)| Mnemonic Description R/W| Reset
9 Unused R/W 0
This bit is always 0.
10 Unused R 0
This bit is always 0.
11 Unused WIR | 0
This bit is always 0.
12 JtagBrk JTAG Break WIR | 0

Setting this bit to 1 causes a debug exception to the processor. This bit
is also set by activating the jtag_tdi/ejtag_dint_n* pin (stopping the PC
Trace mode). When the debug exception occurs, the processor core will
be waken up if it was in sleep mode. This bit is cleared by hardware
when the debug exception is taken. JTAG Break is ignored if the CPU is
in debug mode.

14.13 | reserved reserved R 00

15 ProbEn EJTAG Probe Enable RIW 0
This bit must be set to 1 by the probe’s software to indicate that a probe
is present and active. If it is set to 0, it indicates that the probe is not
present or inactive and the EJTAG module will not allow the processor
to access the probe, and the result is undefined (may result in bus
error). The clock at the DCLK pin is disabled in this case.

The debug exception is set at 0xBFC0-0480.

16 PrRst Processor Reset RW 0
When this bit is set to 1, a soft reset exception is forced to the proces-
sor. The reset is sustained as long as the PrRst bit is 1. The processor
will set the SR bit in the processor’s status register. The Processor
Reset bit is not masked by MRst* in Debug Control Register[1].

17 Unused RIW 0
This bit is always 0.
18 PrAcc Processor Access WOR | O

This bit is set to 1 by hardware when the processor accesses the
probe’s reserved addresses (0xFF20-0000 through OxFF2F-FFFF). The
probe’s software must set this bit to 0 to indicate the end of the access
action.

19 PRnW Processor Access Read not Write R 0
Internal hardware sets this bit to 1 when the Processor Access action is
a write action, it is set to 0 for a read action.

20 PerRst Peripheral Reset RW 0
When this bit is set to 1 it will force a reset to all the peripherals of the
processor (except for the EJTAG interface and the Debug Support Unit),

21 Run Run R 1
When this bit is read as 1, the processor was in the run state (the pro-
cessor clock was running) at the moment that the
EJTAG_Control_register was captured.

22 Unused R 0
This bit is always 0.

Table 21.4 EJTAG_Control_Register (Part 2 of 3)

79RC32334/332 User Reference Manual 21-15 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes Bit(s) | Mnemonic Description R/W| Reset

23 Sync Sync (only used when PCTRACE is supported) WIR 0
This bit will synchronize the end of the Processor read access (instruc-
tion fetch) with the setting of the PC Trace mode. When this bit is set,
the processor will be stalled for the last processor read access until the
EJTAG module has been placed into the PC Trace Mode (i.e. the PC
Trace instruction is in the instruction register and the TAP controller is in
the Run-Test/idle state). This bit can only be set at the end of a proces-
sor read access, i.e. the PrAcc bit was 1 and is written with a 0 and
PRnW is 0. In all other cases, writing a 1 will be ignored. The bit is
cleared by hardware when the PC Trace mode is entered. The bit can
also be cleared by writing a 0 to it: this will then also generate the
acknowledge for the processor read. This bit is read-only 0 when PC
Trace is not supported (NoPCTrace = 1).

25.24 | PCLen Target PC Output Length R 0
Set to 00 for RC32334.
31.26 |reserved reserved R 0

Table 21.4 EJTAG_Control_Register (Part 3 of 3)
Figure 21.9 shows examples of the Sync Operation.

| by processor; aqdress latched | | Procgssor Probe resets PrAcc | Processpr Probg resets PrAcc
] 1 1

and sets Sync

w —

T

]

1 1
1 1
1 1
1 1
1 ' '
1 ' '
i ' 1
Sync ‘ H H
i | | | 1
i ' 1 ' '
i ' 1 ' L
i ' ' '
i ' ' '
Trace mode
i | | I | 1
i ' I ' ' 1
i ' I ' ' 1
| L L I L 1
i I I I I
Debug mode | H H H 1 I—I
i I ' I ' i 1
i I ' I ' i 1
] 1 1 1 1] 1
'tag tdi 1 1 1 1 1 1 !
Jtag_t p " " - - -
ejtag_dint_n i E jtag_tcllI E ! i ejtag_dint_n | jtag_tdi
| 1 1 1 1 | !
| 1 1 1 1 | !
| 1 1 1 1 | !
jtag_tdo | 1 1 1 1 | !
jtag_f T T - T T - -
N jtag_tdo ' 1 ejtag_tpc jtag_tdo
eftag_tpe —— : : A |
1 1 1 1 —p !
i | | | | i !
| ? ? ? l ? : ‘I\ ?
' '
' '
Processor fetches instruction prior | | Processor executep | Processor fetches | | | Procegsor Processor Debug Exception
to DERET instruction prior DERET instruction! | | Probe Shifts executes
to DERET in PC Trace DERET
-5 bits sel EJTAG_Ctrl_reg instruction into
-32 bits EJTAG_Ctrl_reg shift TAP IR

-5 bits sel EJTAG_Address_reg

-32 bits EJTAG_Address_reg
-5 bits sel EJSTAG_Data_reg
-32 bits EJTAG_Data_reg

-5 bits sel EJSTAG_Control_reg

-32 bits EJTAG_Control_reg Processor is stalled

Synchronization of processor Access and setting of Trace mode

;

Figure 21.9 Examples of the Sync Operation

PC Trace Instruction (only if PC Trace is supported)

This JTAG instruction is used to enable PC Trace mode. The Real-Time Trace mode is set when the
TAP controller has reached the Run-Test/Idle state. In this mode, the jtag_tdo/ejtag_tpc pin provides non-
sequential program counter output at the ejtag_dclk speed. The ejtag_pcst[2:0] pins are used to show the
type of instruction execution. A debug exception disables the PC Trace mode. The instruction register will
be set to BYPASS code (0x1F).

79RC32334/332 User Reference Manual 21 -16

EJTAG (In-circuit Emulator) Interface JTAG Operation

Processor Access

The CPU can then execute code taken from the EJTAG Probe and it can access data (via load or store)
which is located on the EJTAG Probe. This occurs in a serial way through the EJTAG interface: the core can
thus execute instructions e.g. debug monitor code, without occupying the user’'s memory.

Notes

Accessing the EJTAG Probe’s memory can only be done when the processor accesses an EJTAG
address (which is in the range from 0xFF20-0000 to OxFF2F-FFFF), when the ProbEn bit is set and when
the processor is in debug mode (DM=1).

When a debug exception is taken, while the ProbEn bit is set, the processor will start fetching instruc-
tions from address OxFF20-0200.

Instruction Fetch/Read from the EJTAG Probe

1. The internal hardware latches the requested address into the JTAG_Address_Capture Register (in
case of the Debug exception: 0xFF20-0200).

2. The internal hardware sets the following bits in the EJTAG_Control_register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Dsz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG_Control_register, shifts out this control register’s data and
tests the PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the
requested address is available and can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access and shifts in a DmaAcc =
0 bit into the EJTAG_Control_register.

5. The EJTAG Probe selects the EJTAG_Address_register and shifts out the requested address.

6. The EJTAG Probe selects the EJTAG_Data_register and shifts in the instruction corresponding to
this address.

7. The EJTAG Probe selects the EJTAG_Control_register and shifts a PrAcc = 0 bit into this register to
indicate to the processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next
instruction. This will start the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG
Probe’s memory. For this to happen, the processor must execute e.g. a Iw, Ib,... instruction with the target
address in the appropriate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory. The
store address must be in the range: 0xFF20-0000 to OxFF2F-FFFF, the ProbEn bit must be set, and the
processor has to be in debug mode (DM=1). The sequence of actions is found below.

Processor Write Access

1. The internal hardware latches the requested address into the JTAG_Address_Capture Register

2. The internal hardware latches the data to be written into the JTAG_Data_Capture Register.

3. The internal hardware sets the following bits in the EJTAG_Control_register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Dsz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG_Control_register, shifts out this control register’s data and
tests the PrAcc status bit (Processor Access): when the PrAcc bit is found 1, it means that the
requested address is available and can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access and shifts in a DmaAcc=0
bit into the EJTAG_Control_register.

6. The EJTAG Probe selects the EJSTAG_Address_register and shifts out the requested address.

7. The EJTAG Probe selects the EJTAG_Data_register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG_Control_register and shifts a PrAcc = 0 bit into this register to
indicate to the processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

79RC32334/332 User Reference Manual 21 -17 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes Figure 21.10 depicts the processor and probe actions for the Processor Read and Processor Write
Access.

Probe detects PrAcc=1

PrAc;ﬁ x |

Processor hardware: Probe shifts Probe shifts in Probe clears Processor
- address -->JTAG_Address_ out address. read PrAcc bit executes

Capture_Reg Probe reads instruction instruction
- PrAcc=1, PRnW=0, Psz=xy instruction

Processor Read Access

Probe detects PrAcc=1

PrAc;ﬁ x |

Processor hardware: Probe shifts Probe shifts Probe clears Probe writes|
- address -->JTAG_Address_ out address out data PrAcc bit data to its
Capture_Reg memory
- data --> JTAG_Data_Capture
Register
- PrAcc=1, PRnW=1, Psz=xy

Processor Write Access

Figure 21.10 EJTAG Processor Access

Reset Overview

The processor core, processor peripherals, EJTAG module and the DSU can be reset as follows (see
also Figure 21.11):

U The hard reset (general reset) signal resets the processor, the EJTAG, the DSU and the peripher-
als.

U The EJTAG Probe can Soft Reset the processor core by setting the PrRst bit in the
EJTAG_Control_register.

U The EJTAG Probe can reset the peripherals on the processor by setting the PerRst bit in the
EJTAG_Control_register.

5 The processor can reset both the EJTAG Module and the DSU by setting the JtagRst bit in the
Debug Register.

A System reset can be provided by the EJTAG Probe by activating the combination. of reset control bits:
PrRst and PerRst.

A full system reset through the EJTAG is by the JTAG reset pin to the master reset on the board.

79RC32334/332 User Reference Manual 21-18 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface JTAG Operation

Notes
MIPS Processor hard
reset
»| RC32300
JtaaRst Processor
agRs!
< Core
soft ;
periph.
reset= Feset ®
[3
Jtag PrRst PerRst OR > _g_
reset | '5
(TRST* o
> >
EJTAG JtagRst
= || L modue | L oSy
> » OR > OR »
hard
reset

Figure 21.11 Reset Overview

EJTAG Module Clocking

The bus clock may be used to clock all registers within the EJTAG Module which are not part of the TAP-
controller or the JTAG registers (e.g. used for Processor Access or DMA access). These latter registers are
clocked by jtag_tck.

Instruction Register

The instruction Register is a 5-bit field (such as IR4, IR3, IR2, IR1, IR0) that is used to decode 32
different possible instructions and allows instructions to be serially input to the device, when the TAP
controller is in the Shift-IR state.

Instructions are decoded to perform the following tasks:
U 1o select test data registers that may operate while the instruction is current. The other test data
registers should not interfere with chip operation and selected data registers.
U To define the serial test data register path that is used to shift data between TDI and TDO during
data register scanning.

Instructions are decoded as shown in Table 21.5. Brief descriptions of each instruction are included in
the table, but for a more complete description, refer to IEEE Standard Test Access port (IEEE Std. 1149.1-
1990).

Hex Value Instruction Name/Description Function

0x00 EXTEST Select Boundary Scan Register.
Extest is a mandatory instruction provided for external circuitry
and board level interconnection check.

0x01 IDCODE Select Chip Identification Data
Selects the Device Identification Register to read out manufac- | Register.
ture’s identity, part number, and version number.

0x02 SAMPLE/PRELOAD Select Boundary Scan Register.
SAMPLE instruction allows a snapshot of data flowing from the
system pins to the on-chip logic, or vice versa.

Preload allows data values to be loaded onto the latched parallel
outputs of the boundary-scan shift register, prior to selection of
the other boundary-scan test instruction.

Table 21.5 Instruction Decoding (Part 1 of 2)

79RC32334/332 User Reference Manual 21-19 __ June 4. 2002 1.

JTAG Operation

EJTAG (In-circuit Emulator) Interface

Notes Hex Value

Instruction Name/Description

Function

0x03

ImpCode

Select Implementation Register.

0x04

INTEST

Tests the processor’s internal logic. Test simulations are shifted

in one at a time and applied to the on-chip system logic. The test
results are captured into the Boundary-scan register and exam-

ined by subsequent shifting.

JTAG

0x05

HI-Z

Places all of the device's output pins into a high impedance state.
An external ICE can then drive all of the pins, and would not
damage on-chip logic as well as the input pins.

JTAG

0x06

CLAMP

Allows the state of the signals driven from the IC pins to be deter-
mined from the boundary-scan register, while the bypass register
is selected as the serial path between TDI and TDO.

JTAG

0x07

BYPASS

Bypass mode

0x08

JTAG_ADDRESS_IR

Selects the JTAG_Address_Register from external ICE probe to
load 32-bits of TDI data into the JTAG_Address_Register. At the
DR-Update moment, the shifting stops and the 320bits of data
are then loaded into the update register for the internal bus.

Select JTAG_Address Register.

0x09

JTAG_DATA_IR

Selects the JTAG_Data_Register from external ICE probe to
load 32-bits of TDI data into the JTAG_Data_Register. In addi-
tion, data written to external ICE probe are captured from the
processor or any slave at Data_Capture register. Data latched
are at Capture_DR stage are shifted out via TDO.

Select JTAG_Data Register.

0x0A

JTAG_CONTROL_IR

Select the JTAG_Control_Register from the external ICE probe,
to load 32-bits of TDI data into JTAG_Control_Register bits or
read the JTAG_Control_Register bits.

Select JTAG_Control register

0x0B

JTAG_ALL_IR

This register is the concatenation of the Address_Shift,
Data_Shift and JTAG_Contrl_Register. It can be used if switch-
ing instructions in the instruction register cost too many TCLK
cycles. The first bit shifted out is bit 0 as shown in Figure 21.12

Select JTAG_AIl register

0x10

PCTRACE

Decoded to switch from Run-Time mode to Real-Time mode.
After executing this instruction, the PCST[2:0] pins, in conjunc-
tion with TDO, provides a non-sequential program counter at the
DCLK speed. TDI/DINT* is used in Real-time mode to switch
back to Run-Time Mode by setting the JtagBrk bit. The instruc-
tion register will be set to BYPASS code (0x1F). Prior to execut-
ing the PCTRACE instruction, the TAP controller is placed into
the Run-Test/Idle state.

PCTRACE Instruction

Ox1F

BYPASS
Contains a single shift-register stage and is set to provide a mini
mum-length serial path between TDI and the TDO pins of the
device, when no device test operations are required. Any unused
instruction is defaulted to the BYPASS instruction.

Bypass mode

79RC32334/332 User Reference Manual 21 -20 __ June 4. 2002 1.

Table 21.5 Instruction Decoding (Part 2 of 2)

EJTAG (In-circuit Emulator) Interface Extended Instructions

Notes Note: As mentioned in the definition of the BYPASS instruction, any unused instruction will
default to the BYPASS instruction.

Shift____ p! Address_Shift 0

L p»-| Data_Shift 0

L pu-| JTAG_Control 0 p

Figure 21.12 Shift Order Sequence of the JTAG_AII_IR Register

The Debug Unit

The Debug Unit section describes the debug unit implemented in the processor, and covers the
extended instruction to MIPS ISA instruction set as well as support functions and registers for Real Time
Debugging.

Note: The EXTERNAL INSTRUCTIONS are slightly different from the original definition.
Similarly, the DEBUG REGISTER is also different.

Extended Instructions

The following instructions are added to the standard MIPS ISA instruction set to provide a software
debug breakpoint exception and debug exception return.

SDBBP (Software Debug Breakpoint)

31 28 27 24 23 20 19 16 15 12 11 8 7 43 0
[
0000 00 | CODE 11 1111
31 26 0
Format SDBBP Code

Description This instruction raises a Debug Breakpoint exception, passing control to an exception handler. The
code field can be used for passing information to the exception handler, but the only way to have the
code field retrieved by the exception handler is to load the contents of the memory word containing
this instruction, using the DEPC register. The SDBBP instruction is NOP when it is used in debug
mode (DM="1"). The CODE field of the SDBBP is available for use as a software parameter only, and
is retrieved by the debug exception handler only by loading the contents of the memory work contain-
ing the instruction. The CODE field is not used in any way by the hardware.

Operation T: IF not in Debug Mode
PC <- ExceptionHandlerVector
if DBD =0, DEPC <- Address of SDBBP instruction
else DEPC <- Address of branch (taken) instruction
DM <-*1"
BrkSt, DBp <- ‘1’
ELSE NOP

Exceptions Debug Breakpoint Exception
Note: The RC32334 implements the following opcode:

79RC32334/332 User Reference Manual 21-21 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Extended CPO Registers (Debug Registers)

Notes
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

I
0000 00 CODE 00 1110
31 2% 0

Description The opcode above was used by MIPS CPUs following EJTAG specification 1.3.1, and its use is dis-
couraged because it may conflict with a future MIPS ISA.

DERET (Debug Exception Return)

31 28 27 24 23 20 19 16 15 12 11 8 7 43 0
0100 00 :1:0 0000 0000 0000 0000 0001 1111
31 26 25 24 0
Format DERET

Description This instruction executes a return from a debug exception. It has a branch delay slot, the same as the
branch or jump instruction cycle, executing with a delay of one instruction cycle. The DERET instruc-
tion can not be used in the delay slot itself. The return address stored in the DEPC register is copied
to the PC and processing returns to the original program. The Debug Mode bit (DM in Debug [30])
and the BrkSt bit (EJTAG_Control_Register[3]) are reset.

Note: If a MTCO instruction was used to set the return address in the DEPC register, a minimum of
two instructions must be executed before executing the DERET.

Operation T:temp <- DEPC
T+1: PC <- temp
DM <- 0’
BrkSt <- ‘0’

Exceptions Coprocessor Unusable Exception

Extended CPO Registers (Debug Registers)
The Standard EJTAG Specification (Version 1.5.3) defines three registers to be added to the CPO regis-
ters to support debug exceptions:
. Debug Register
5 Debug Exception PC
. Debug Exception Save Register

The RC32334 only implements the Debug register and the Debug Exception PC register in the CPO.
The Debug Exception Save Register is implemented as an on-chip register located at physical address
OxFFFF-E210.

Debug Register

Debug Register, CPO register 24

The Debug Register is used to control the debug exception and provide status information about the
cause of the debug exception. The read only status bits are automatically updated every time the debug
exception is taken.

79RC32334/332 User Reference Manual 21 - 22 __ June 4. 2002 1.

Extended CPO Registers (Debug Registers)

EJTAG (In-circuit Emulator) Interface

Notes Bit(s) Mnemonic Description R/W| Reset
0 Unused R 0
This bit is always 0.
1 DBp Debug Breakpoint exception status R 0
This bit is set to ‘1" when a debug exception occurred due to execution of
the SDBBP instruction.
2 DDBL Debug Data Address Break Load Exception Status R 0
This bit is set to ‘1’ when a Data Address Break caused the debug excep-
tion during execution of a Load Memory instruction.
3 DDBS Debug Data Address Break Store Exception Status R 0
This bit is set to 1’ when a Data Address Break caused the debug excep-
tion during execution of a Store Memory instruction.
4 DIB Debug Instruction Address Break Exception Status R 0
This bit is set to 1’ when an Instruction Address Break caused the debug
exception.
5 DINT Debug Processor Bus Break Exception Status R 0
This bit is set to ‘1’ when a Processor Bus Break or a JTAG Break (from
the EJTAG Probe) caused the debug exception.
6 DBES Debug Boot Bit W0/ |0
This bit is set to ‘1" when Debug Boot is active during reset and forces the | R
CPU to take the Debug Exception at the end of the reset sequence. Itis
cleared by software.
7 JtagRst JTAG Reset RW |0
Setting this bit to 1’ will reset both the EJTAG module and the DSU.
8 Unused R 0
This bit is always 0.
9 reserved reserved R 0
10 BsF Bus Error Exception Flag WOR |0
This bit is set to ‘1’ when a bus error exception occurred during a Load or
Store instruction while the debug exception handler was running (DM="1").
The Bus error Exception will set this bit to ‘1’ regardless of writing a ‘0". It is
cleared by writing a ‘0" and writing ‘1" is ignored.
1 TLF TLB Exception Flag WOR |0
This bit is set to ‘1" when a TLB related exception occurs during the Load
or Store instruction while the debug exception handler is running (DM="1’).
The TLB exception will set this bit to “1’, and it is cleared by writing ‘0’. Writ-
ing ‘1" is ignored.
12 OES Other Exception Status R 0
When this bit is set it indicates an exception other than Reset, cache error,
NMI or UTLB Miss/TLB Refill was raised at the same time as a debug
exception. In this case the Status, Cause, EPC and BadVaddr registers
assume the usual status after occurrence of such an exception, but the
address in the DEPC is not the ‘other exception’ vector address. In this
case the proper exception handler address has to be placed in DEPC by
the debug exception handler software, after which processing returns
directly from the debug exception to the other exception handler.
13 TRS TLB Refill Miss Status R 0
This bit is the same as OES, but it is set when TLB refill occurs at the same
time as a debug exception. DEPC must be set to TLB Refill exception vec-
tor, that is, 0xBFC0_0200 (BEV=1) or 0x8000_0000 (BEV=0), by debug
exception handler software, after which processing returns directly from the
debug exception to the TLB Refill exception handler.
For a description of the exception vector locations for the RC32334,
refer to the Exception Vector Locations section in Chapter 6 (Table
6.16) of this manual.
Table 21.6 Debug Register (Part 1 of 2)

79RC32334/332 User Reference Manual 21 -23 __ June 4. 2002 1.

Extended CPO Registers (Debug Registers)

EJTAG (In-circuit Emulator) Interface

Notes Bit(s)

Mnemonic

Description

R/W| Reset

14

NIS

Non Maskable Interrupt Status

When this bit is set it indicates that a non-maskable interrupt has occurred
at the same time as a debug exception. In this case the Status, Cause,
EPC and BadVAddr registers assume the usual status after occurrence of
a non-maskable interrupt, but the address in DEPC is not the non-
maskable exception vector address (0xBFC0-0000). Instead, 0xBFCO-
0000 has to be placed in DEPC by the debug exception handler software,
after which processing returns directly from the debug exception to the
non-maskable interrupt handler.

15

CES

Cache Error Status: This bit indicates that a Debug exception and a Cache
Error occurred at the same time.

0: No Cache Error.

1; Cache Error occurred at the same time with Debug exception.

16

Itrpt

Interrupt when Cause.IV is set: This bit indicates that a Debug exception
and an interrupt with the Cause.|Vbit set occurred at the same time.

0: No interrupt with Cause.IV bit set.

1; Interrupt with Cause.IV bit set.

17-29

reserved

reserved

30

DM

Debug Mode Status

When this bit is set it indicates that a debug exception has been taken. Itis
cleared upon return from the debug exception (execution of DERET).
While this bit is set all interrupts (including NMI), TLB exception, Bus error
exception and debug exception are masked and the cache line locking
function is disabled. A copy of the DM status is available in the BrkSt bit
(EJTAG_Control_Register[3]) and the ejtag_pcst[2:0] status lines (DBM
code).

31

DBD

Debug Branch Delay

This bit is set to “1” when a debug exception occurs while an instruction in
the branch delay slot is executing. The DEPC points to the branch or jump
instruction preceding the instruction causing the debug exception.

Table 21.6 Debug Register (Part 2 of 2)

Debug Exception Program Counter Register (DEPC)
For the RC32334, DEPC is CP0O Register 23.

Bit(s)

Mnemonic

Description R/W

Reset

310

DEPC

The DEPC register holds the address where processing resumes after | R/W

the debug exception routine has finished. The address that has been
loaded in the DEPC register is the virtual address of the instruction that
caused the debug exception.

If the instruction is in the branch delay slot, the virtual address of the
immediately preceding branch or jump instruction is placed in this reg-
ister. If the preceding instruction was a branch not taken, DEPC may be
implemented point directly to the instruction in the delay slot.
Execution of the DERET instruction causes a jump to the address in
the DEPC.

If the DEPC is both written from software (by MTCO) and by hardware
(debug exception) then the DEPC is loaded by the value generated by
the hardware.

Bit 0 of the DEPC indicates the MIPS16 mode, and is 1 when the inter-
rupted instruction is a MIPS16 instruction. Bit 0 always set to 0 for
RC32334.

Undefined

79RC32334/332 User Reference Manual 21 -24 __ June 4. 2002 1.

Table 21.7 Debug Exception Program Counter

EJTAG (In-circuit Emulator) Interface Register Map

Notes Debug Exception Save Register (DESAVE)
In the RC32334, this register is external to the core and implemented at physical address OxFFFF-E210.

Bit(s)| Mnemonic Description R/W| Reset

31:.0 DESAVE This register is used by the debug exception handler to save one of | R/W | Undefined
the GPRs, that is then used to save the rest of the context to a pre-
determined memory are, e.g. in the EJTAG Probe. This register allows
the safe debugging of exception handlers and other types of code
where the existence of a valid stack for context saving cannot be
assumed.

Table 21.8 Debug Exception Save Register

Register Map

The following registers are implemented in a Debug Support Unit. These registers contain the data,
address, control and status of the break channels, and are only accessible for read when the processor is
executing in Debug Mode (DM="1") and for write when DM=1 and the memory protection bit is switched off
(MP='0"). When these conditions are not met, an attempt to access will cause an undefined result, e.g.,
invalid data may be read or a bus/address error exception may be raised. The DSU registers are non-
cached memory locations, although they are in the kseg2 area. Only word/double word accesses are
allowed to these registers. The base address for all of these registers is: 0xFF300000 and the actual
address can be obtained by adding the offset value in Table 21.9.

Offset Mnemonic Description
0000 DCR Debug Control Register
0004 IBS Instruction Address Break Status
0008 DBS Data Break Status
000C PBS Processor Break Status
0100 IBAO Instruction Address Break 0
0104 IBCO Instruction Address Break Control 0
0108 IBMO Instruction Address Break Mask 0
0110 IBA1 Instruction Address Break 1
0114 IBC1 Instruction Break Control 1
0118 I1BM1 Instruction Address Break Mask 1
0200 DBAO Data Address Break 0
0204 DBCO Data Break Control 0
0208 DBMO Data Address Break Mask 0
0300 PBAO Processor Address Bus Break 0
0304 PBDO Processor Data Bus Break 0
0308 PBMO Processor Data Bus Mask 0
030C PBCO Processor Bus Break Control 0 and Address Mask

Table 21.9 32-bit Register Map (Base Address = 0xff30 0000)

Debug Control Register
The Debug Control Register is located at address-offset 0x0000.

79RC32334/332 User Reference Manual 21-25 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Register Map

Notes

Bit(s) | Mnemonic Description R/W | Reset

0 ™ Trace Mode RW |0
0: This mode will output PC trace information at the jtag_tdo/ejtag_tpc
pin in real-time. The serial address output may be incomplete.

1: This mode will output the complete PC address as trace information
at the jtag_tdo/ejtag_tpc pin. The real-time behavior of the processor
is not guaranteed. The RC32334 implements a single level deep
buffer to store PC trace information.

1 MRst* Mask Soft Reset RW |1
0: Soft Reset to the core is masked during debug mode

(DM="1")
1: No effect
Soft Reset is always permitted during normal mode. This bit will not
mask the Processor reset bit PrRst in EJTAG_Control_Register{16].

2 MP Memory Protection RW |1
0: Write to the DSU + EJTAG reserved area (0xFF20-0000

- OXFF3F-FFFF) is possible in debug mode.
1: Write to the DSU + EJTAG reserved area (0xFF20-0000

- OXFF3F-FFFF) is protected in debug mode, except for

the Debug Control Register (DCR).

When the processor is not in debug mode, accesses to this area are
NOT allowed.

3 MNmi Mask Non-Maskable Interrupt (in non debug mode) RW |1
0: Mask the NMI signal to the core.

1: Enable the NMI signal to the core.

In debug mode all interrupt inputs to the core are masked

4 Mint Mask Interrupt (in non debug mode) RW |1
0: Mask the interrupt inputs [int(5:0)] to the core

1: Enable the interrupt inputs [int(5:0)] to the core

In debug mode all interrupt inputs to the core are masked.

5 Unused W1/R |0
6 Unused WOR | 0
7.28 reserved reserved R 0
29 ENM Endianess R 0

This bit indicates the default endianess. For some implementations it
is a copy of the END bit in the core’s CONFIG register.

0: Little Endian

1: Big Endian

30 HIS Halt Status R 0
It indicates the sleeping state (power-down) when the debug excep-
tion was taken. The precise definition of this power down mode is
implementation specific.

0: Processor was not in sleeping state

1: Processor was in sleeping state

When the RC32334 executes the WAIT instruction, this bit is set.

3 Unused R 0

Table 21.10 Debug Control Register - DCR

79RC32334/332 User Reference Manual 21 - 26 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Register Map

Notes Instruction Address Match Registers

Instruction Address Break Status

Bit(s) | Mnemonic Description R/W | Reset

0 BS0 Break Status 0 RIW | 0
This bit, when set, indicates that an instruction address break or
instruction address trigger has occurred. BSO can be cleared by
activating JtagRst, hard reset and also by writing a ‘0’ to it.

14.1 BS[1] Break Status [1] RIW | 0
BSn These bits are similar to the BS0 bit and are implemented accord-
ing to the number of channels available.
23.15 | reserved reserved R 0
27.24 | BCN Break Channel Number: R 0010

These bits indicate the total number of channels implemented for
instruction address break.

0000: Reserved

0001: Channel 1

0002: Channel 2 (implemented value)

1111: Channel 15

31..28 reserved reserved R 0

Table 21.11 Instruction Address Break Status Register - IBS

Instruction Address Break n

This register contains the upper 30/62 bits of the Instruction Address Break. Table 21.12 shows the
format of the Instruction Address Break n register. This address is a virtual address.

Bit(s) | Mnemonic Description R/W | Reset
0 - Zero R 0

1 reserved reserved R 0

1

31.2 IBAn[31..2] Instruction Address Break n RW ?

Table 21.12 Instruction Address Break Register n - IBAn

Instruction Address Break Mask n

These registers specifies the mask value for the Instruction Address Break Register n (IBAn). Each bit
corresponds to a bit in the address register, and when:

D' 0: Address bit is not masked, address bit is compared.
U 1: Address bit is masked, address bit is not compared.

Bit(s) | Mnemonic Description R/W | Reset
0 Zero R 0

1 reserved reserved R 0

1

31.2 IBMn[31..2] Instruction Address Break Mask n RW |?

Table 21.13 Instruction Address Break Mask Register n - IBMn

79RC32334/332 User Reference Manual 21 - 27 __ June 4. 2002 1.

Register Map

EJTAG (In-circuit Emulator) Interface

Notes

Instruction Address Break Control n

This register selects the instruction address match function to enable debug break or trace trigger.

Bit(s)

Mnemonic

Description

R/W

Reset

0

BE

Break Enable

This bit enables the Instruction Address break function.

0: Instruction Address break function is disabled

1: Instruction Address break function is enabled

If the Instruction Address break function is valid and the processor’s
virtual Instruction Address and the address set by the IBAn register
(masked by IBMn) match, a debug exception to the processor is
generated. The BSn bit in the Instruction Address Break Status reg-
ister is set and the DIB bit in the Debug Register is set to identify the
cause of the debug exception.

When the Instruction Address break occurs, the debug exception
happens just before the instruction is executed. If the debug excep-
tion handler is already running (DM="1"), then the debug exception
will not be taken.

RIW

0

reserved

reserved

TE

Trace Trigger Enable

This bit enables the Trace Trigger function.

0: Instruction Address trace trigger function is disabled

1: Instruction Address trace trigger function is enabled.

If the Trace Trigger function is valid and the processor’s virtual
Instruction Address and the address set by the IBAn register
(masked by IBMn) match, the trace trigger information TST(010) or
TSQ(001) is output to the ejtag_pcst[2:0] pins; also the BS0 bit in
the Instruction Address Break Status register bit is set.

When an address match occurs with both BE="1" and TE="1", the
Instruction Address break exception is taken after the trace trigger
information is output to the ejtag_pcst[2:0] pins.

RIW

31.3

reserved

reserved

Table 21.14 Instruction Address Break Control n Register - IBCn

Data Address and Data Match registers

Data Address Break Status
This register provides the status of the possible 15 Data Breakpoints.

Bit(s)

Mnemonic

Description

Reset

0

BSO

Break Status 0

This bit, when set, indicates that a data address break or data
address trigger has occurred. BSO can be cleared by activating
JtagRst, hard reset and also by writing a ‘0’ to it.

R/W

14.1

BS[1]
BSn

Break Status [1]
These bits are similar to the BS0 bit and are implemented accord-
ing to the number of channels available.

RIW

23..15

reserved

reserved

27.24

BCN

Break Channel Number

These bits indicate the total number of channels implemented for
data address break.

0000: Reserved

0001: Channel 1 (implemented value)

1111: Channel 15

0001

31.28

reserved

reserved

79RC32334/332 User Reference Manual 21 - 28 __ June 4. 2002 1.

Table 21.15 Data Address Break Status - DBS

Register Map

EJTAG (In-circuit Emulator) Interface

Data Address Break n

Notes
This register contains the upper 30 bits of the Data Address Break DBAn. This address is a virtual
address.
Bit(s) | Mnemonic Description R/W | Reset
0 W Data break match on write R 0
0: Data Address break disable for writes
1. Data Address break enabled for writes
1 R Data break match on reads R 0
0: Data Address break disable for reads
1: Data Address break enabled for reads
31.2 DBAn[31..2] Data Address Break n RW |?

Table 21.16 Data Address Break n Register - DBAn

Processor Bus Match Registers

The Processor Bus Match registers monitor the bus interface of the MIPS CPU and provide debug
exception or trace trigger for a given physical address and data. Since the CPU bus is implementation
specific, Processor Bus Breaks may not work identically for different MIPS CPUs.

Processor Bus Break Status
The following table shows the format of the Processor Bus Break Status register.

Bit(s)| Mnemonic Description R/W | Reset
0 BSO Break Status 0 RW 0
This bit, when set, indicates that a processor bus break or proces-
sor bus trigger has occurred. BSO can be cleared by activating
JtagRst, hard reset and also by writing a ‘0’ to it.
14.1 BS[14..1] Break Status [14..1] R/W 0
BSn These bits are similar to the BSO bit and are implemented accord-
ing to the number of channels available.
23.15 | reserved reserved 0
27.24 | BCN Processor Bus Break Channel Number 0001
These bits indicate the total number of channels implemented for
Processor Bus Break.
0000: Reserved
0001: Channel 1 (implemented value)
1111: Channel 15
31.28 | reserved reserved R 0
Table 21.17 Processor Bus Break Status - PBS
Processor Address Bus Break n
This register contains the bits of the physical Processor Address Bus Break.
Bit(s) | Mnemonic Description R/W | Reset
0 reserved reserved R 0
1 reserved reserved 0
1 RW |?
31.2 PBAn[31..2] Processor Address Bus Break n RW |?

79RC32334/332 User Reference Manual 21-29 __ June 4. 2002 1.

Table 21.18 Processor Address Bus Break Register n - PBAn

EJTAG (In-circuit Emulator) Interface Register Map

Notes

79RC32334/332 User Reference Manual 21-30 __ June 4. 2002 1.

Processor Data Bus Break n
This register specifies the data value for the Processor Data Bus match.

Bit(s) | Mnemonic Description R/W | Reset

31.0 PBDn[31..0] Processor Data Bus Break n RW |?

Table 21.19 Processor Data Bus Break n Register - PBDn

Processor Data Bus Mask n
This register specifies the mask value for the Processor Data Bus Break register. Each bit corresponds
to a bit in the data register:
U 0: Data bit is not masked, data bit is compared
' 1: Data bit is masked, data bit is not compared

Bit(s) | Mnemonic Description R/W | Reset

31.0 PBMn[31..0] Processor Data Bus Mask n RW |?

Table 21.20 Processor Data Bus Mask n Register - PBMn

Processor Bus Break Control and Address Mask n
This register selects the Processor Bus match function to enable debug break or trace trigger. It also
includes control bits to enable comparison as well as mask bits to exclude address bits from comparison.

Bit(s)| Mnemonic Description R/W| Reset

0 BE Break Enable RW |0
This bit enables the Processor Bus break function.

0: Processor Bus break function is disabled

1: Processor Bus break function is enabled

If the Processor Bus break function is valid and the Processor’s physical
Address = PBAn register (masked by LAM) and the Processor’s Data bus
= PBDn register (masked by PBMn), then a debug exception to the pro-
cessor is generated. The BSn bit in the Processor Bus Break Status regis-
ter is set and the DINT bit in the Debug Register is set to identify the
cause of the debug exception.

If the debug exception handler is already running (DM="1"), then the
debug exception will not be taken.

1 reserved reserved R 0

o

2 TE Trace Trigger Enable R/W
This bit enables the Trace Trigger function.

0: Processor Bus trace trigger function is disabled

1: Processor Bus trace trigger function is enabled.

If the Trace Trigger function is valid and the Processor’s physical Address
= PBAn register (masked by LAM) and the Processor’s Data bus = PBDn
register (masked by PBMO), then the trace trigger information TST(010) or
TSQ(001) is output to the ejtag_pcst[2:0] pins; also the BSn bit in the pro-
cessor Bus Break Status register is set. When a processor bus match
occurs with both BE="1" and TE="1’, the Processor Bus break exception is
taken after the trace trigger information is output to the ejtag_pcst[2:0] pins.

3 reserved reserved R 0

4 IFUC Instruction Fetch From Un-cached Area RW
This bit enables the comparison on Processor Address and Data Bus for
Instruction Fetches in the un-cached area.
0: Processor Address and Data Bus is not compared

for Instruction Fetches in the un-cached area.
1: Processor Address and Data Bus is compared for

Instruction Fetches in the un-cached area.
When BE="1" and IFUC="1" the debug break exception is taken on the
same instruction.

o

Table 21.21 Processor Bus Break Control and Address Mask n - PBCn (Part 1 of 2)

EJTAG (In-circuit Emulator) Interface Register Map

Notes

79RC32334/332 User Reference Manual 21 - 31 __ June 4. 2002 1.

Bit(s)| Mnemonic Description R/W| Reset

5 DLUC Data Load from un-cached Area RW |0
This bit enables the comparison on Processor Address and Data Bus for
Data Loads in the un-cached area.
0: Processor Address and Data is not compared for

Data Load in the un-cached area.
1: Processor Address and Data is compared for Data

Load in the un-cached area.
When BE="1" and DLUC="1" the debug break exception is taken after the
next instruction.

6 DSUC Data Store to un-cached Area RW |0
This bit enables the comparison on Processor Address and Data Bus for
Data Store to the un-cached area.
0: Processor Address and Data is not compared for

storing data into the un-cached area.
1: Processor Address and Data is compared for storing

data into the un-cached area.
When BE="1" and DSUC="1" the debug break exception is taken after the
next instruction.

7 DSCA Data Store to Cached Area RW |0
This bit enables the comparison on Processor Address and Data Bus for
Data Store to the Cached area.
0: Processor Address and Data is not compared for

storing data to the Cached area.
1: Processor Address and Data is compared for storing

data to the Cached area.
When BE="1" and DSCA="1" the break exception is taken after the next
instruction.

31.8 LAM Lower Address Mask R/W | 0x000
These bits specify the mask value for the 24 bit lower bits of the Proces-
sor Address Bus Break register (PBAn[23..0]). Each bit corresponds to
the same bit in PBAN.

0: Address bit is not masked, address bit is compared.

1: Address bit is masked, address bit is not compared.

Table 21.21 Processor Bus Break Control and Address Mask n - PBCn (Part 2 of 2)

Processor Bus Break Function

Processor bus break becomes effective by setting Processor Bus Control Register bits. The Debug Unit
will monitor the processor bus and, depending on the bit setting for instruction fetch from Uncache area or
data load/store in Uncache or Cache region (i.e., IFUC, DLUC, DSUX, PBCO bits), address and data
comparison is performed. PBAO, PBDO, and PBM are holding the address, data, and mask value to be
compared for debug interruption.

Processor Bus Trace Trigger Function

By setting TE=1 bit in the Processor Control register, the processor bus trace trigger becomes effective.
The Debug Unit will monitor the processor bus and, depending on the bit setting for instruction fetch from
Uncache area or Data load/store in Uncache or Cache region (i.e., IFUC, DLUC, DSUC, PBCO bits),
address and data comparison is performed. When the address set by PBAOregister and the data set by
PBDO register matches according to data mask value, Trace Information TST(010) or TSQ(001) is output to
PCST[2:0].

EJTAG (In-circuit Emulator) Interface Debug Exception

Notes Debug Exception
The debug exception has priority over all exceptions, except the reset exception.

Debug Exception Causes
There are several causes of the Debug Exception:
U Software Debug Breakpoint (SDBBP) instruction execution
U Match on Hardware DSU registers

5 Debug Exception from the JTAG port. This is caused by the EJTAG Probe setting the Jtagbrk bit in
the EJTAG_Control_Register.

During debug mode no other debug exception can be taken.

Debug Exception Enabling/Disabling
The causes of the Debug Exception can be masked as follows:

5 The Software Debug Breakpoint (SDBBP) instruction execution is masked in debug mode.

' The Match on Hardware DSU registers is enabled by setting the BE bit in the corresponding Control
register.

5 Debug Exceptions from the JTAG port are only masked in debug mode.

Debug Exception Handling
When the debug exception is raised, the processor jumps to the debug exception handler.

5" Ifthe ProbEn bit in the EJTAG_Control_Register[15] is set, the debug exception vector is located at
address location: 0xFF20-0200. (This is mapped in un-cacheable address space).
5 If the ProbEn bit in the EJTAG_Control_Register[15] is cleared, the debug exception vector is
located at address location: 0xBFC0-0480. (This is mapped in un-cacheable address space).
Only the contents of the Debug register and the DEPC will be affected by the debug exception.
5 The Debug Mode bit (DM) in the Debug register is set to ‘1",
One (or more) of the following bits in the Debug Register are set to identify the cause of the debug
exception:
DSS: after single step execution of an instruction and the SSt bit in the Debug register is set.
DBp: after execution of the SDBBP instruction.
DDBL: Data Address match during a Load memory instruction.
DDBS: Data Address match during a Store memory instruction.
DIB: Instruction Address match.
DINT: Processor Bus match or JtagBrk.
DBD: Set to ‘1’ when the exception was raised for an instruction in the branch delay slot.
NIS: Set to ‘1’ if a non-maskable interrupt occurred at the same time as the debug exception.
UMS: Set to ‘1" when the TLB exception occurred at the same time as the debug exception.
OES: Set to "1’ if another exception (other than reset, TLB, NMI) was raised at the same time as
the debug exception.

Exception priorities: DIB have a higher priority than DBp, and Jtagbrk has the lowest priority.

In case of SDBBP caused exception:

' The DEPC register points to the SDBBP instruction, unless that instruction is in the branch delay
slot, in which case the DEPC register points to the branch instruction and DBD bit is set to ‘1.

In case the debug exception had other cause besides SDDBP:
U The DEPC register points to the address of the instruction where the exception was raised (for sin-
gle step exception, this is the instruction to be executed).
DA single step exception is not raised for an instruction in the branch delay slot.
U When the DERET instruction is executed, a single step exception is not raised for an instruction at
the return destination. If the return destination is a branch instruction, a single step exception is not
raised for that branch instruction or for the instruction in the branch delay slot.

79RC32334/332 User Reference Manual 21 - 32 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface PC Trace

Notes Exception Handling when in Debug Mode (DM bit is set)

In Debug Mode, the processor core can only take reset type exceptions, all other exceptions are not
taken. All interrupts including NMI are masked. When the NMI interrupt occurred during Debug mode it is
stored internally and the NMI interrupt is taken after debug handler is finished (DM = ‘0’).

A Load or Store Instruction which generated a TLB related exception during Debug Mode is not taken
and is not executed. Only the TLF bit in Debug Register[11] will be set.

When a Load or Store instruction causes a bus error exception when the processor is in Debug Mode,
no exception is taken and the BsF bit in the Debug Register is set. The result of Load/Store operation is
discarded.

The debug mode has the same privileges as the kernel mode, i.e. access to all physical memory, the
complete instruction set and all registers including GPR and Coprocessor 0 instructions, regardless of the
value of the Kuc bit.

Servicing the Debug Exception

When a debug exception occurs, the debug exception handler should save the context of the program
that was executing. For that, it can use the DESAVE register. After that, the service routine should deter-
mine the nature of the exception from the Debug Register bits and invoke the corresponding exception
handler.

The DEPC register holds the address to where processing resumes after the debug exception routine
has finished. The address that has been loaded in the DEPC register is the virtual address of the instruction
that caused the debug exception. If the instruction is in the branch delay slot, the virtual address of the
immediately preceding branch or jump instruction is placed in this register and the DBD bit is set. Execution
of the DERET instruction causes a jump to the address in the DEPC.

In case of SDBBP caused exception: the unused bits of the SDBBP instruction (indicated as CODE) can
be used for passing additional information to the exception handler. In order to allow these bits to be viewed
at, the user program should load the contents of the memory word containing this instruction, using the
DEPC register. When the DBD bit in the Debug register is set to '1’, the SDBBP instruction is in the branch
delay slot, therefore the value in the DEPC register should be added with 4.

PC Trace

The basic idea of the instruction trace method is to output the virtual address of an instruction only when
the program flow is changed by a jump instruction or exception. Jump instructions can be divided into the
following two groups:

5 PC Relative Jump and Direct Jump: the target address of these instructions is fixed and identified
by the source program. The target address is usually specified by a ‘“label” in assembly language
e.g. j label1 (jump to label1).

" Indirect Jump: the indirect jump instruction jumps to an address contained in a general register.
This instruction is usually used for a subroutine call or table jump. The target address is determined
during program execution, e.g. jr r1 (jump to contents of register r1). Note that the ERET instruction
is treated as an indirect jump too.

A target address of a PC relative or direct jump instruction can be determined by the instruction itself.
However, a target address of an indirect jump depends on the contents of a register when the instruction is
executed. Therefore the processor should output a target address of an indirect jump for real-time trace
information.

Jump instructions are also classified into conditional and unconditional jumps. The dynamic information
whether the conditional branch is taken or not taken is necessary for instruction trace.

79RC32334/332 User Reference Manual 21 -33 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Instruction Trace Method

Notes Jumps Conditional | Unconditional

PC Relative instruction | Taken/ Not Taken | -
Direct Jump instruction

Indirect Jump instruction | Target Address Target Address
Taken / Not Taken

Table 21.22 Dynamic Trace Information

Instruction Trace Method

The EJTAG module requires output pin(s) for the PC trace information. EJTAG uses at least the data
output jtag_tdo/ejtag_tpc for that. More pins can be dedicated for PC output if the Extended EJTAG inter-
face is used (see PC Status and Exception Vector Encoding section).

The other signals (ejtag_pcst) show the status of execution and also show when one of the break chan-
nels (when programmed to output a trigger) has found a match.

In the RC32334, the number of ejtag_tpc bits output is 30. To reduce the information at the ejtag_tpc
pin(s), the processor only outputs a target address of a Direct Jump, an Indirect Jump, a Branch instruction
and (part of) exception vector addresses. However, there is the possibility that the target address output is
not complete.

The target address of an indirect jump may take 30 cycles to output the target address at the 1 bit
jtag_tdo/ejtag_tpc pin. If the next indirect jump is executed in 30 cycles, then the first target address is not
output completely.

In PC Trace mode, non-sequential Program Counter Address information (PC Trace) is output at the
ejtag_tpc pin(s), in conjunction with trace information at the ejtag_pcst pins. Non-sequential PC trace is
output when there is a change in the program flow, caused by:

5 Direct Jump Instructions (J and JAL) where the target address is defined.

5 Indirect Jump Instructions (JR, JALR and ERET) where the target address is contained in a register.

5 Branch Instructions (BEQ, BNE, BLEZ, BGTZ, BGEZ, BLTZ, BLTZAL, BCzT, BCzF. BEQL, BNEL,
BLEZL, BGTZL, BLTZL, BGEZLL, BGEZAL, BLTZALL, BCzTL and BCzFL) where a branch target
address is computed from the sum of the address of the instruction in the delay slot and the 16-bit
offset.
Interrupts and exceptions: an exception code is then output at the ejtag_tpc pin(s).

PC Status and Exception Vector Encoding

PC Status Encoding

The PC Trace Status (ejtag_pcst) Information is output at the same rate as the CPU pipeline clock. The
PC status is only active in Real-Time mode. The ejtag_pcst encodes the status of the MIPS CPU execution

as follows.

PCST| Symbol Function

111 STL Pipeline stall. During this state there is no Trace Trigger output.

110 | JMP Execution of a Taken Jump Instruction. This status indicates that the jump instruction is taken
and also indicates the start of the target PC address output. In this case the target PC
address of this jump will be output.

101 BRT Execution of a Taken Direct Jump Instruction or PC Relative instruction. This status indicates
the direct or PC relative jump is taken. In this case there is no PC trace output of this jump’s
target address.

100 | EXP Exception generated. This status indicates that an exception occurred, and an exception
code is output at the ejtag_tpc pin(s).

Table 21.23 PC Trace Status Information (Part 1 of 2)

79RC32334/332 User Reference Manual 21 -34 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface PC Status and Exception Vector Encoding

Notes PCST| Symbol Function

011 SEQ Execution of non Jump instructions. This status information indicates that the processor has
executed one instruction of sequential (in line) code. This status also indicates that the condi-
tional jump is not taken.

010 |TST Trace Trigger information is output when the pipeline is stalled. This condition shows that an
Address, Data or Processor Bus trace trigger has occurred before the time that the pipeline is
stalled.

001 |TSQ Trace Trigger output at execution time. This condition shows that an Address, Data or Pro-
cessor Bus trace trigger has occurred during processor execution.

000 |DBM Debug Mode. This condition is active when the Debug Mode is on (DM = ‘1’). This code may

also be output when trace in not on and the CPU is in Normal Mode.

Table 21.23 PC Trace Status Information (Part 2 of 2)

Status Output on Delay Slots

All jump and branch instructions have a delay slot. The instruction in the delay slot is normally executed
prior to the jump/branch target instruction, however, some instructions nullifies (kills) the delay slot instruc-
tion rather than executing it. These instructions are:

5 Branch likely not taken instructions.
' The ERET instruction.

For the nullified delay slot instructions the STL (or TST) code is output since the instruction is not part of
the actual instruction flow; for executed delay slot instructions the SEQ (or TSQ) code is output.

For the jump/branch instruction itself JMP/BRT is output when the jump/branch is taken, and SEQ (or
TSQ) is output for the branch when it is not taken. JMP is always output for the ERET instruction. For a
branch likely not taken instruction SEQ is output for the branch likely and STL is output for its nullified delay
slot.

Note that the PC Trace interpreting software may not be able to determine the exact target of a jump/
branch/ERET instruction unless the source is known; this is true even if a complete PC is output for the
target. The reason for this, is that an instruction resulting in a JMP code may or may not have an executed
delay slot (only known if source is known), and thus it will either be the first or the second significant code
(code other than STL or TST) after the JMP which will represent the instruction at the target PC. The PC
Trace interpreting software will however in most cases be able resolve this uncertainty when the first JMP
or BRT is met in the program code at the target PC.

Exception Vector Encoding

When an instruction receives an exceptional event, either due to an external source (e.g. interrupt) or as
part of the execution flow (SYSCALL, overflow etc.), the EXP code is output for that instruction instead of
what would otherwise have been output.

During an exception, when ejtag_pcst shows the EXP code, the ejtag_tpc pins output a exception vector
code, starting from the LSB of the code. Instructions that generate a Debug Exception will not output the
EXP code nor the exception code at the ejtag_tpc pin(s).

Exception Vector Encoding for RC32334:

Table 21.24 shows the 4 bit exception code output at the ejtag_tpc pin(s) during the EXP code at the
ejtag_pcst pins.

Exception BEV | EXL ||A[29] | A[9] | A[8] | A[T7]

Reset, Softreset, NMI | - - 1 0 0 0
TLB Refill 0 0 0 0 0 0

Table 21.24 Exception and Exception Codes at ejtag_tpc (Part 1 of 2)

79RC32334/332 User Reference Manual 21-35 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface External Interface Definition

Notes Exception BEV | EXL || A[29] | A[9] | A[8] | A[7]
Cache Error 0 - 0 0 1 0
Other 0 - 0 0 1 1
Interrupt (Cause.lV=1) | 0 0 0 1 0 1
TLB Refill 1 0 1 1 0 0
Cache Error 1 - 1 1 1 0
Interrupt (Cause.lV=1) | 1 0 1 0 0 1
Other 1 - 1 1 1 1

Table 21.24 Exception and Exception Codes at ejtag_tpc (Part 2 of 2)

External Interface Definition

EJTAG

The following signals are used during the PC Trace mode (Table 21.25 shows the complete list of
EJTAG interface signals).

. jtag_tdo/ejtag_tpc: During PC Trace Mode, the jtag_tdo/ejtag_tpc provides a non-sequential PC
(ejtag_tpc) at the processor clock. ejtag_tpc is output simultaneously with the Program Counter
Trace Status Signals ejtag_pcst, starting with PC address 2 or 1. depending on the support of
MIPS16 or not.

D ejtag_pest[2:0]: PC Status Trace Information, with the encoding described in Table 21.23.

. ejtag_dclk: Processor Clock: This signal is used by the external EJTAG Probe to capture the
ejtag_tpc and ejtag_pcst signals at the MIPS CPU clock rate. The ejtag_tpc and ejtag_pcst signals
are output at the positive edge of ejtag_dclk.

Priority of Target Address Output (ejtag_tpc)

The target address output at jtag_tdo/ejtag_tpc may change due to occurrence of an exception or of a
next Jump or Branch instruction. There are priorities specified at which the ejtag_tpc output will change.
The Trace Mode (TM) bit in the Debug Control Register (DCR[0]) determines if the current target PC output
is stopped and the new target PC started instead, or that the current target PC is completely finished.

Real Time ejtag_tpc Output (TM=0’ in DCR[O0])

During real-time ejtag_tpc output, the PC trace information is output at the processor clock and the PC
trace information is in sync. with the program execution. The target PC address output may be incomplete.
The priorities for target PC output in this mode are:

1. If there is no ejtag_tpc being output, the target address of a taken jump will be output at jtag_tdo/

ejtag_tpc, also when it is a Direct Jump. The ejtag_pcst pins will show the JMP code (see Figure
21.13).

2. Ifanew indirect jump is executed while the previous target PC is being output, the new indirect jump
target PC will always start and the previous target PC output will be aborted (see Figure 21.14).

3. If an exception occurs while the previous target PC is being output, an exception vector code is
output and then the previous discontinued PC output is resumed (see Figure 21.16).

4. Ifan exception occurs while a previous exception vector code is being output, the previous exception
vector code output is aborted and the new exception vector code output is started.

5. Ifanew direct jump or branch is executed while the previous target PC is being output, then this new
direct jump or branch target PC will not be output. Instead the ejtag_pcst code will indicate the BRT
code. The target PC for the direct jump or branch is only output when there is no PC trace output
for another jump/branch going on (see Figure 21.13). If an exception vector code output is gong on
but no jump/branch target PC is pending, then JMP is output for the direct jump and the target PC
output for the direct jump starts once the exception vector code has been output.

6. Ifajump occurs after exception, ejtag_tpc outputs exception code first and then the target address.

79RC32334/332 User Reference Manual 21 - 36 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Examples of PC Trace Output

Notes Non-Real Time ejtag_tpc Output (TM=‘1’ in DCR[O0])

During non-real time trace mode the 30 bit target PC for indirect jumps and the 3 bit exception vector
code is always output completely. In this mode, it is only guaranteed that all indirect jump target addresses
and exception vector codes are fully output on ejtag_tpc, this is however enough information to completely
reconstruct the program execution flow. The RC32334 implements a single level deep buffer to store the
PC trace address.

The priorities for the PC trace output are:

1. If there is no ejtag_tpc being output, the target address of a taken jump will be output at jtag_tdo/
ejtag_tpc, also when it is a Direct Jump. The ejtag_pcst pins will show the JMP code.

2. If an exception occurs while the target PC is being output, the exception vector code is output first
and then the previous discontinued PC output is resumed. The Processor core is not stalled in this
case.

3. Ifan exception occurs while a previous exception vector code is being output, the pending exception
vector code is output first and then the new exception vector code is output. The Processor core is
stalled in this case.

4. a. If an indirect jump instruction is executed while the previous target PC is being output, then the
Processor Core is stalled until the previous target PC is completely output.

b. If an indirect jump instruction is executed while the previous target PC from a direct jump is being
output, the RC32334 uses the 1 level deep buffer to store the PC trace address.

5. Ifanew direct jump or branch is executed while the previous target PC is being output, then this new

direct jump or branch target PC will not be output. Instead the ejtag_pcst code will indicate the BRT

code. The target PC for the direct jump or branch is only output when there is no PC trace output

going on (see Figure 21.13).

If a jump occurs after exception, ejtag_tpc outputs exception code first and then the target address.

o

Examples of PC Trace Output

Conditional PC Relative Jump Instruction

Figure 21.13 indicates the execution of conditional PC relative instructions. The beq and bne instruc-
tions are conditional PC relative jumps. Because the first jump instruction (beq) is taken and the ejtag_tpc
output is not in use, the target PC of the beq starts to output and the ejtag_pcst status is the ‘JMP’. The
jump status corresponding to the second jump (bne) is the ‘SEQ’ which indicates the jump is not taken. The
third jump (bne) is taken, the ejtag_pcst lines show ‘BRT’ but there is no ejtag_tpc output from its target
address since it is a Direct Jump and the ejtag_tpc line is already outputting.

Instruction | - | add |sub | b(?r? | nop |add | '(:)S'el') | nop |add | ?.P)e | nop |add |add |
ejtag_dclk

ejtag_pcst [2:0] X STL X SEQ X SEQ X JMP X SEQ X SEQ X SEQ X SEQ X SEQ X BRT X SEQ X SEQ X SEQ X SEQ
ejtag_tpc >< A2 X A3 X A4 X A5 X A6 X A7 X A8 X A9 X A10X A11 X A12

]]]

Branch is taken (JMP)
TPC is output

Branch is not taken
(SEQ)

Branch is taken (BRT).
No TPC is output,
since it is a Direct Jump

Figure 21.13 Trace of Conditional PC Relative Jump Instruction

Indirect Jump Instruction

The execution of an indirect instruction is shown in Figure 21.14. When the first indirect jump (jr1)
instruction is executed, the processor outputs the ‘JMP’ code at the ejtag_pcst pins and starts to output its
target address from the lower bit at the ejtag_tpc pin. The lower bit is A2. When the second indirect jump
instruction (jr2) is executed, the processor stops outputting the target address of the first indirect jump and
starts outputting the second target address. In this case, the target address of the first indirect jump is
incomplete.

79RC32334/332 User Reference Manual 21 - 37 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Examples of PC Trace Output

Notes

jr1 jr2

Instruction | - |add |sub | m | nop |add |;’,Q‘1e.) | nop |add 0 | nop |add |add |

ejtag_dclk

ejtag_pcst [2:0] X STL X SEQ X SEQ X JMP X SEQ X SEQ X SEQ X SEQ X SEQ X JMP X SEQ X SEQ X SEQ X SEQ

ejtag—tpc —\ A2 X A3 X A4 X A5 X A6 X A7 X A2 X A3 X A4 X A5 X A6

]]]

Branch is taken (JMP).
New TPC is output,

since it is an Indirect Jump.
Jr1 TPC output aborted

Branch is not taken
(SEQ)

Branch is taken (JMP)|
TPC is output

Figure 21.14 Trace of Indirect Jump Instruction

PC Trace Of An Exception Followed By A Jump Indirect Instruction

In Figure 21.15, the Break instruction is executed and causes an exception. This is indicated by the
‘EXP’ code at ejtag_pcst and the ejtag_tpc starts outputting the 3-bit exception code ‘001’ starting with the
LSB. The taken Jr2 instruction causes the JMP code at ejtag_pcst and the outputting of its target address at

ejtag_tpc.

Instruction | - | add |sub |Break| - | - | - | nop |add | 2 | nop |add |add |
(T) (T)
gagdok — LI LT LT 1T 1T LITLIL LI LT LITLILI1_

ejtag_pcst [2:0] X STL X SEQ X SEQ X STL X EXP X STL X STL X SEQ X SEQX VP X SEQ X SEQX SEQ X SEQ

ejtag_tpc
Jtag_tp /eO\e1 82/ XAZXA3XA4XA5XA6
Exception code 001 Branch is taken (JMP).
is output at TPC. TPC is output.

Output of 3 bit code
starts with LSB

Figure 21.15 Trace of an Exception Followed by a Jump Indirect Instruction

PC Trace of an Indirect Instruction Followed by an Exception

In Figure 21.16, the indirect jump Jr1 starts the ejtag_tpc output, but the target address output is
stopped to allow exception code bits of the exception to be output. After this the target address output is

continued again.

Instruction | - |add |add J('T1> nop | andi |add | - | - | sll | mult |add | - |

ejtag_dclk
ejtag_pcst [2:0] X STL X SEQX SEQ X JMP X SEQX SEQ X EXP X STL X STL X SEQ X SEQX SEQ X SEQ X SEQ

ejtag—tpc —)< A2 X A3 X A4 X e0 X el X e2 X A5 X A6 X A7 X A8 X A9
Branch is taken (JMP) Exception code Branch target address|
TPC is output is output at TPC. is continued

Output of 3 bit code
starts with LSB

Figure 21.16 Trace of Indirect Jump Instruction Followed by an Exception

79RC32334/332 User Reference Manual 21 - 38 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Examples of Trace Trigger Output

Notes Examples of Trace Trigger Output

Trace trigger information is output at the ejtag_pcst pins when an instruction address, data or processor
bus trigger occurred.

In general trace triggers should be indicated on the instruction which caused the trigger. However, since
trigger indications can only be indicated in the PC Trace output on SEQ or STL codes (by replacing these
codes with TSQ or TST) the trace trigger indication cannot be exactly defined. If JMP, BRT or EXP needs to
be output, a simultaneous trigger indication must be output on another code and thus the EJTAG Probe
cannot accurately determine the instruction that generated the trigger.

Instruction Address Trace Trigger

Figure 21.17 shows the occurrence of the Trace Trigger TSQ code at the ejtag_pcst pins for the instruc-
tion address that matches the required conditions.

Instruction | - | add |sub | add |sub | add | :),:‘]% nop |add | ‘(J.ﬁ nop |add |add |

S TOveRR (< [N N s e N Ny

ejtag_pcst [2;0]X STL X SEQX SEQX SEQX SEQX TSQX SEQX SEQX SEQX VP X SEQX SEQX SEQX SEQ

ejtag_tpc [
jlag_tp)\A2XA3XA4XA5XA6
Instruction which Branch is taken (JMP).
generates Trace TPC is output.
Trigger. TSQ s output
in the W stage

Figure 21.17 instruction Address Trace Trigger

Trace Trigger and General Exception at the Same Time

In Figure 21.18, both the Trace Trigger and an exception occur at the same moment, then the ejtag_pcst
pins show the TST code, followed by the EXP code. The 3 bit exception code is output at ejtag_tpc.

Jr2

Instruction | . |add | sub |B(r%ak . | . | . | nop | add | m nop | add | add |
ejtag_dclk

ejtag_pcst [2:0] X STL X SEQX SEQX ST X EXP X STL X STL X SEQ X SEQ X P X SEQX SEQX SEQX SEQ
ejtag_tpc €0 e2 w2 X A3 X A X A5 X A6

A

Instruction which
generates Trace Trigger
and also exception

Figure 21.18 Trace Trigger and General Exception at the Same Time

Jump Indirect Causes Trace Trigger

In Figure 21.19 the Jump Indirect (Jr2) is the instruction that generates the Trace Trigger. This indicated
by the TSQ code at the ejtag_pcst pins.

79RC32334/332 User Reference Manual 21 -39 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Switching from Real-Time Trace to Debug

Notes

Instruction | B | add |sub | add |sub | add | f’,[".er)l nop |add | f% | nop |add |add |

tagdok — LI LT LT LTI M1 ML riririritririri

ejtag_pcst [2:0] X STL X SEQ X SEQ X SEQ X SEQ X TsQ X SEQ X SEQ X SEQ X JMP X TsQ X SEQ X SEQ X SEQ

ejtag_tpc)< A2 X A3 X A4 X A5 X A6
Instruction which Trace Trigger code TSQ is
generates Trace Trigger output one clock after JMP

Figure 21.19 Jump Indirect Causes Trace Trigger

Instruction after Jump Indirect Causes Trace Trigger

In Figure 21.20 the Trace Trigger is caused by the instruction following the Jr2. The resulting trace
trigger output information however is the same. The EJTAG Probe can not accurately determine the instruc-

tion that generated the trigger.

Instruction | - |add | sub |B(rTe)ak - | - | - | nop | add | f{? | nop |add | add |

gtag dek — LI L LML L rrrririferiri
ejtag_pcst [2:0] X STL X SEQ X SEQX STL X EXP X STL X STL X SEQ X SEQX JVP X TsQ X SEQ X SEQ X SEQ

ejtag_tpc - = (e X A3 X A X A5 X A6

Instruction which
generates Trace Trigger

Figure 21.20 Instruction after Jump Indirect Causes Trace Trigger

Switching from Real-Time Trace to Debug

Real-Time Trace Mode to Debug Mode (No ejtag_tpc Output)

In Figure 21.21, the debug exception occurs in the instruction following the NOP instruction. In this case
there is no target PC output going on. The debug mode is entered directly after the debug exception. When
the instruction causing the debug exception is also set up for generating Trace Trigger, then the TST code
is output at ejtag_pcst just before debug mode is entered.

NOP instruction | IF I RF I ALU I MEMI wB |

Instruction causing debug exception | IF I RF IALU I MEMI wB |

Debug exception handler | IF I RF IALU I MEMI wB |

etag dck [T L LI LT LT LT reroerorer L
ejtag_pcst [2:0] X X X X X X sea X st) DBM (000)

jtag_tdo/

ejtag_tpc X X X _— X X X ‘/ Do
jtag_tdi/ L

ejtag_dint_n DINT / DI
DM |

Figure 21.21 Real-Time Trace Mode to Debug Mode (No Tpc Output)

79RC32334/332 User Reference Manual 21-40 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface Pin Out of the Standard EJTAG

Notes Real-Time Trace Mode to Debug Mode

In Figure 21.22, the target PC is being output (e.g. due to execution of an indirect JR instruction) when a
debug exception occurs. In this case the Debug Mode is entered after the trace output is finished. During
this time the STL code is output at ejtag_pcst; the debug mode entry is indicated by the DBM code. In
debug mode, the jtag_tdo/ejtag_tpc pin function changes from ejtag_tpc to jtag_tdo; jtag_tdi/ejtag_dint_n
pin function changes from ejtag_dint_n to jtag_tdi.

JR instruction | IF I RF I ALU I MEMI WwB |

NOP (delay slot) | I | RF | ALU | MEMI WB |

Debug exception handler

etagdek _[L [T 1T 1T 11T TL LT LITLI .1 1111

ejtag_pcst [2:0] X X X X X X JvP X SEQ X STL X STL X

aape N N C e e Y)Ts X e/ o
»

jtag_tdi/ i
ejtag_dint_n DINT / \ o

DM |

X STL \ DBM (000)

Figure 21.22 Real Time Trace Mode to Debug Mode (Debug Exception in Branch Delay Slot)

Pin Out of the Standard EJTAG

Figure 21.23 represents the timing diagram for the EJTAG interface signals.

The standard EJTAG connector (without PC Trace signals) is a 12-pin connector. For Standard EJTAG,
a 24-pin connector has been chosen, providing 12 signal pins and 12 ground pins. This guarantees elimina-
tion of noise problems by incorporating signal-ground type arrangement.

" 3 et | ejtag_tpc,ejtag_pcst[2:0] capture |
jtag_tck : Vi '
4 . T 14 ; - S G
- . | ¥ NAT ;
ejtag_dclk ' |- - |- > o/ \! .
: - : : 115~ — 15
jtag_ tdifejtag_dint_n : >< >< T 10
ejtag_tms : \ . ! :
: t5 . 6 L
jtag_tdo/ejtag_tpc, | ' >< s : >< .
ejtag_tpc[8:2] jtag_tdo, A ' jtag_tdo N ejtag_tpc
t4 - ; 8 -
ejtag_pcst[2:0] : : >< citag_post ><
i - : t7 ————-t
jtag_trst_n ‘\—/ : Notes to diagrany: ! i
; L3 07 ckon 19 lookHon
\ .' L < = YCKHIGH . = IpckLow
' Ca 3= trex 1= thex
- L 4= trpopo 112 = trrsTDO
12 C 5= trpig 13 = trreTR
: 6= trpy t14 = trok RISE, tToK FALL
t7= tocsTno 115 = tpck risk, took FALL
8= trpepo

Figure 21.23 Timing Diagram of the EJTAG Interface Signals

79RC32334/332 User Reference Manual 21 -41 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface EJTAG Application Information

Table 21.25 shows the pin numbering for the Standard EJTAG (EJT) connector. All the even numbered
pins are connected to GROUND. The last columns show the target signal direction and the recommended
termination at the target. Target termination resistors may be internally in the chip or externally on the

Notes

board.
PIN SIGNAL TARGET 1/0 TERMINATION'
1 ejtag_trst_n (optional) | Input 10 kQ pull-down resistor
3 jtag_tdi, ejtag_dint_n Input 10 k2 pull-up resistor
5 jtag_tdo/ejtag_tpc Output 33 Q series resistor
7 jtag_tms Input 10 kQ pull-up resistor
9 jtag_tck Input 10 k2 pull-up resistor?
1 system reset Input 10 kQ pull-up resistor
13 ejtag_pcst[0] Output 33 Q series resistor
15 ejtag_pcst[1] Output 33 Q series resistor
17 ejtag_pcst[2] Output 33 Q series resistor
19 ejtag_dclk Output 33 Q series resistor
21 ejtag_debugboot Input 10 kQ pull-down resistor
23 VIO Input Must be connected to the VCC 1/0 supply of the device.

Table 21.25 Pin Numbering of the JTAG and EJTAG Target Connector
1 The value of the series resistor may depend on the actual PCB layout situation.

2 jtag_tck pull-up resistor is not required according to the JTAG (IEEE1149) standard. It is indicated here to prevent a floating CMOS
input when the EJTAG connector is unconnected.

EJTAG Application Information

Using JTAG Boundary Scan and EJTAG

Figure 21.24 gives an application diagram of a target board showing how the processor’s EJTAG signals
are connected to the Target Connector and to the other (boundary Scan) IC’s on the board.

ejtag_tck
ejtag_tms
jtag_frst_n
jtag tdo/ejtag tpc | ['
tag tdi/ ejtag_dint n * * !
- oo 1 vy v
c x '
4 o VDD o8 3 ﬁlé% :
2 T 5 o P .
) | 2 8 o 8 £ '
-ajtag_trst n (O O|GND 2 = = g = ,
Nt iidinf O O n B !
\»Jt.ag—tdlld'm GND > jtag_tdi ejtag_dint_p itag tdi '
jtag_tdo | O O[GND 5x 10k)] Jtag_tdi _»
< jtag tms| 0 O|GND S)n,:ag;] I%e) jtag_tdo ejtag_tpc jtag_tdo
< jtag_tck |0 OlgND JTAG JTAG
- S)J,S ?eset o oleND cpu_coldreset_n k testable IC testable IC
| jtag_pcst[0] O O |GND /—:l—ejtag_pcst[O]
L jtag_pcst[1]| 0 O|GND L~ T ejtag pest[1]
| jtag_pesti2]| 0 O|GND {1 ejtag_pcst[2]
| ejtag_dclk|O O|GND |, | eitag_dclk
»ejtagagfbw O O|GND | 4x33 ohm RC32300
L vio [0 OJCND cPU EJTAG JTAG
: Debugging goun?aﬂtf
can tesf
Standard EJTAG **) Probe’s RST* to be 'OR-ed’
Connector with Board/MIPS System Reset
(Zn;a#ezt;?:ger pins TARG ET BOARD
pitch 1.27 x 1.27 mm)

Figure 21.24 Application Diagram of Target Board and EJTAG Connection

79RC32334/332 User Reference Manual 21 -42 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface EJTAG Application Information

Notes Jumper block X1 on the Target Board provides the connection of the processor’s jtag_tdo/ejtag_tpc
signal to the EJTAG connector (during EJTAG debugging) or to the other boundary scan testable IC’s on
the board (during boundary scan test). This separates the (high speed) ejtag_tpc information from the other
IC’s during EJTAG emulation/debugging; after emulation/debugging is finished, the jumpers can be set
such that the processor is part of the boundary scan test chain: jtag_tdo/ejtag_tpc outputs its serial data to
the next following jtag_tdi input and the jtag_tdo of the last IC in the chain gets connected to the EJTAG
connector. A JTAG/Boundary Scan tester can then be hooked to this connector (Pins 1-10 is sufficient in
this case).

Since the EJTAG trace pins (ejtag_tpc, ejtag_pcst[2:0], ejtag_dclk) contain high speed data, the user
shall take special care in the PCB layout of these signals. The EJTAG connector has to be placed close to
the EJTAG pins of the processor chip; the PC Trace PCB tracks between connector and chip shall be short
and preferably be of equal length.

The EJTAG Probe shall have a female connector that is plugged into this Target Connector. The EJTAG
Probe Connector PCB may also contain a (fast) buffer for the high-speed trace signals; this external buffer
shall be capable of driving the (short) flat cable to the EJTAG Probe box.

Hot Plug-In of the EJTAG Probe to Target System

In order to allow hot plug (connection while power on) the jtag_trst, jtag_tdi / ejtag_dint, jtag_tms and
jtag_tck should be tri-state in the EJTAG Probe when the connection is made to target. In this way, the
connection will not reset the target board by accident, and the input signals to the target could then be
driven high to the right level when the Vdd is known.

79RC32334/332 User Reference Manual 21-43 __ June 4. 2002 1.

EJTAG (In-circuit Emulator) Interface EJTAG Application Information

Notes

79RC32334/332 User Reference Manual 21-44 _ June 4. 2002 .

Appendix A

RC32300 CPU Core
IDT Enhancements to MIPS |1l ISA

Introduction

The RC32300 execution unit implements the Enhanced MIPS-II ISA. A superset of MIPS Il, these archi-
tectural enhancements include the addition of a MIPS-IV prefetch operation that incorporates various hint
subfields, conditional move instructions that are MIPS-IV compatible, additional integer multiply unit instruc-
tions, and two new instructions designed to enhance the performance levels of certain DSP algorithms.

These features combine to make the CPU well suited to applications that require high bandwidth, rapid
computation, and/or DSP capability. A discussion of each new integer unit feature implemented in the
RC32334 follows. General instruction set information can be found in the IDT MIPS Microprocessor Family
Software Developer’s Guide.

Prefetch (PREF)

In general, PREF is an advisory instruction that may change the performance of the program but will not
cause addressing related exceptions. If the PREF instruction raises an exception condition, the exception
condition is ignored.

If an addressing-related exception condition is raised and ignored, no data will be prefetched. In such a
case, if no data is prefetched, some action that is not architecturally-visible—such as writeback of a dirty
cache line or invalidate a cache line (in the case of “ignorehit” hint)—might take place.

PREF will not generate a memory operation for a location with an uncached memory access type. As
noted in Figure A.1, the hint field supplies information about the way the data is expected to be used. For
data movement, the MIPS IV PREF instruction is implemented with multiple hints.

31 26 25 21 20 1615 0

PREF
110011

base hint offset

6 5 5 16

Figure A.1 Format of Prefetch Instruction

Format: PREF hint, offset(base)

Description: To form an effective byte address, PREF adds the 16-bit signed offset to the content of
GPR base. It advises that data at the effective address may be used in the near future. The hint field
supplies information about the way the data is expected to be used. The format of the Prefetch Instruction is
shown in Figure A.1. Figure A.2 provides a diagram of the Prefetch operation flow.

79RC32334/332 User Reference Manual A-1 W P ataShert diden m

Prefetch (PREF)

Notes
Begin
Prefetch
Operation
L - — — —
v
No
- - — - Ignore Hit
| Set?
|
|
| Yes Yes r Write Back
| —» < Is Modified? —»| Modified
L Cache Line
v | -
No
. | _No_¢_ B
! 0_ L —>| r . -
Invalidate Cache
| Line
| L — - = — |
| Yes |<_ ______ !
| Yes
€ ———-
|
| i No
r— v— I — 1
| Terminate | | Complete |
Prefetch Prefetch
L — — — 4 L — — — 4
Figure A.2 Flowchart for Prefetch Operation
The defined hint values and prefetch actions are listed in Table A.1.
Value Hint Field Name and Definition Prefetch Action

0 Load Data is expected to be
Informs the CPU to process the PREF as if the cause were a cache miss on a | loaded (not modified).
load instruction. As such, the TLB coherency algorithm rules that apply toa | Fetch data as if for a
load cache miss are applied. For example, if the TLB and chip were to support | load.
multi-processing, the resulting read could be marked as “coherent” or not,
depending upon the translation.

1 Store Data is expected to be
Informs the CPU to process the PREF as if the cause were a cache miss on a | stored or modified.
load instruction. As such, the rules with respect to coherency, write allocation, | Fetch data as if for a
etc. may be applied to the resulting bus transaction. store.

31 Ignore hit (Kernel Mode only) Invalidate the cache line
Causes the PREF to perform a cache refill, even if the target address currently | and bring in the new data
hits in the cache. The MIPS-IV ISA allows PREF to revert to a NOP operation | from memory regardless
under exceptional conditions, etc., since the program will be semantically cor- | of the state of the valid
rect, although lower performance, if the cache miss processing occurs later. | bit.

However, the “ignore hit” option carries an implicit invalidation of the current
cache line. As such, even if the PREF/ignore-hit generates an exception, the
cache line invalidate occurs when the PREF is encountered so that the pro-
gram does run correctly later (that is, old cache contents are not used).
Table A.1 Value of Hint Field for the Prefetch Instruction
79RC32334/332 User Reference Manual A-2

www NataGheetdlleo

Elimination of 64-bit instructions

Notes Operation:

vAddr <-- GPR[base] + sign_extend(offset)
(pAddr, uncache) <-- Address Transl ati on(vAddr,
Pref et ch(uncache, pAddr, vAddr, DATA, hint)

DATA, LOAD)

Exception: Reserved Instruction, if “Ignore hit” is used in User Mode.

Elimination of 64-bit instructions

When an instruction requests 64-bit data operations, the RC32334 signals a trap. This includes both the
MIPS-IIl 64-bit instructions and the MIPS-II 64-bit coprocessor operations. The trap signal occurs in both
user and kernel modes.

Conditional Move Operations

In addition to the prefetch instruction, the RC32300 core implements the conditional move instructions
found in the MIPS-IV architecture.

Move Conditional on Not Zero

3 26 25 21 20 16 15 110 65
SPECIAL 0 MOVN
rs rd
000000 00000 001011
6 5 5 5 6
Format: MOVN rd, rs, rt
Description: If the value in rt is not equal to zero, then the content of rs is placed into rd.
Operation:
T: if GPR[rt] = 0 then GPR{rd] <-- GPR]rs]
Exception: Reserved Instruction.
Move Conditional on Zero
31 26 25 21 20 16 15 110 65
SPECIAL 0 Movz
rs rd
000000 00000 001010
6 5 5 5 6

Format: MOVZ rd, rs, rt
Description: If the value in rt is equal to zero, then the content of rs is placed into rd.
Operation:

T: if GPRIrt] = 0 then GPR[rd] <~ GPR]rs]

Exception: Reserved Instruction.

Instructions for DSP Support

The RC32300 CPU core adds new instructions to the MIPS Il ISA, intended to enhance the performance
of certain types of DSP algorithms. All of these extensions are supported in the Enhanced MIPS-II ISA.

Specifically, enhancements in the multiplier have been added to allow fast fused multiply-adds and
multiply-subtracts. In addition, RC32300 CPU core adds the three operand multiply operations originally
found in the 1st RC4650 and adds instructions to help normalize values (count-leading-1’s or 0’s).

79RC32334/332 User Reference Manual _ June 4. 2002 1.

Instructions for DSP Support

Notes Multiply Add
31 % 25 2120 1615 110 65 0
SPECIAL2 0 0 MAD
rs
011100 00000 00000 000000
6 5 5 5 6

Format: MAD rs, rt

Description: The content of general registers rs and rt are multiplied— treating both operands as 32-bit
two’s complement values—and the result is added to HI/LO. Overflow exceptions do not occur under any
circumstances.

Once the operation is complete, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded in HI.

Operation:
T: temp <-- (H || LO + GPR[rs] * GPR[rt]
LO <-- tenpz;. .o
H <-- tenpgs. 32
Exception: None
Multiply Add Unsigned
31 2% 25 21 20 1615 110 65 0
SPECIAL2 0 0 MADU
011100 ® 00000 00000 000001
6 5 5 5 6

Format: MADU rs, rt

Description: The content of general registers rs and rt are multiplied, treating both operands as 32-bit
unsigned values, and the result is added to HI/LO. No overflow exception occur under any circumstances.

When the operation completes, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded in HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:
T tenmp <-- (H || LO + (O|GPRrs]) * (O] |GPR{rt])
LO <-- tenps;. .o

H <-- tenpes . a2

Exception: None

Multiply Subtract

31 26 25 21 20 1615 1110 65 0
SPECIAL2 0 0 MSUB
rs
011100 00000 00000 000100
6 5 5 5 6
Format: MSUB rs, rt
79RC32334/332 User Reference Manual A-4

www NataGheetdlleo

Instructions for DSP Support

Notes Description: The content of general registers rs and rt are multiplied, treating both operands as 32-bit
two’s complement values, and the result is subtracted from HI/LO. No overflow exception occur under any
circumstances.

When the operation is complete, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded into HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:

T tenmp <-- (H || LO - GPR[rs] * GPR[rt]
LO <-- t enpz1. .o
H <-- tenpgs . 32
Exception: None
Multiply Subtract Unsigned
31 26 25 2120 16 15 110 65 0
SPECIAL2 . 0 0 MSUBU
011100 ° 00000 00000 000101
6 5 5 5 5 6

Format: MSUBU rs, rt

Description: The content of general registers rs and rt are multiplied, treating both operand as 32-bit
unsigned values, and the result is subtracted from HI/LO. No overflow exception occur under any circum-
stances.

When the operation completes, the low-order word of the double result is loaded in LO, and the high-
order word of the double result is loaded in HI. The instruction is not interlocked so any attempt to read HI/
LO before the operation completes returns undefined value.

Operation:

T temp <-- (H || LO - (O|GPRrs]) * (O] |GPRrt])
LO <-- tempa. .o
H <-- tenpes. .32
Exception: None
Count Leading Zeros
31 26 25 21 20 1615 65 0
SPECIAL2 0 cLz
rs
011100 0000000000 100000
6 5 10 6

Format: CLZ s, rt

Description: The content of general register rs is scanned from the most significant bit to the least
significant bit, and the number of leading zeros is written into general register rt. If no bits were set in
general register rs, i.e. rs=0, the content of general register rt is 32.

Operation:

T: rt <-- Leading_zeros(rs)
Exception: None
79RC32334/332 User Reference Manual A-5 _ June 4. 2002 1.

Instructions for DSP Support

Notes Count Leading Ones
31 26 25 21 20 16 15 65 0
SPECIAL2 0 cLo
rs
011100 0000000000 100001
6 5 10 6

Format: CLOrs, rt

Operation:
T: re <--

Exception: None

79RC32334/332 User Reference Manual

Leadi ng_ones(rs)

Description: The content of general register rs is scanned from most significant bit to least significant
bit, the number of leading ones is written into general register rt. If no bits were cleared in general register
rs, i.e. rs=0xffffffff, the content of general register rt is 32.

www NataSheatAll eqm

Opcode Map

Notes
28..26 opCOde
31..29 0 1 2 3 4 5 6 7
0 SPECIAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COPO COP1 COP2 * BEQL BNEL BLEZL BGTZL
3 * * * * Special2 * * *
4 LB LH LWL LW LBU LHU LWR *
5 SB SH SWL SW * * SWR |CACHE §
6 LL LWC1 LWC2 PREF * * * *
7 SC SWC1 SWC2 * * * * *
2.0 SPECIAL function
53 0 1 2 3 4 5 6 7
0 SLL * SRL SRA SLLV * SRLV SRAV
1 JR JALR MOVZ MOVN SYSCALL | BREAK | SDBBP SYNC
2 MFHI MTHI MFLO MTLO * * * *
3 MULT MULTU DIV DIVU * * * *
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 * * SLT SLTU * * * *
6 TGE TGEU TLT TLTU TEQ * TNE *
7 * * * * * * * *
2.0 SPECIAL function2
5.3 0 1 2 3 4 5 6 7
0 MAD MADU MUL * MSUB | MSUBU * *
1 * * * * * * * *
2 * * * * * * * *
3 * * * * % * * *
4| cLz cLo * * * * * *
5 * . * * * * * *
(3} * * * * . % * «
7 * * * * * % * *

79RC32334/332 User Reference Manual B-1 o Patashe

Notes
23..21 COPZ rs
0 1 2 3 4 5 6 7
25*2: e [omF [ce [v [wmr [owr [ot [v
1] BC y y y y Y y Y
2
3 co
18.16 COPzrt
20..19 0 1 2 3 4 5 6 7
o | BCF | BCT | BCFL [BCTL | ¥ Y Y Y
1 y y y y y y y y
9 y y y y y y y y
3 y y y y y y y y
)0 CPO0 Function
5.3 0 1 2 3 4 5 6 7
0 o TLBR [TLBWI | ¢ o o [TLBWR | ¢
1 [TLBP
2 f
3 | ERET ® Iy o o I o DRET
4 [WA o [[[[[[
5)) [[[) [[
6) [o o [) o [
7 [$ [[[b [[
18.16 REGIMM rt
0 1 2 3 4 5 6 7
20-(-)19 BLTZ | BGEZ BLTZL | BGEZL * * * *
1 TGEI TGEIU LTI TLTIU TEQI TNEI N .
2 BLTZAL BGEZAL BLTZALL |BGEZALL * * * *
3 * * * * * * * *
79RC32334/332 User Reference Manual B-2

www NataGheetdlleo

Appendix C

The Timing of Cache
Operations

Introduction

Cache holds a copy of recently read or written to memory data so that it can be quickly returned to the
CPU. To double the effective cache-memory bandwidth, IDT CPUs implement separate on-chip instruction
(I-cache) and data (D-cache) caches. Within the RC32334, both an I-cache and D-cache access can occur
simultaneously; cache accesses take one processor clock to complete.

Information specific to the RC32334’s cache organization and operation is provided in Chapter 7 of this
manual.

Caveats About Cache Operations
* All cycle counts are in processor cycles.
* All cache operations have a lower priority than cache misses, write backs and external requests. If

the write back buffer contains unwritten data when a cache op is executed, the write back buffer will
be retired before the cache op is started.

If an instruction cache miss occurs at the same time a cache op is executed, the instruction cache miss
will be handled first. Cache operations are mutually exclusive with respect to data cache misses. Before
beginning any cache operation, external requests will be completed first.

* For all data cache ops the cache op state machine waits for the store buffer and response buffer to
empty before beginning the cache op. This can add 3 cycles to any data cache op if there is data in
the response buffer or store buffer. The response buffer contains data from the last data cache miss
that has not yet been written to the data cache. The store buffer contains delayed store data waiting
to be written to the data cache.

* Cache ops of the form xxxx_Writeback_xxxx may perform a write back which will fill the write back
buffer. Write backs can affect subsequent cache ops, since they will stall until the write back buffer
is written back to memory. Cache ops which fill the write back buffer are noted as (writeback) in the
following tables.

* All cycle counts are best case assuming no interference from the mechanisms described above.

Cache Operations Tables

Table C.1 and Table C.2 show data cache and instruction cache operation’s information. A detailed
explanation of the Fill_| equation follows Table C.2.

Name Operation Number of Cycles

Index_Writeback_Invalidate_D| Examine the cache state and W bit of the pri- | 10 cycles, if the cache line is clean.
mary data cache block at the index specified by | 12 cycles, if the cache line is dirty
the virtual address. If the state is not Invalid and | (Writeback).

the W bit is set, then write back the block to
memory. The address to write is taken from the
primary cache tag. Set cache state of primary
cache block to Invalid.

Index_Load_Tag_D Read the tag for the cache block at the specified | 7 cycles.
index and place it into the TagLo CPO register,
ignoring parity errors. Also load the data parity
bits into the ECC register.

Table C.1 Primary Data Cache Operations (Part 1 of 2)

e 42002

79RC32334/332 User Reference Manual C-1

Cache Operations Tables

Notes Name Operation Number of Cycles

Index_Store_Tag_D Write the tag for the cache block at the specified | 8 cycles.
index from the TagLo and TagHi CPO registers

Create_Dirty_Exclusive_D This operation is used to avoid loading data 10 cycles, for a cache hit.
needlessly from memory when writing new con- | 13 cycles, for a cache miss if the
tents into an entire cache block. If the cache cache line is clean.

block does not contain the specified address, 15 cycles, for a cache miss if the
and the block is dirty, write it back to the mem- | cache line is dirty (Writeback).
ory. In all cases, set the cache block tag to the
specified physical address and set the cache
state to Dirty Exclusive.

Hit_Invalidate_D If the cache block contains the specified 7 cycles, for a cache miss.
address, mark the cache block invalid. 9 cycles, for a cache hit.
Hit_Writeback_Invalidate_D | If the cache block contains the specified 7 cycles, for a cache miss.
address, write back the data if it is dirty and mark| 12 cycles, for a cache hitif the cache
the cache block invalid. line is clean.

14 cycles, for a cache hit if the cache
line is dirty (Writeback).

Hit_Writeback_D If the cache block contains the specified 7 cycles, for a cache miss.
address, and the W bit is set, write back the data| 10 cycles, for a cache hit if the cache
to memory and clear the W bit. line is clean.

14 cycles, for a cache hit if the cache
line is dirty (Writeback).

Table C.1 Primary Data Cache Operations (Part 2 of 2)

Name Operation Number of Cycles

Index_Invalidate_| | Set the cache state of the cache block to 7 cycles.
Invalid. Index_Invalidate_| writes the physical
address of the cache operation into the tag
when it clears the valid bit, which is different
from the RC4000 family.

Index_Load_Tag_I| Read the tag for the cache block at the speci- | 7 cycles.
fied index and place it into the TagLo CPO reg-
ister, ignoring parity errors. Also load the data
parity bits into the ECC register.

Index_Store_Tag_|| Write the tag for the cache block at the specified| 8 cycles.
index from the TagLo and TagHi CPO registers.

Hit_Invalidate_| | If the cache block contains the specified 7 cycles for a cache miss.
address, mark the cache block invalid. 9 cycles for a cache hit.
Fill_I Fill the primary instruction cache block from Cycle number must be calculated based on the

memory. If the CE bit of the Status registeris | system response to a memory access, because
set, the contents of the ECC register are used | Fill_I causes an instruction cache refill from

instead of the computed parity bits for an memory.
addressed doubleword, when written to the The number of processor cycles for a Fill_|
instruction cache. cache op is calculated as follows:

Number_of_cycles_for_a_Fill_I_CacheOp =10
+{0- (SYSDIV - 1)} + (2 x SYSDIV) +
(ML x SYSDIV) + (D x SYSDIV)

Hit_Writeback_| | If the cache block contains the specified 7 cycles, for a cache miss.
address, write back the data unconditionally. | 20 cycles, for a cache hit (Writeback).

Table C.2 Primary Instruction Cache Operations

79RC32334/332 User Reference Manual cC-2 _ June 4. 2002 1.

Fill_l Equation Definitions

Notes Fill_l Equation Definitions
The following definitions apply to the Fill_I equation listed in Table C.2:
SYSDIV: Number of processor cycles per system cycle: range is between 2 and 8.

ML: Number of system cycles of memory latency, defined as the number of cycles the internal IP bus is
driven by the external agent before the first word of data appears.

D: Number of system cycles required to return the block of data, defined as the number of cycles begin-
ning when the first word of data appears on the internal IP bus and ending when the last word of data
appears on the internal IP bus, inclusive.

79RC32334/332 User Reference Manual c-3 SRR 2007 .

Fill_l Equation Definitions

Notes

79RC32334/332 User Reference Manual c-4 -~ dune 4. 2002 .

Appendix D

RC32334/RC32332 Standby
Mode Operation

Introduction

The Standby Mode operation is a means of reducing the internal core’s power consumption when the
CPU is in a “standby” state. In this section, the Standby Mode operation is explained.

Notes

Power Management

The RC32334/RC32332 offers a number of features relevant to low-power systems, including low-power
design, active power management, and a power-down operating mode.

Power Reduction Modes

The RISCore 32300 core is a static design, and products based on this core, such as the RC32334/
RC32332, offer various power reduction modes. In addition, the RISCore 32300 supports a “Wait” instruc-
tion that is designed to signal the chip’s other resources that execution and clocking should be halted.

The “Wait” instruction (illustrated and defined below) is used to halt the internal pipeline thus dramati-
cally reducing the power consumption of the CPU.

31 26 25 24 65 0
COPO Cco 0 WAIT
010000 1 00000000000 00O0OO0O0QOO0OO 100000
6 1 19 6
Format: WAIT

Description: Used to halt the internal pipeline and reduce the power consumption of the CPU.

Operation:

T if AD bus is idle then
StopPipeline
endif

Exceptions: Coprocessor unusable exception.

Entering Standby Mode

To enter standby mode, first execute the WAIT instruction. When the WAIT instruction finishes the W
pipe-stage, if the internal IP bus is currently idle, the internal clocks will shut down, thus freezing the pipe-
line. The PLL, internal timer, some of the input pin clocks (cpu_int_n[5:4,2:0], cpu_nmi_n, cpu_coldreset_n,
internal cpu_int_n[3]) will continue to run. In the RC32334/RC32332, the system controller peripherals will
continue to run. However, no DMA operations can occur while the CPU core is in standby mode.

If the conditions are not correct when the WAIT instruction finishes the W pipe-stage (such as the
internal IP bus is not idle), the WAIT is treated as a NOP. Once the CPU is in standby mode, any interrupt—
including the internally generated timer interrupt or the internal cpu_int_n[3]—will cause the CPU to exit
standby mode. Figure D.1 illustrates the flow of the Standby Mode Operation.

79RC32334/332 User Reference Manual D-1 miﬁmﬁﬁ‘hﬁeﬁm@ﬁﬂm

Entering Standby Mode

Notes
AD If bus activity
+—] When “WAIT” instructions finish the W-stage, the R3600 core will detected
check for BUS ACTIVITY.
If bus activity not “Wait” instruction is treated
detected as a "NOP” instruction
—>
Int(5:0)* - -
NMI* Once in Standby Mode, the PClock will shutdown, freezing
Reset* the pipeline; however, these signals and internal blocks will
ColdReset* remain active:
PLL
Internal Timer Int(5:0)
NMI*
ALE Reset*
¢ ColdReset*
Ack*
—
Rd* l
+—
W If Int(5:0)*, NMI*, Reset*, or an internal timer
interrupt signal occurs, RC32334/RC32332 will exit Standby Mode.
| CIP* l
After exiting Standby Mode, RC32334 does not sample any control/
AD bus signals on the first rising edge. Also, bus activity and
other internal processes will resume by using the latched information
that existed before entering Standby Mode.
Note: During standby mode, all control signals for the CPU must be deasserted or
put into the appropriate state, and all input signals, except Int(5:0)*, NMI*,Reset*, and
ColdReset* must remain unchanged. If a change occurs, the signal will be unaffected.
Figure D.1 Flowchart for Standby Mode Operation
79RC32334/332 User Reference Manual D-2

www NataSheatAll eqm

Appendix E

Coprocessor 0 Hazards

®
Notes Introduction

This appendix identifies the RC32300 CPU core specific coprocessor 0 hazards. Certain instruction
combinations are not permitted because the results are unpredictable when combined with events such as
pipeline delays, cache misses, interrupts and exceptions.

Most hazards result from instructions modifying and reading state in different pipeline stages. Such
hazards are defined between pairs of instructions, not on any single instruction. Other hazards are associ-
ated with the restartability of instructions in the presence of exceptions.

Refer to the IDT MIPS Microprocessor Family Software Developer’s Guide for information about MIPS
ISA hazards.

List of Hazards

RC32334/RC32332 CPO hazards are as follows:

* A mtcO followed by a mfc0 is undefined. A one instruction delay between mtcO and mfc0 is needed
for proper operation. This rule applies when the destination of the first instruction is the same as the
source of the second instruction. See Example #1 below.

* When DWatch is enabled, the two instructions immediately following may not be checked for a
match with the watch value.

* When IWatch is enabled, the five instructions that follow may not be checked for a match with the |
match value.

* When bit 23 of the Status register is changed, refills to set A may not be disabled until five instruc-
tions later.

* When bit 24 of the Status register is changed, refills to set A may not be disabled until three instruc-
tions later.

¢ Cannot clear UM, ERL, and EXL simultaneously. Must clear UM first, then ERL and EXL can be
cleared simultaneously.

* A minimum of two NOP instructions should be inserted between the ERET instruction and the
MTCO instruction to ensure the EXL and ERL bits are changed correctly. See Example #2 below.

Example #1:

This instruction sequence will lead to an undefined result:

mtc0 r1,CO_SR
mfc0 k0, CO_SR

This instruction sequence will lead to the intended result:

mtc0 r1, CO_SR
mfc0 k0, CO_EPC

Example #2:

MTCO CO_STATUS, R5

NOP

NOP

ERET

79RC32334/332 User Reference Manual E-1 W, DAtaShest 2eom

Introduction

Notes

79RC32334/332 User Reference Manual |] - dune 4. 2002 .

Integer Multiply Scheduling

®

Introduction

Integer multiply performance is substantially enhanced in the RC32334. The RC32300 CPU core adds a
MAD instruction (multiply-accumulate, with HI and LO as the accumulator). Multiply performance is 2 cycles
repeat, 3 cycles of latency for 16-bit operands (-216 to 216-1).

The MAD (multiply/add), MADU (multiply/add unsigned) MSUB (multiply/subtract) and MSUBU

(multiply/subtract unsigned) are defined as follows, where HI and LO act as a 64-bit accumulator. These
instructions do not trap on addition overflow.

MAD rs, rt temp «— (HI|| LO) +rs * rt
Hl«temp gz 32
LO(—temp31“0

MADU rs, rt temp < (HI|| LO) 31. o) + (0]| rs) * (O]| rt)
HI <—temp 63..32
LO<—temp31_0

MSUB rs, rt temp «— (HI||LO) -rs * rt
HI «tempgs. 32
LO(—temp 31..0

MSUBU rs, rt temp < (HI || LO) - (0] rs) * (0]| 1t
HI < tempgs 3
LO(—temp 31..0

In addition, the RC32300 CPU core implements another new multiply opcode that allows the
multiply result to be returned directly to the primary register file:

MUer,rs,rt temp<—rs31_“0*rt31._0
rd<«temps ¢

HI < undefined

LO « undefined

After executing this instruction, the HI and LO registers are undefined. For 16-bit operands, the latency
of MUL is 3 cycles, with a repeat rate of 2 cycles. The MUL instruction will also unconditionally slip or stall
for all but 2 cycles of its latency.

The performance of integer multiply and divide is summarized in Table F.1.

79RC32334/332 User Reference Manual F-1 o Patashe

Introduction

Notes
Opcodes Condition Latency Repeat Stall

MULT, MAD 2B <rt< 2% 3 2 0
MULT, MAD rt<-28orrt> 2151 4 3 0
MULTU, MADU 0 <rt<2%4 3 2 0
MULTU, MADU rt> 2164 4 3 0
MUL 215 < rt < 2151 3 2 1

rt<-21orrt> 2151 4 3 2
DIV, DIVU any 36 36 0

79RC32334/332 User Reference Manual

Table F.1 Integer Multiply and Divide Performance

As a special case, a MAD or MADU that is followed by a MUL instruction has one additional cycle of
repeat above the value specified in the table.

In the RC4700, the MFLO and MFHI instructions do not make their results available immediately. If the
RC4700 instruction references the MFLO/MFHI destination, then a 1-cycle slip will occur; however, on the
RC32300 CPU core, the result is available immediately and there is no slip.

e Datasheetaicom

RC32332 Differences

®

Introduction

Generally, the information contained in this manual applies equally to both the RC32334 and the
RC32332. Differences between the two devices are noted in this appendix and in occasional notes and
footnotes throughout the manual.

The RC32332 is based on the same die as the RC32334, except that the RC32332 is housed in a 208
quad flat pack (QFP) package instead of the 256 ball grid array package used by the RC32334.

The QFP package option enables IDT to provide the solution at a lower cost point than the RC32334,
but the reduced number of package connections means that certain features originally included in the
RC32334 are reduced or removed from the RC32332.

Notes

Differences in Features
Table G.1 lists the differences in features between the RC32332 and RC32334.

RC32332

RC32334

SDRAM bus interface

66 MHz

75 MHz

Memory address lines

23, 8MB maximum per CS

26, 64MB maximum per CS

PCI maximum frequency

50 MHz

66 MHz

On-chip PCI arbiter

2 slot

3 slot

DMA Controller

Flow control for Channel 0

Flow control for Channel 1 and 0

PIO Controller 8 PIO signals 16 PIO signals

TIMER Controller — 1 external tc_n/gate_n signal

CPU interrupts 2 external 4 external

Number of UART channels 1 2

UART Controller — Modem control signals for Channel 0
Packaging 208 QFP 256 plastic BGA

Table G.1 Feature Set Comparison Between RC32332 and RC32334

Memory Controller

The RC32332 maps out fewer memory address lines—mem_addr[22:2] instead of mem_addr{25:2].
Therefore, with the RC32332, the maximum external memory size that can be supported for each individual
chip select is 8MB.

PCI Controller On-chip Arbiter

The on-chip bus arbiter in the RC32332 supports two external bus masters: pci_req_n[0] and
pci_req_n[2]. References in this manual to pci_req_n[1] do not apply to the RC32332.

PCI Controller Device ID

On the RC32332, it is recommended that the PCI Device ID be written as 0205h, either through the
configuration register interface, or, if in the PCI Boot Mode, through the PCI Boot EEPROM. Using the
recommended value will distinguish the controller from the RC32334. The default for the RC32332 is 204h,
the same value as for the RC32334. For more details, see “Device ID Register” on page 12-26.

79RC32334/332 User Reference Manual G-1 W Dt

4, 2302 QU

Differences in Features

DMA Controller Flow Control

On the RC32332, there is one flow control signal, dma_ready_n[0] for DMA Channel 0. On the
RC32334, there are two flow control signals, dma_ready_n[1:0] for DMA Channels 1 & 0. For more details,
see Chapter 13.

Notes

PIO Controller Signals

The following 8 PIO signals are not available on the RC32332: uart_rts_n[0], uart_cts_n[0],
uart_dsr_n[0], uart_dtr_n[0], uart_rx[1], uart_tx[1], timer_tc_n[0], and dma_ready_n[1]. For more details,
see Chapter 15.

The following two tables summarize the differences between PIO pin names in the RC32334 and

RC32332.

Alternate Alternate
Register Bit Main Function Function Function
RC32334 RC32332
31-12 Reserved Reserved Reserved
11 Spi_mosi PIO[10] PIO[6]
10 spi_sck PIO[9] PIO[5]
9 spi_ss_n PIO[8] PIO[4]
8 spi_miso PIO[7] PIO[3]
7 uart_rx[0] PIO[6] PIO[2]
6 uart_tx[0] PIO[5] PIO[1]
5 uart_rx[1] PIO[4] Reserved
4 uart_tx[1] PIO[3] Reserved
3 timer_tc_n[0] PIO[2] Reserved
2 Reserved Reserved Reserved
1 dma_ready_n[0] PIO[1] PIO[0]
0 dma_ready_n[1] PIO[0] Reserved

Table G.2 PIO [Data/Direction/Function Select] Register 0 Comparison

Alternate Alternate
Register Bit Main Function Function Function
RC32334 RC32332

31-5 Reserved Reserved Reserved

4 uart_cts_n[0] PIO[15] Reserved

3 uart_dsr_n[0] PIO[14] Reserved

2 uart_dtr_n[0] PIO[13] Reserved

1 uart_rts_n[0] PIO[12] Reserved

0 pci_eeprom_cs PIO[11] PIO[7]

Table G.3 PIO [Data/Direction/Function Select] Register 1 Comparison

79RC32334/332 User Reference Manual

www NataGhestdll eo

Differences in Features

TIMER Controller Signal

On the RC32332, the timer overflow/gate signal, timer_tc_n[0] is not present. For more details, see
Chapter 16.

Notes

Interrupt Lines

The RC32332 maps out one less interrupt line to the external pads. The RC32332 has two external
interrupt lines available (cpu_int_n[1:0]) in addition to the NMI line. All references in this manual to the addi-
tional interrupt lines in the RC32334 (cpu_int_n[5:4], cpu_int_n[2]) do not apply to the RC32332.

UART Interface

The RC32332 has only one serial port (UARTO). All features in this user manual referencing UART1
should be ignored if the designer is planning to use the RC32332. Additionally, for UARTQO, all of the modem
signals that were bonded out to the external pads in the RC32334—Request to Send (RTS), Clear to Send
(CTS), Data Terminal Ready (DTR), and Data Set Ready (DSR)—are not accessible on the RC32332 pins.
Therefore, the programming of these bits in the modem control registers does not perform any usable func-
tion in the RC32332.

Internal Bus Interface SysID Register

The value for the RC32332 that is programmed in bits 19:8 is 004h. For more details, refer to “SysID
Register” on page 8-14.
JTAG DEVICE_ID Register

The value for the RC32332 that is programmed in the Part Number field, bits 27:12, is 001Ah. For more
details, see section DEVICEID in Chapter 20.

JTAG Boundary Scan Cells

The RC32332 has 303 boundary scan cells as described in its BSDL file. The RC32334 has 330
boundary scan cells, as described in its BSDL file.

Electrical / Pinout

See the RC32332 data sheet for information on the AC, DC, and thermal characteristics, and device
pinout.

79RC32334/332 User Reference Manual G-3 _June 4. 2002 W

Pin Description Table

The following table lists the pins provided on the RC32332. Note that those pin names followed by “_n” are active-low signals. All external pull-ups
and pull-downs require 10 kQ resistor.

Name

Type

Reset
State
Status

Drive
Strength
Capability

Description

Local System Interface

mem_data[31:0]

10

High

Local system data bus
Primary data bus for memory. I/0 and SDRAM.

mem_addr[22:2]

IO

[25:10] Z

[9:2]L

[22:16] Low

[15:2] High

Memory Address Bus

These signals provide the Memory or DRAM address, during a Memory or DRAM bus transaction. During
each word data, the address increments either in linear or sub-block ordering, depending on the transac-
tion type. The table below indicates how the memory write enable signals are used to address discrete
memory port width types.

Pin Signals

Port Width mem_we_n[3]

DMA (32-bit)

mem_we_n[2] mem_we_n[1] mem_we_n[0]

mem_we_n[3] mem_we_n[2] mem_we_n[1] mem_we_n[0]

32-bit mem_we_n[3] mem_we_n[2] mem_we_n[1] mem_we_n[0]

Not Used
(Driven Low)

16-bit Byte High Write Enable| mem_addr{1] Byte Low Write

Enable

Byte Write
Enable

8-bit Not Used
(Driven High)

mem_addr[1] mem_addr[0]

mem_addr[22] Alternate function: reset_boot_mode[1].
mem_addr[21] Alternate function: reset_boot_mode[0].
mem_addr[20] Alternate function: reset_pci_host_mode.

mem_addr{19] Alternate function:
mem_addr{18] Alternate function:
mem_addr{17] Alternate function:
mem_addr{15] Alternate function:
mem_addr{14] Alternate function:
mem_addr{13] Alternate function:
mem_addr{11] Alternate function:
mem_addr{10] Alternate function:

mem_addr[9] Alternate function:
mem_addr[8] Alternate function:
mem_addr{7] Alternate function:
mem_addr{6] Alternate function:
mem_addr[5] Alternate function:
mem_addr{4] Alternate function:
mem_addr[3] Alternate function:
mem_addr{2] Alternate function:

modebit [9].
modebit [8].
modebit [7].

sdram_addr[9].
sdram_addr8].
sdram_addr{7].
sdram_addr[6].
sdram_addr[5].
sdram_addr[4].
sdram_addr[3].
sdram_addr{2]

sdram_addr[15].
sdram_addr[14].
sdram_addr[13].
sdram_addr[11].
sdram_addr[10].

mem_cs_n[5:0]

Output

Low

Memory Chip Select Negated Recommend external pull-up.

Signals that a Memory Bank is actively selected.

mem_oe_n

Output

High

Memory Output Enable Negated Recommend external pull-up.
Signals that a Memory Bank can output its data lines onto the cpu_ad bus.

mem_we_n[3:0]

Output

High

Memory Write Enable Negated

Bus

Signals which bytes are to be written during a memory transaction. Bits act as Byte Enable and

mem_addr[1:0] signals for 8-bit or 16-bit wide addressing.

mem_wait_n

Input

Memory Wait Negated Requires external pull-up.

SRAM/IOI/IOM modes: Allows external wait-states to be injected during the last cycle before data is sam-
pled.

DPM (dual-port) mode: Allows dual-port busy signal to restart memory transaction.

Alternate function: sdram_wait_n.

Table 21.26 Pin Description for RC32332 (Part 1 of 6)

79RC32334/332 User Reference Manual G-4 _ June 4. 2002 1.

Pin Description Table

Reset Drive
Name Type | State | Strength Description
Status | Capability

mem_245_oe_n Output H Low Memory FCT245 Output Enable Negated
Controls output enable to optional FCT245 transceiver bank by asserting during both reads and writes to a
memory or |/O bank.

mem_245_dt r_n Output VA High Memory FCT245 Direction Xmit/Rcv Negated Recommend external pull-up.
Alternate function: cpu_dt_r_n. See CPU Core Specific Signals below.
output_clk Output | cpu-mas High Output Clock
terclk Optional clock output.
PCl Interface
pci_ad[31:0] I/0 Z PCI PCI Multiplexed Address/Data Bus

Address driven by Bus Master during initial frame_n assertion, and then the Data is driven by the Bus
Master during writes; or the Data is driven by the Bus Slave during reads.

pci_cbe_n[3:0] 110 z PCI PCI Multiplexed Command/Byte Enable Bus

Command (not negated) Bus driven by the Bus Master during the initial frame_n
assertion. Byte Enable Negated Bus driven by the Bus Master during

the data phase(s).

pci_par 110 z PCI PCI Parity
Even parity of the pci_ad[31:0] bus. Driven by Bus Master during Address and Write Data phases. Driven
by the Bus Slave during the Read Data phase.

pci_frame_n 110 Z PCI PCI Frame Negated
Driven by the Bus Master. Assertion indicates the beginning of a bus transaction. De-assertion indicates
the last datum.

pci_trdy_n 110 zZ PCI PCI Target Ready Negated
Driven by the Bus Slave to indicate the current datum can complete.
pci_irdy_n I/0 z PCI PCl Initiator Ready Negated
Driven by the Bus Master to indicate that the current datum can complete.
pci_stop_n 110 z PCI PCI Stop Negated
Driven by the Bus Slave to terminate the current bus transaction.
pci_idsel_n Input — PCl Initialization Device Select
Uses pci_req_n[2] pin. See the PCIl subsection.
pci_perr_n 110 z PCI PCI Parity Error Negated
Driven by the receiving Bus Agent 2 clocks after the data is received, if a parity error occurs.
pci_serr_n I/0 z PCI System Error External pull-up resistor is required.
Open- Driven by any agent to indicate an address parity error, data parity during a Special Cycle command, or
collector any other system error.
pci_clk Input — PCI Clock

Clock for PCI Bus transactions. Uses the rising edge for all timing references.

pci_rst_n Input L — PCI Reset Negated
Host mode: Resets all PCl related logic.
Satellite mode: with boot from PCI mode: Resets all PCl related logic and also warm resets the 32332.

pci_devsel_n I/0 Z PCI PCI Device Select Negated
Driven by the target to indicate that the target has decoded the present address as a target address.

pci_req_n[2] Input z — PCI Bus Request #2 Negated Requires external pull-up.

Host mode: pci_req_n[2] is an input indicating a request from an external device.

Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write.
Alternate function: pci_idsel (satellite).

pci_req_n[0] I/0 Z High PCI Bus Request #0 Negated Requires external pull-up for burst mode.
Host mode: pci_req_n[0] is an input indicating a request from an external device.
satellite mode: pci_req_n[0] is an output indicating a request from this device.

Table 21.26 Pin Description for RC32332 (Part 2 of 6)

79RC32334/332 User Reference Manual G-5 _ June 4. 2002 1.

Pin Description Table

Reset Drive
Name Type | State | Strength Description
Status | Capability

pci_gnt_n[2] Output Z' High PCI Bus Grant #2 Negated Recommend external pull-up.

Host mode: pci_gnt_n[2] is an output indicating a grant to an external device.

Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin. External pull-up is required.
Alternate function: pci_inta_n (satellite).

pci_gnt_n[1] I/O | Xfor1pci High PCI Bus Grant #1 Negated Recommend external pull-up.
clockthen Host mode: not used.
H2 Satellite mode: Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration Reg-
isters in the RC32332 Reset Initialization Vector PCI boot mode. Defaults to the output direction at reset
time.

1st Alternate function: pci_eeprom_cs (satellite).
2nd Alternate function: PIO[7].

pci_gnt_n[0] I/0 z High PCI Bus Grant #0 Negated
Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pull-
up.
Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Requires external pull-up.

pci_inta_n Output z PCI PCl Interrupt #A Negated

Open- Uses pci_gnt_n[2]. See the PCI subsection.
collector|
pci_lock_n Input — PCI Lock Negated

Driven by the Bus Master to indicate that an exclusive operation is occurring.

1 Zin host mode; L in satellite non-boot mode; Z in satellite boot mode.
2Hin host mode; L in satellite non-boot mode; L in satellite boot mode.

SDRAM Control Interface

sdram_addr_12 Output L High SDRAM Address Bit 12 and Precharge All
SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and “pre-
charge all” signal during refresh, read and write command.

sdram_ras_n Output H High SDRAM RAS Negated

SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks.
sdram_cas_n Output H High SDRAM CAS Negated

SDRAM mode: Provides SDRAM CAS control signal to all SDRAM banks.
sdram_we_n Output H High SDRAM WE Negated

SDRAM mode: Provides SDRAM WE control signal to all SDRAM banks.
sdram_cke Output H High SDRAM Clock Enable

SDRAM mode: Provides clock enable to all SDRAM banks.

sdram_cs_n[3:0] Output H High SDRAM Chip Select Negated Bus Recommend external pull-up.
SDRAM mode: Provides chip select to each SDRAM bank.
SODIMM mode: Provides upper select byte enables [7:4].

sdram_s_n[1:0] Output H High SDRAM SODIMM Select Negated Bus
SDRAM mode: Not used.
SDRAM SODIMM mode: Upper and lower chip selects.

sdram_bemask_n | Output H High SDRAM Byte Enable Mask Negated Bus (DQM)

[3:0] SDRAM mode: Provides byte enables for each byte lane of all DRAM banks.
SODIMM mode: Provides lower select byte enables [3:0].

sdram_245_oe_n Output H Low SDRAM FCT245 Output Enable Negated Recommend external pull-up.

SDRAM mode: Controls output enable to optional FCT245 transceiver bank by asserting during both
reads and writes to any DRAM bank.

sdram_245_dt r_n | Output Z High SDRAM FCT245 Direction Transmit/Receive Recommend external pull-up.
Uses cpu_dt_r_n. See CPU Core Specific Signals below.

Table 21.26 Pin Description for RC32332 (Part 3 of 6)

79RC32334/332 User Reference Manual G-6 _ June 4. 2002 1.

Pin Description Table

Reset Drive
Name Type | State | Strength Description
Status | Capability

On-Chip Peripherals

dma_ready_n[0] I/0 z Low DMA Ready Negated Bus Requires external pull-up.

Ready mode: Input pin for general purpose DMA channel 0 that can initiate the next datum in the current
DMA descriptor frame.

Done mode: Input pin for general purpose DMA channel 0 that can terminate the current DMA descriptor
frame.

dma_ready_n[0] 1st Alternate function PIO[0]; 2nd Alternate function: dma_done_n[0].

pio[7:0] I/0 See Low Programmable Input/Output

related General purpose pins that can each can be configured as a general purpose input or general purpose out-
pins put. These pins are multiplexed with other pin functions:

pci_gnt_n[1], spi_mosi, spi_miso, spi_sck, spi_ss_n, uart_rx[0], uart_tx[0], dma_ready_n[0]. Note that

pci_gnt_n[1], spi_mosi, spi_sck, and spi_ss_n default to outputs at reset time. The others default to

inputs.

uart_rx[0] 110 VA Low UART Receive Data Bus
UART mode: UART channel receives data.
uart_rx[0] Alternate function: PIO[2].

uart_tx[0] I/0 z Low UART Transmit Data

UART mode: UART channel send data. Note that this pin defaults to an input at reset time and must be
programmed via the PIO interface before being used as a UART output.

uart_tx[0] Alternate function: PIO[1].

Spi_mosi 110 L Low SPI Data Output

Serial mode: Output pin from RC32332 as an Input to a Serial Chip for the Serial data input stream.

In PCl satellite mode, acts as an Output pin from RC32332 that connects as an Input to a Serial Chip for
the Serial data input stream for loading PCI Configuration Registers in the RC32332 Reset Initialization
Vector PCI boot mode.

Defaults to the output direction at reset time.

1st Alternate function: PIO[6].

2nd Alternate function: pci_eeprom_mdo.

Spi_miso 110 Z Low SPI Data Input

Serial mode: Input pin to RC32332 from the Output of a Serial Chip for the Serial data output stream.

In PCl satellite mode, acts as an Input pin from RC32332 that connects as an output to a Serial Chip for
the Serial data output stream for loading PCI Configuration Registers in the RC32332 Reset Initialization
Vector PCI boot mode.

1st Alternate function: PIO[3].

2nd Alternate function: pci_eeprom_mdi.

spi_sck 110 L Low SPI Clock

Serial mode: Output pin for Serial Clock.

In PCl satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the
RC323332 Reset Initialization Vector PCI boot mode.

Defaults to the output direction at reset time.

1st Alternate function: PIO[5].

2nd Alternate function: pci_eeprom_sk.

spi_ss_n 110 H Low SPI Chip Select
Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device.
Alternate function: PIO[4]. Defaults to the output direction at reset time.

CPU Core Specific Signals
cpu_nmi_n Input — CPU Non-Maskable Interrupt Requires external pull-up.
This interrupt input is active low to the CPU.
cpu_masterclk Input — CPU Master System Clock
Provides the basic system clock.
cpu_int_n[1:0] Input — CPU Interrupt Requires external pull-up.

These interrupt inputs are active low to the CPU.

Table 21.26 Pin Description for RC32332 (Part 4 of 6)

79RC32334/332 User Reference Manual G-7 _ June 4. 2002 1.

Pin Description Table

Name

Type

Reset
State
Status

Drive
Strength
Capability

Description

cpu_coldreset_n

Input

L

CPU Cold Reset
This active-low signal is asserted to the RC32332 after V. becomes valid on the initial power-up. The
Reset initialization vectors for the RC32332 are latched by cold reset.

cpu_dt_r_n

Output

CPU Direction Transmit/Receive

This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during
read operations.

1st Alternate function: mem_245 _dt_r n.

2nd Alternate function: sdram_245 dt r n.

JTAG Interface Signals

jtag_tck

Input

JTAG Test Clock

Requires external pull-down.

An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of
the system and the processor clock with nominal 50% duty cycle.

jtag_tdi,
ejtag_dint_n

Input

JTAG Test Data In

Requires an external pull-up on the board.

On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register,
depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the
debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG).
Requires an external pull-up on the board. This pin is also used as the ejtag_dint_n signal in the EJTAG
mode.

jtag_tdo,
ejtag_tpc

Output

High

JTAG Test Data Out

The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When
no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a non-
sequential program counter at the processor clock or at a division of processor clock. This pin is also used
as the ejtag_tpc signal in the EJTAG mode.

jtag_tms

Input

JTAG Test Mode Select

Requires external pull-up.

The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation.
jtag_tms is sampled on the rising edge of the jtag_tck.

jtag_trst_n

Input

JTAG Test Reset
When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven or pulled low, or the jtag_tms/
ejtag_tms signals must be pulled up and jtag_clk actively clocked.

ejtag_dclk

Output

EJTAG Test Clock
Processor Clock. During Real Time Mode, this signal is used to capture address and data from the
ejtag_tpc signal at the processor clock speed or any division of the internal pipeline.

ejtag_pcst[2:0]

10

Low

EJTAG PC Trace Status Information

111 (STL) Pipe line Stall

110 (JMP) Branch/Jump forms with PC output

101 (BRT) Branch/Jump forms with no PC output

100 (EXP) Exception generated with an exception vector code output

011 (SEQ) Sequential performance
(
(

o=

010 (TST) Trace is outputted at pipeline stall time
001 (TSQ) Trace trigger output at performance time
000 (DBM) Run Debug Mode

Alternate function: modebit[2:0].

ejtag_debugboot

Input

EJTAG DebugBoot

Requires an external pull-down.

The ejtag_debugboot input is used during reset and forces the CPU core to take a debug exception at the
end of the reset sequence instead of a reset exception. This enables the CPU to boot from the ICE probe
without having the external memory working. This input signal is level sensitive and is not latched inter-
nally. This signal will also set the JtagBrk bit in the JTAG_Control_Register[12].

Table 21.26 Pin Description for RC32332 (Part 5 of 6)

79RC32334/332 User Reference Manual G-8 _ June 4. 2002 1.

Pin Description Table

Reset Drive
Name Type | State | Strength Description
Status | Capability

ejtag_tms Input — EJTAG Test Mode Select
Requires an external pull-up.
The ejtag_tms is sampled on the rising edge of jtag_tck.

Debug Signals

debug_cpu_dma_n 110 z Low Debug CPU versus DMA Negated
Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction was
generated from the CPU.
De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction
was generated from DMA.
Alternate function: modebit[6].

debug_cpu_ack_n 110 VA Low Debug CPU Acknowledge Negated
Indicates either a data acknowledge to the CPU or DMA.
Alternate function: modebit[4].

debug_cpu_ads_n 110 zZ Low Debug CPU Address/Data Strobe Negated
Assertion indicates that either a CPU or a DMA transaction is beginning and that the mem_data[31:4] bus
has the current block address.
Alternate function: modebit[5].

debug_cpu_i_d_n 110 zZ Low Debug CPU Instruction versus Data Negated
Assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a
CPU or DMA data transaction.
De-assertion during debug_cpu_ads_n assertion or debug_cpu_ack_n assertion indicates transaction is a
CPU instruction transaction.
Alternate function: modebit[3].

Table 21.26 Pin Description for RC32332 (Part 6 of 6)
79RC32334/332 User Reference Manual G-9

e DataSheetdiieom

Logic Diagram

The logic diagram of the RC32332 differs from that of the RC32334.

o[<«—> mem.addi222 |
©
E’ cpu_masterclk — “«—» mem data[310]
@ | cpu_coldreset n —> —» mem_cs_n[5.0] E 8
= ® S
S cpu_nmi_n — > — » memooen & §
2 - > e n(3:.0 § =
8 | cpuint_n[1:0] — > mem_we_ 3:0] g
<4— mem_wait_n =
cpu_dt rn <+“—
—» mem_245_oe_n
L —» mem.245.dtrn
[pei_cbe_n[3:0] - » ——» outputck B
pci_ad[31:0] <“—>
pci_par 4“—r i .
pci_frame_n «—> —» spi_mosi
pcgrdyfn «—>r <4——— spi_miso 8
pci_irdy_n <“—> T e
pci_stop_n “—> — » spi_ss.n L .g
pci_idsel - > _ £
pci_perr_n “—> —— P spi_sck]
@ pci_serr_n “—] T
‘{:% pi_ck 5 ——p sdram_addr{15:13]
2 pci_rst_n e —» sdram_addr{12]
= "
5 | Poldevseln “«—> — » sdram_add112]
o pei_req_n[0] «—» —_» sdram_ras_n 2
i =
pei_req_n[2] “—> RC32332 — » sdram_cas.n 2
pci_gnt_n[0] “«—> Logic 5 sdram_wen =
pei_gnt_n(2] ¢ ’ SymbOI ——p sdram_cke g
-)
pci_inta_n sdram_cs_n[3:0]
pci_lock_n sdram_bemask_n[3:0]
pci_eeprom_mdi sdram_245_oe_n
pci_eeprom_mdo sdram_245_dt r_n
pci_eeprom_cs sdram_s_n_[1:0]
pci_eeprom_sk “—
[[
o
<«———— dma_ready_n[0] j ‘E': g
[jtag_tck E—— o =
@ | jtag_tms e
2 4:% jtag_tdi —
= g jtag_tdo «—
= | jtag_trst.n - »
_ <« vt &
. debug_cpu_dma_n <“«—» — » uart 0] g
é gegug_cpu_.a((:jk_n < >
a ebug_cpu_I_d_n “—> .
debug_cpu_ads_n «—> ——p ejtag_dclk
T <—p ejtag_pcst[2:0] (0]
T Vs <«—— ejtag_tms =
Gnd 4’V <—— ejtag_debugboot |
3T Ve toli0 Y > — > ejtag_tpc
£3 | Vcctocore Vi core > g
eS| VP - “«—p pio[7Q] £
| Vs — =
79RC32334/332 User Reference Manual G-10

v Datasheetaieom

Symbols

"Ignore hit" in User Mode...........cocvrnineneineeseees A-3
Numerics

64-bit data operating requUeStScccovvvvv e A-3
A

address error eXCEPLoNccccveeevie e 3-2
advisory iNSLrUCHON ..o A-1
aligning PClock to MasterClockcoeeneennenenncnnnenen 19-2
B

base address and base mask registers............coovrerinenns 1-22
baud rate calculation formula.............cccocoeoriirrniieinicrneen 17-2
baud rate generatorccoooeerrrniiesnece 17-1,17-2
BIU CONLrOl FEGISIENSvvveiceciceecee e 1-21
BTA CONtrol registercvveireeniererceneseseseseeens 89
Buffer Control Register (BCR)ccovuvininneniirisiccis 17-8
DUISt PEIHIOT.....cvvrec e 12-33

bus arbitration, fixed and round robin8-4, 8-12, 12-1, 12-21, 12-22
bus interface

byte-ordering (endianness)coerereeriereeenieneinienens 9-2
CONMIOl TEGISTENS ... 8-6
data transfer sequences (8, 16, 32-bit)cccocvverneene. 9-2
variable port-widths ..o 9-2
Bus Interface Unit Controller............c.coeenernecnnicrneeens 10-4
BYPASS iNStrUCHON ..o 20-8
byte-ordering CONVENioNS ... 2-3
C
C bits (TLB page coherency attributes)c.ccoevveeeriicinnnes 5-5
cache line selection algorithm.........cccocovvvvieeeessscccca 7-7
cache operation Fill_L............cccevvemniieinceseseeee s C-3
cache operations, caveats about............ccccoeeevvnviciccccnnn C-1
cache operations, number of cycles for...........coovveiviernnnen, C1
CACHE Ops and DWatch exception............cccceveeervierenneennns 6-9
cache parity ValUESccccvereerri e 6-10
cache write algorithms ... 7-7
computational instructions, CPU, categories ofcccceuuee. 3-3
conditional move instructions, on not zero, on zero.................. A-3
CONVENTIONS ...ttt 11
big endian, little endiancccvovvreninriieeeee 1-2
DYEES o 1-2
most and least signigicant bits..........c.cccovvvriicnceeiennn, 1-2
SIGNAIS ... 1-1
€oprocessor 0 NAzardsccoveeenriniierieeeees s E-1
CPO NAZards ..ot E-1
CPO registers for debug exceptions............cccoevvveeriernnne. 21-22
CPU bus timeout IMEr.........ccoeurireerireereeeseeeseeeeieis 8-5
CPU INEITUPL .. cvov e s 14-1, 14-2
CPU memory space 1 BR.........ccoevveerieesececees 12-5,12-7
CPU to PCI Memory Mappingcocvveevevrerenrnersinneeessneeenns 12-4

D

D-Cache, PrMAIYccoceeerercerirereerereseessereeseseseeseseseese e seneeeens 7-3
debug breakpoint ..o, 21-21
debug EXCEPHONc.vvveeicrere e 21-32
debug exception returncoeverenenenence e 21-22
debug operating Modeccoverirnenecninieeens 21-5,21-7
debUG TEYISENS ...oucvrcircieieee e 21-22
Debug Support Unit (DSU)........covvenirininenseneesees 21-6
Debug Support Unit registers..........cocvvnenenenenieneen, 21-25
diagnostic states, programmingcooererernereseneneenens 6-3
differences between RC32332 and RC32334..........ccccovvveennee G-1
Divisor Latch Least Register (DLL)cccoevevererieveeinierieins 17-2
Divisor Latch Most Register (DLM)ccocoerevvivrennee 17-2,17-6
DMA arbitrationccerieerneiernceirecere e 13-7
DMA Base Descriptor REgiISterccerivvenireniniiireens 13-5
DMA cONtrol rEgISErS.........vvivereerieeiereieeeeeeiseeeeiees 1-27
DMA CONTOHET ..o 1-5
DMA FIFO ottt 13-8
DMA transfers
DY et 13-4
NaIf-WOId.......oeieeeeeeeee e 13-5, 13-7
QUAA-WOI ..ot 13-5
unalighed WOrd/burst ..o, 13-5
1o o T 13-5
WOId OF DUISE ... 13-7
DRAM Memory Controller Register...........coovverenierineenns 1-23
DSP support instructions
count 18adiNg ONEScvvervrierieieeree s A-6
count 18ading ZEr0Sccvueeriereeiniieieneeceeies A-5
MUIIPIY @A ... A-3
multiply add unsigned..........occevevrerreninneneeieneee A-3
MUltiply SUDErACE ..o A-4
multiply subtract unsigned...........c.ocoorerinneniiniieninens A-4
Dual-Port memory readsccovverieneeneenneiniseereeseeeees 10-6
DWatch exception priofitizing..........cccveerererneereeneenenneninneis 6-9
E
EJTAG PINS .o 21-4
EJTAG specification
CPO registers for debug exceptionscccevvrveernnee. 21-22
debug exception ... 21-32
debug exception return........ccccevvveceiccceierrins 21-22
debug operating modecccccovvveereeenennenen, 21-5,21-7
EJTAG PINS oo 21-4
hardware breakpoints............ccccovvveennniiseee e, 21-2
|[EEE 1149.1 (JTAG) See IEEE 1149.1 (JTAG).
JTAG OPErationcccevieverricereee e 21-7
MALCh [OQIC ... 21-4
PC trace See PC trace.
registers for a Debug Support Unit...........ccoevverrirennne, 21-25

79RC32334/332 User Reference Manual 1-1 o Patashe

software debug breakpoint............c.occovevrneniinnininns 21-21
trace trgger... oo 21-2,21-4
endianness Configuration..............coerenereeneenenieseeneeens 2-3
exception
AAAIESSING ..vvvieeeeie e 6-13
condition handlingcoeeeererenensee e 4-4
RANAIET ..o 6-1
priority of, DWatch Register..........coovveriveninrerins 6-9
PFIOTIEY OFAET ... vt 6-1
exception processing
Kernel MOdE........ccoeuerriees s 6-1
USEr MOTE ... 6-1
eXCeption, dEDUGc..cvvevrierrecre e 21-32
| OO 5-7,5-9, 6-7, 6-12
Expansion Interrupt Controller...........ccooevevirnenieenenn. 1-5, 14-1
INtErrUPE fOWcvoec e, 14-13
non-prioritized interrupts, optional algorithm................. 14-13
priority interrupts, optional algorithm..............ccccocuveenve. 14-13
register group SEttNGScovvveerveerreerreen s 14-7
registers and address Mapping.........coceeereeeereerieeneenenn. 14-3
signals and pins USEdccverierreinieineniesesee e, 14-2
software interrupt service routine (ISR)cccoevveeeee 14-13
tiMING diagrams........cceeriererieneneese e 14-11
expansion interrupt registers ... 1-23
F
Fill_I cache operation............cccccvueurivereeierseese e, C-3
G
general exception handling (hardware and software).... 6-22-6-24
general PUrPOSE tIMETSccvueurirerereieer e 16-2
H
hardware breakpointsccoovvviverennes s 21-2
hardware, INtErIOCKS.cieeeeee ettt 3-3
hazards, COProCeSSOr 0covuerurerireerirerrirereieesseesese e E-1
hint values and prefetch actionsccocvevvennieninienes A-2
|
[-CaChe, PriMAYcceveeeiitecee e 7-3
[EEE 1149.1 (JTAG)......ccvveririrnene 20-2, 21-7, 21-8, 21-10, 21-11
iN-CIrcuit emMUIAtioNco.oceevreereee e 1-5
Instruction Address Error exception priofity..........ccoceevrivinnns 6-9
iNStruction Cache MISSccvveeririrrneerseeeree s C-1
interlock condition handlingc.ocoeveenncnnneccrns 4-4
internal register map addresses and definitions 1-21
Interrupt Controller, prioritized interruptcccocveeeevninnn 17-3
INEEITUPt CPU ..o 14-1,14-2
Interrupt Enable Register (IER)ccovevvieienieenierin, 17-5
interrupt flow, Expansion Interrupt Controller........................ 14-13
Interrupt Identity Register (IIR)cocvvevririnnerereneinnes 17-6
interrupt iN€ register ... 12-32
INEEITUPE PCl...ovee e 14-1
INEEITUPE PIN vt 12-33
Interrupt Service Routing (ISR)..........covvvivrivnienniinns 14-2, 14-13
[P bus imeoUt IMEr.........coviuererrcc e 8-5
IWatch exception priority...........ccceeeeiisseceeccee e 6-9

79RC32334/332 User Reference Manual

J
JTAG OPETaAtON ..o 21-7
JTAG OVEIVIEW ... 1-5
JTAG signal descriptions
JAGCK e 20-2
FAG_i e 20-2
JAG_AO. e 20-2
JAG_MS o 20-2
JAGAISt N 20-2
JTAG, Instruction Registercccvveviiersieesiieecseeein, 20-5
K
Kernel MOdEcoceeece e 6-3
EXCEPLION PrOCESSING.....cveerererercerirereeeere et res e seeeeens 6-1
KSEOT ..ttt 59
KSEU2....o.coeeeieeeteie ettt s 59
KSEL0 ...t 59
KUSBQ ... vttt 59
ON-ChiP/iCe FEISLENScvucvieee e 59
L
Line Control Register (LCR)......c.ovevrerrereerrrinereseeeeeeens 179
Line Status Register (LSR)ccccoeviverininrererireenens 17-3,17-10
locked Cache lINES........ccvveerrrerser s 7-8
M
MAX_LAT REQISIEN.....cveeireirieieeess e 12-33
MEM/IO SPACES........cvivirerririsirisieisieteiss et sensseens 10-4
memory accesses, Wait-State Generatorc.cccceevievnes 10-4
MEeMOrY CONtrOl FEQISIErS........cvvvviieecee s 1-23
MemOory CONETONIET........ccvvreeeircieiei e 1-4
MEMOIY BYPES ...ttt seses 10-5
MFLO and MFHIINStrUCHONSc.ovvevieeieincieeiseeesceeeieis F-2
MIN_GNT REGISIENcooevreriereirieircine e 12-33
Modem Control Register (MCR).........ccccevieennceiersieiennns 17-9
Modem Status Register (MSR)ccccouveeviiesiiecrieenes 17-11
move conditional on NOt Zero, 0N ZErocccveevereeerereeennens A-3
multiplier enhancement iNStructions.........cccecevvvvviveccecininnn, A-3
N
non-priorititized interrupts, optional algorithm 14-13
o
OPCOAE MaP.....vieeireiciieee e B-1
operating modes, types Ofcovvrrrenernerreses 5-8
OVEIVIEW w.eovoeeeesei ittt snnes 1-4
DMA CONtTOllEr ... 1-5
Expansion Interrupt Controller...........ccooverinrniniennees 1-5
JTAG .ot 1-5
Memory CONtroller. ..o 1-4
PCIDBIAGE .. 1-5
programmable /O (PlO).........corvrnerierinrerireeens 1-5
SDRAM CONtrOllEr.......coevieeeireeerrecereee e 1-4
TIMErsS/COUNLEIScveeeeeeercirre et 1-5
UART oottt s 1-5
P
page coherency attribute DitS ..o 5-5
PAMIEY oottt 17-1,17-3
PC trace

www NataGheetdleo

examples of QUEPUL..........coeerriiereeree s 21-37
exception followed by a jump indirect instruction.......... 21-38
indirect instruction followed by an exception................. 21-38
INSEIUCHON.cvveve e 21-6, 21-16, 21-33
instruction trace method............ccvevieniniencnieneinen, 21-34
non-real time TPC outpul........ccoovevcrncnienereeee, 21-37
real time TPC oUtpUL ..o 21-36
SIGNAIS USE ... 21-36
status iNformation..........ccocceevrennnenecces 21-34
status output on delay SIOtSc.ocoveveeirieincniccs 21-35
trace INfOrmationccoocveverencnerce e, 21-2
trigger OULPUL.........cvieiecece s 21-39
O o) 4o o TS 1-5
PCl COMMANGS ..ot 12-9
PCi commands
Bus Master Enable..........cccoovevenrinnnccnscesees 12-26
Fast Back-to-Back Master Enableccococveuriennnen. 12-26
110 Access ENable ..., 12-26
Memory Access Enable..........cccoovvinnencnnenen, 12-26
Memory Write and Invalidate Enable.............ccccvveunnee 12-26
Parity Error ENable.........cocverierneninereneseneene, 12-26
System Error Enable...........ccocoevivinninece 12-26
PCI configuration
66 MHz-Capable Status Flag...........cocoevevreninreninns 12-27
CaChEliNg SIZEcovveeceereirc s 12-29
Class Code value register...........coovneveenenerenineenns 12-28
Data Parity Detected..........cccocovevienennencnieneneene 12-27
Detect Parity Errorccoeveeereierceence e 12-27
Device Select TIMINGcvvvveererienereeeeseeeeene 12-27
Fast Back-to-Back Capable Status Flag............c.c........ 12-27
Master Latency TIMEroovverirnenceneneeneenene, 12-29
Received Master Abort Statusccocveenerieincenene. 12-27
Received Target Abort Statusccoevveeriieernennns 12-27
Signaled System Error........c..coovevvcncnnenennenenene, 12-27
Signaled Target Abort Statusccccvevvviienrecnnnnnns 12-27
PCI configuration registers in host mode.........cccoovevrreinenes 12-10
PCI configuration registers in satellite modecccouenee. 12-11
PCI Configuration SPaceccoevieremrirneneenneenieeenens 12-24
PCl interface control registersooerreienenereneneniens 1-29
PCHINEITUPL. ..o 14-1
PCI memory space Base Register (BR)cccocovererevreinienes 12-6
PCI Memory-Space Base ..o 12-14
PCI New Feature RegiSter..........cccovevinnininnenenieeene 12-16
PCl Satellite MOdec.cevvereereerereereesee s 12-7
PCI Serial EEPROM Address Fieldscccocvvrerinnienennes 12-9
PCl serial EEPROM, booting satellite fromccocoeveeneene 12-8
PCl to CPU Memory Mappingc.ocuveeeeeerereeeuneremneeneenneenes 12-5
PIO
General Purpose Input mode...........cooeverinineenieineencen. 15-3
General Purpose Output mode...........coocvveenierneininnnnne 15-3
Peripheral Function Input mode...........cooveevvvnierieniens 15-3
Peripheral Function Output mode...........coccovririeneenes 15-3
PIO signal pin definitions
DMA Interface
AMA_AONE_N ..o 15-5

79RC32334/332 User Reference Manual

AMA_ready_N ..o 15-5
Timer
HIMEr_IC N 15-4
UART Interface
U= 4 G TSR 15-4
UM X v 15-4
pipeline
Branch delay.........ccoveerrerrnierseer s 4-3
SEAllING ..o 4-4
port width interface SUPPOIt..........ccoeevrrenrenrecees 9-2
powering down iNactive UNItSccceovvverrernrieenreerc e D-1
prefetch iNSrUCtoN ..o A-1
prefetch operation ... 4-1
Primary D-Cache.........cocveeuireneceseeesee e 7-3
PHMArY [-CACNE ... 7-3
prioritized INTErTUPLc.cvr e 17-3
priority interrupts, optional algorithmcccoecvvvvrrveininee. 14-13
processor
CYCIBS 1ervirtieirieie ettt st 3-3
implementation NUMDET ..o 6-7
MOdES Programmingcceeereercerereereesereeresseseeeeseseenees 6-3
programmable /O (PlO)........cccoevvrninenineneereieeeeis 1-5
programming PCIOCK............cvueurieriiiniireenieeseee s 19-2
R
RC32332, different from RC32334..........ccocvevnivreriieicinini G-1
RC32334, different from RC32332..........ccoeverneirerniieiiniinins G-1
read-only registers
Interrupt Identity Register (IIR)cccoveeriieeiicreiennnn, 17-6
Receive Buffer Register (RBR)cccoevvvevivrienriierennns 17-5
real-time ClOCKccvvieeeercece s 16-2
Receive Buffer Register (RBR)cccoceeveeniiercnieesieiennns 17-5
Receive Holding Register..........ccovvviiieeceesssssecccens 17-2
registers
Bad Virtual Address Register(8)..........cccoevvrerrvieeriicrennn, 57
base address and base mask registers...........ccccceuvunne. 1-22
BIU control registers..........covvvvereeceennssssesseieinnns 1-21
Boundary-Scan Registerccooevienncirnieenceenes 20-3
Buffer Control Register (BCR)........cccoverrenieieirenieien, 17-8
Bus Turnaround (BTA) Control Register..........c.coovurivnnnee. 8-8
Bus-Error Address Registerccccevvvveieicccessn, 8-9
Bypass REISterccccvvvviieccccceees e 20-3
Cache Error RegiSter(27)ocovevvenierneenierneineeneieen, 6-10
Cause ReGISIEN(13) ... 6-5
Compare Register(11) ... seeseseeeens 6-3
Config REGISIEN(16)evrerereeriereiririreisie e 6-8
Context REgiStEr(4)ccvvveerirreiririresiesesse s 55
Count REGISIEN9)vvereeirreeeeeres e 6-2
Debug Exception Program Counter Register(23)............ 6-10
Debug ReGISIEr(24)ovvvrerieerierese e, 6-10
debug registers.......covvviiicciceee 21-22
Debug Support Unit registerscoceeeceiierricuenne, 21-25
Device Identification Register.........ccccoevvevievicrernencnen, 20-3
Divisor Latch Least Register (DLL)cccoeovievreerereieinnnn. 17-2
Divisor Latch Most Register (DLM)ccccoueenee. 17-2,17-6
DMA control regiSters.........cooveeveeeeevsrissseee e, 1-27

www NataGheetdleo

DRAM Memory Controller Registerc.cooveviruneence 1-23
DWatch Register(19) ..o 6-9
EntryHi Register(10)cooverrrerrrerecseceseenes 5-8
ENtryLO0(2)voceeeseeeeece e 5-4
ENtryLOT(3) .o 5-4
Error Checking and Correcting Register(26)................... 6-10
Error Exception Program Counter Register(30).............. 6-12
Exception Program Counter Register (14)...........cccoveuveene 6-7
Expansion Interrupt Controller registersc.coveenee. 14-3
expansion interrupt registers...........ocooenereneneneenien. 1-23
HI and LO RegiSterscocveurierinirenisereeeincens F-1
Index Register(0)ovvrevereeerreereees e 5-3
INStruction REGISter.......cccvvevrrerrnirierseer e, 20-5
internal register map addresses and definitions 1-21
Interrupt Enable Register (IER)........ccoovrevvncriiniens 17-5
Interrupt Identity Register (IIR).........ccooeerivnininnenns 17-6
[Watch Register(18)c.euveeeeureerereereriereeseeneinees 6-9
Line Control Register (LCR).........cocoovevrenneuninineirininne 17-9
Line Status Register (LSR)coccorererrreerinineen. 17-3,17-10
memory CONtrol registers ... 1-23
Modem Control Register (MCR)c.ocoorevirnierieninens 179
Modem Status Register (MSR)........cccoevveninrininnenns 17-11
PageMask RegiSter(5)ccoeurirrerneneiniereineieneineens 5-6
PCl interface control registers...........covvrviereerieneenens 1-29
Port Width Control Registercccovevrnniinnenienenns 8-6
Processor Revision Identifier Register(15)ccccveuveene. 6-7
Random RegiSter(1)........oevveurenrneneneeiseeneineens 5-4
read-only registers
Interrupt Identity Register (IIR).......cccocvvevrinineunen. 17-6
Receive Buffer Register (RBR) ..o, 17-5
Receive Buffer Register (RBR).........ccoovniviniririninns 17-5
Receive Holding RegiStercccoeovvnennninercnnne 17-2
Scratch Register (SCR)cvvvveveercrerceercneie 17-12
Status Register(12) ..o 6-3
TagLo Register(28) ..o 6-11
Test Data RegiStercovveenerienerereeeescieeines 20-3
timer controller registersoovvrnreeneneenesennes 1-25
Transmit Buffer Register (TBR).........cccocovevivrincnirennes 17-5
Transmit Holding Registerccoovnrenneninennes 17-2
UART 0 ..ottt sesnees 17-4
UART 1 ettt 17-4
UART control registers..........corereerinneeneeenienireneenens 1-26
Wired RegiSter(6)........couvveeureerirerineriserce e, 5-6
write-only registers
Buffer Control Register (BCR)..........ccocevnevrierneinen. 17-8
Transmit Buffer Register (TBR)..........cccovvrerieinns 17-5
reinitializing, reset iNterfaceovoevvevriernesnseeseeins 19-3
reset configuration OPHONS..........cceeveerierinireneeseenes 6-8
reset configuration Settings..........cooveveenrenineniseens 19-4
reset eXCeption SEIVICING ... 6-15
reset SEQUENCE tiMING.......c.ovvvevreererreieeeeee e D-1
reset vector inialization ... 19-6
retry imeout Valuecovveevreeree s 12-34
reverse endianness, Programmingc.oceeereeeerersereeseeneeens 6-3
FEVISION NUMDETvuivvieircicieieeee et 6-7

79RC32334/332 User Reference Manual

S
Satellite mode, PCl ..o 12-7
Scratch Register (SCR)......ccovevviieiieesce e, 17-12
SDRAM 32-bit SUPPOMtvviecricicir e 11-8
SDRAM bank priority SChEMEcccvevviivericeeresecees 11-7
SDRAM base and mask registersouoevveevirenrserevenennns 1-7
SDRAM CIOCK ..o 11-4
SDRAM CONIONIET ... s 1-4
SDRAM custom transactionccceveenieneennineencenneens 11-8
SDRAM external BUFFErS..........oeerirreerinneneres e 11-4
SDRAM Subblock Address Orderingc.cocevrvververeeenrennns 11-4
Serial Peripheral Interface (SPI)ccccovvivicevieiccc e 1-5
Slipped iNSLIUCHON ..o 4-6
slow-to-turn-off EEPROMS

small, medium, and large systems...........ccccoevvvrerirennns 10-3
software debug breakpoint............ccccovvrveviceinieeicen, 21-21
software generated exceptions (SW1 or SW0)..........ccccevneee. 6-22
software interrupt service routine (ISR).......c.cccccevvriririvenne. 14-13
SOftWare INEITUPEScvvcvee s 6-5
SPl interface signal descriptions

SPI_MISO .vveveveveieieiriri ettt 18-2

SPI_MOST ..vcveveieieieiriri sttt 18-2

SPI_SCK worvvvvireeeieieieirisi sttt 18-2

SPI_SS_IN ctrtrtiereieietririri sttt 18-2
Status Register, USEr mode..........ccevverivicieieesces s 5-8
SYSID REGISIEN ... 8-14
T
TAP Controller

state assSIGNMENTS ..o, 21-9

state diagram.........cocvererienne e, 21-7
timer controller registers..........ov e, 1-25
timer interrupt, Compare Register(11)........cooeernencnneceen. 6-3
Timer signal definitions

tiMer_gate_N ..o 16-3
timer signal definitions

HIMEL_tC N 16-3
timers, general PUMPOSEcoveerurercererereeeereneeeere e 16-2
Timers/CouNnters OVEIVIEW.c.cveururerrueerireeresneeeeneees e 1-5
tiMe-Slice ClOCK ..o 16-2
timing diagrams, Expansion Interrupt Controller................... 14-11
TLB management, attribute bits..........cccoooerveinnicrcceee, 5-2
traCe tIgQET .. v 21-2,21-4

trace, PC See PC trace.
transceivers and buffering

small, medium, and large systems............coocoevenenrenneen. 10-3
Transmit Buffer Register (TBR)........ccooevevrenenncnnieneen, 17-5
Transmit Holding Register..........coovevenniennecneieene 17-2
trap SIGNAL......coiviecec s A-3
TRDY tiMEOUL VAIUE ..o 12-33
U
UART

baud rate generator...........cocerrnerisnene e, 17-2

AIVISOr VAIUE ... 17-2

INEEITUPE 0. 17-3

receive buffer SIZe ..o, 17-2

www NataGheetdleo

transmit buffer Size.........cccovvviernecirres e 17-2
UART 0 and 1 registers, address ofccccvrevirrinrnnnnnns 17-1
UART 0 FEGISIENSvuvveercveieieineieeeisee et 17-4
UART 1 1EGISIENSvuevevcecieictreeee et 17-4
UART control registersccveeeuniereinenieneeeseeseeineens 1-26
UART OVEIVIEW ... 1-5
USEI MOAE ... 6-3

EXCEPHON PrOCESSINGvuvvevveveieieirciee e 6-1

virtual 2ddress SPaCecvvuvierreercerneireeeee e 5-8
'
vector base for the Cache Error exceptionccccoevvvevnnee. 6-14
VENdOr D ... 8-15
w
WAIT instruction

INACHVE UNIES ...t

standby mode ...,
Wait-State Generator (WSG)
Wait-States

DUaI-POrt 8CCESSES......covvviiereerireieeeieeese s 10-7
Watchdog Timer rolloVEr ..o 8-5
Wired Register, Wrting t0.........cocovueerrirreerece e 5-7
WOPA PAILY ...t 7-2
write-only registers

Buffer Control Register (BCR)ccoocvenivincinicineinen, 17-8

Transmit Buffer Register (TBR)........cccoovorrncennicnee 17-5

79RC32334/332 User Reference Manual

www NataSheatAll eqm

79RC32334/332 User Reference Manual 1-6 - dune 4. 2002 .

	RC32300 CPU Core
	Introduction
	Performance Overview
	RC32300 CPU Core Features
	RC32300 CPU Overview
	Figure 2.1 RC32300 CPU Core Block
	CPU Registers
	Figure 2.2 RC32300 Registers
	Configuration
	Figure 2.3 Big-Endian Byte Ordering Convention
	Figure 2.4 Little-Endian Byte Ordering Convention

	CP0 Considerations
	Memory Management Unit (MMU)
	On-chip Instruction and Data Caches
	Power Reduction Mode
	Standby Mode Operation

	CPU Instruction Set Overview
	Introduction
	CPU Instruction Formats
	Figure 3.1 CPU Instruction Formats

	Load and Store Instructions (I-type)
	Scheduling a Load Delay Slot
	Defining Access Types
	Table 3.1 Permitted Address Combinations

	Computational Instructions (R-type and I-type)
	Operations with 32-bit Operands
	Cycle Timing for Multiply and Divide Instructions
	Table 3.2 Performance Levels of MUL/DIV and New Instructions

	Jump & Branch Instructions (J-type and R-type)
	Overview of Jump Instructions
	Overview of Branch Instructions

	Special Instructions (R-type)
	Exception Instructions
	Coprocessor Instructions (I-type)
	Summary of CPU Supported Instruction Sets
	Table 3.3 Load and Store Instructions (Part 1 of 2)
	Table 3.4 Arithmetic Instructions (ALU Immediate)
	Table 3.5 Arithmetic Instructions (3-Operand, R-Type) �
	Table 3.6 Multiply, Divide and DSP Instructions
	Table 3.7 Jump and Branch Instructions (Part 1 of 2)
	Table 3.8 Shift Instructions
	Table 3.9 Coprocessor Instructions
	Table 3.10 Special Instructions
	Table 3.11 Exception Instructions
	Table 3.12 CP0 Instructions �

	CPU Pipeline Architecture
	Introduction
	Figure 4.1 Instruction Pipeline Stages

	CPU Pipeline Stages
	1I - Instruction Fetch, Phase One
	2I - Instruction Fetch, Phase Two
	1R - Register Fetch, Phase One
	2R - Register Fetch, Phase Two
	1A - Execution, Phase One
	2A - Execution, Phase Two
	1D - Data Fetch, Phase One
	2D - Data Fetch, Phase Two
	1W - Write Back, Phase One
	2W - Write Back, Phase Two
	Figure 4.2 Pipeline Activities

	Branch Delay
	Figure 4.3 CPU Pipeline Branch Delay

	Load Delay
	Figure 4.4 CPU Pipeline Load Delay

	Interlock and Exception Handling
	Exception Conditions
	Figure 4.5 Exception Detection
	Stall Conditions
	Figure 4.6 Data Cache Miss
	Slip Conditions
	Figure 4.7 Instruction Cache Miss

	Memory Management
	Introduction
	Virtual-to-Physical Address Translation
	Figure 5.1 Overview of a 32-bit Virtual Address Translation

	TLB Management
	Figure 5.2 TLB Register Format
	Table 5.1 TLB Register Field Descriptions�

	MMU Register Descriptions
	Table 5.2 RC32334 MMU Registers
	Index Register (0)
	Figure 5.3 Index Register Format
	Table 5.3 Index Register Field Descriptions
	Random Register (1)
	Figure 5.4 Random Register Format
	Table 5.4 Random Register Field Descriptions
	EntryLo0 (2), and EntryLo1 (3) Registers
	Figure 5.5 EntryLo0 and EntryLo1 Register Formats
	Table 5.5 EntryLo0 and EntryLo1 Register Field Descriptions
	Table 5.6 TLB Page Coherency Attributes
	Context Register (4)
	Figure 5.6 Context Register Format
	Table 5.7 Context Register Field Descriptions
	PageMask Register (5)
	Figure 5.7 PageMask Register Format
	Table 5.8 PageMask Register Field Descriptions
	Wired Register (6)
	Figure 5.8 Diagram Showing Ranges of Wired and Random Entries
	Figure 5.9 Wired Register Format
	Table 5.9 Wired Register Field Descriptions
	Bad Virtual Address Register (BadVAddr) (8)
	Figure 5.10 Bad Virtual Address Register (BadVAddr) Format
	EntryHi Register (10)
	Figure 5.11 EntryHi Register Format
	Table 5.10 EntryHi Register Field Content Descriptions

	Kernel/User Operating Modes and Addressing
	User Mode
	Figure 5.12 Illustration of RC32334 User Mode Address Space
	Kernel Mode
	Figure 5.13 Illustration of RC32334 Kernel Mode Address Space

	CPU Exception Processing
	Introduction
	Exception Processing Registers
	Table 6.1 Basic CP0 Registers �
	Count Register (9)
	Figure 6.1 Count Register Format
	Compare Register (11)
	Figure 6.2 Compare Register Format
	Status Register (12)
	Figure 6.3 Status Register Format
	Table 6.2 Status Register Field Descriptions
	Status Register Modes and Access States
	Cause Register (13)
	Figure 6.4 Cause Register Format
	Table 6.3 Cause Register Field Descriptions
	Table 6.4 Cause Register ExcCode Field�
	Exception Program Counter (EPC) Register (14)
	Figure 6.5 EPC Register Format
	Processor Revision Identifier (PRId) Register (15)
	Figure 6.6 PRId Register Format
	Table 6.5 PRid Register Field Descriptions
	Config Register (16)
	Figure 6.7 Config Register Format
	Table 6.6 Config Register Field Content Descriptions �
	IWatch Register (18)
	Figure 6.8 IWatch Register Format
	Table 6.7 Watch Register Field Description
	DWatch Register (19)
	Figure 6.9 DWatch Register Format
	Table 6.8 DWatch Register Field Descriptions
	Debug Exception Program Counter (DebugEPC) Register (23)
	Debug Register (24)
	Error Checking and Correcting (ECC) Register (26)
	Figure 6.10 ECC Register Format
	Table 6.9 ECC Register Field Descriptions
	Cache Error (CacheErr) Register (27)
	Figure 6.11 CacheErr Register
	Table 6.10 Cache Error Register Field Descriptions (Part 1 of 2)
	TagLo Register (28)
	Figure 6.12 TagLo Register Format
	Table 6.11 TagLo Register Field Descriptions �
	Table 6.12 Primary Cache State Values
	Error Exception Program Counter (Error EPC) Register (30)
	Figure 6.13 ErrorEPC Register

	Processor Exceptions
	Exception Types
	General Exception Process
	Figure 6.14 General Exception Process
	Priority of Exceptions
	Table 6.13 Exception Priority Order (highest to lowest)
	Exception Vector Locations
	Table 6.14 Base Address Vector Offset
	Table 6.15 List of RC32334 Exception vectors
	Table 6.16 RC32334 Exception Vectors �
	Reset Exception
	Figure 6.15 Process of the Reset Exception
	Debug Exception
	Soft Reset Exception
	Figure 6.16 Process of the Soft Reset and NMI Exceptions
	Nonmaskable Interrupt (NMI) Exception
	Address Error Exception

	TLB Exceptions
	TLB Refill Exception
	TLB Invalid Exception
	TLB Modified Exception
	Cache Error Exception
	Figure 6.17 Process of the Cache Error Exception
	Bus Error Exception
	Integer Overflow Exception
	Trap Exception
	System Call Exception
	Breakpoint Exception
	Reserved Instruction Exception
	Coprocessor Unusable Exception
	Interrupt Exception
	DWatch Exception
	IWatch Exception
	Exception Handling and Servicing Flowcharts
	Table 6.17 List of Exception Handling Flowchart Types
	Figure 6.18 General Exception Handling (HW)
	Figure 6.19 General Exception Servicing Guideline (SW)
	Figure 6.20 TLB Refill Exception Handling (HW)
	Figure 6.21 TLB Refill Exception Servicing Guideline (SW)
	Figure 6.22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)
	Figure 6.23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing Guidelines (SW)

	Cache��Organization, Operation, and Coherency
	Introduction
	Figure 7.1 Logical Hierarchy of Memory
	Cache Operation Overview

	RC32334 Cache Description
	RC32334 Cache Attributes
	Table 7.1 RC32334 Cache Attributes

	Cache Organization and Accessibility
	Organization of the Primary Instruction Cache (I-Cache)
	Figure 7.2 Primary I-Cache Line Format
	Table 7.2 Primary I-Cache Line Field Descriptions
	Organization of the Primary Data Cache (D-Cache)
	Figure 7.3 Primary D-Cache Line Format
	Table 7.3 Primary D-Cache Line Field Description
	Figure 7.4 Conceptual Primary Cache Lookup Sequence

	Accessing the Primary Caches
	Figure 7.5 Primary Cache Data and Tag Organization

	Primary Cache States
	Table 7.4 Primary Cache States
	Primary Cache States

	Cache Line Ownership
	Cache Write Policy
	Store Buffer

	Cache Replacement Policy
	Cache Initialization
	Cache Locking
	When to use Cache Locking
	Example: Data Cache Locking
	Example: Instruction Cache Locking

	RC32334 Internal Bus
	Introduction
	List of Features for RC32300 CPU Bus
	Block Diagram
	Figure 8.1 IP Bus Bridge Block Diagram

	Functional Overview
	Address Module
	Address Incrementer
	Figure 8.2 Subblock Ordered Data Retrieval
	Address MUX
	Address Decode
	Figure 8.3 Address Latch Time with Fast Decode Setting
	Figure 8.4 Address Latch Time with Slow Decode Setting

	Data Module
	CPU Read/Write Operations
	Figure 8.5 RC32334 cpu_ad[31:0] Data Phase

	DMA Read/Write Operations
	Arbitration

	Memory Port Sizing
	Bus Turnaround (BTA) Register
	Watchdog Timer
	Bus Time-Out Counters
	Bus Error Timers
	Register Descriptions
	Table 8.1 CPU Bus Interface Control Registers
	Table 8.2 CPU to IP Register Addresses and Descriptions (Part 1 of 2)

	Interface Control Registers
	CPU Port-Width Control Register: Virtual Address 0xFFFF_E200
	Figure 8.6 Format of CPU Port Width Control Register
	Table 8.3 Port Width Control Register Field Definition (Part 1 of 2)
	Table 8.4 Encoding of 8-, 16-, and 32-bit Port Widths
	Table 8.5 Memory Region Address Ranges (Part 1 of 2)
	CPU Bus Turnaround (BTA) Control Register: Virtual Address 0xFFFF_E204
	Figure 8.7 CPU Bus Turnaround (BTA) Control Register Format
	Table 8.6 CPU Bus Turnaround (BTA) Control Register Field Descriptions (Part 1 of 2)
	Table 8.7 Width Encoding of Bus Turnaround Cycles
	CPU Bus Error Address Register (Read Only): Virtual Address 0xFFFF_E208
	BTA Control Register
	Figure 8.8 Bus Turnaround (BTA) Control Register Format
	Table 8.8 Bus Turnaround (BTA) Control Register Field Descriptions �
	Table 8.9 Width Encoding of Bus Turnaround Cycles
	Figure 8.9 Timing of Bus Turnaround Cycle(s) (Example of 1 Cycle BTA)

	Address Latch Timing Register
	Figure 8.10 Address Latch Timing Register
	Table 8.10 Address Latch Timing Bit Field Descriptions�
	Arbitration Register
	Figure 8.11 Arbitration Register Field
	Table 8.11 Arbitration Field Values and Action Description
	BusError Control Register
	Figure 8.12 BusError Control Register Fields
	BusError Address Register
	Figure 8.13 BusError Address Register
	Table 8.12 BusError Control Register Field Descriptions (Part 1 of 2)
	SysID Register
	Figure 8.14 SysID Register Fields
	Table 8.13 SysID Register Field Descriptions�

	External Local Bus Interface
	Introduction
	Figure 9.1 External Local Bus Interface Unit Block Diagram

	Operation
	Variable Port-Width Interface
	Table 9.1 Port Width Assignments to Data Lines
	Table 9.2 Data Transfer Sequences for 8-bit Port Width �
	Table 9.3 Data Transfer Sequences for 16-bit Port Width
	Table 9.4 Data Transfer Sequences for 32-bit Port Width �

	Debug Signals
	Figure 9.2 Debug Signals During a Read
	Figure 9.3 Debug Signals During a Write.

	Memory Controller
	Introduction
	List of Features
	Block Diagram
	Figure 10.1 Block Diagram of RC32334 Memory Controller

	Functional Overview
	Memory Controller Operation
	Integrated Processor Generated Transactions
	Figure 10.2 Subblock Ordered Burst Read Sequences
	DMA Controller or PCI Bridge Generated Transactions
	Chip Selects
	Transceiver Control Interface

	Using 8- or 16-bit Boot PROMs
	Table 10.1 8- and 16-bit LSB Addresses and Write-Enable Connections

	Wait-State Generator (WSG)
	Address Decoding
	Table 10.2 RC32334 Typical Memory Map�

	Memory Type and Port-Width Size Support
	Table 10.3 Memory Type Field Values and Actions

	Port-Width Size
	Table 10.4 Port Width Size Field Values and Actions
	I/O Width Support

	Programmable Wait-State Generator
	Table 10.5 Minimum Wait-State Settings
	External Wait-State Behavior

	Bus Error Recovery
	Signal Descriptions
	Table 10.6 Memory Controller Pin Descriptions (Part 1 of 2)

	Register Definitions
	Table 10.7 List of Memory Control Registers�
	Memory MSB Base Address Register for Banks 1:0
	Figure 10.3 Memory Base Address Register for Banks 1:0
	Table 10.8 Internal Chip Select Base Addresses
	Memory MSB Bank Mask Registers for Banks 1:0
	Figure 10.4 Memory Bank Mask Register for Banks 1:0
	Table 10.9 Internal Chip Select Grouping �
	Table 10.10 Memory Mask Field Definitions and Values
	Memory Control Register for Banks 5:0
	Figure 10.5 Memory Control Register Channel 5:0
	Table 10.11 Memory Controller Register Field Descriptions, Channels 5:0 (Part 1 of 2)

	Timing Diagrams
	Figure 10.6 Single Word SRAM Read Transaction
	Figure 10.7 Single Word SRAM Read Transaction with Wait-State
	Figure 10.8 Single Word SRAM Write Transaction
	Figure 10.9 Single Word SRAM Write Transaction with Wait-State
	Figure 10.10 Quad Word Burst Read SRAM Transaction
	Figure 10.11 SRAM 4 Word Burst Write
	Figure 10.12 Tri-byte 16-bit SRAM Write Transaction
	Figure 10.13 IOI 1 Word Single Read
	Figure 10.14 IOI 1 Word Single Read with Wait-State
	Figure 10.15 IOI 1 Word Single Write
	Figure 10.16 IOI 1 Word Single Write with Wait-State
	Figure 10.17 IOI 4 Word Burst Read
	Figure 10.18 IOI 4 Word Burst Write
	Figure 10.19 IOM 1 Word Single Read
	Figure 10.20 IOM 1 Word Single Read with Wait-State
	Figure 10.21 IOM 1 Word Single Write
	Figure 10.22 IOM 1 Word Single Write with Wait-State
	Figure 10.23 IOM 4 Word Burst Read
	Figure 10.24 IOM 4 Word Burst Write
	Figure 10.25 Dual-Port 1 Word Single Read
	Figure 10.26 Dual-Port 1 Word Single Read with Wait-State
	Figure 10.27 Dual-Port 1 Word Single Write
	Figure 10.28 Single Word SRAM Write Transaction with Wait-State
	Figure 10.29 Dual-Port 4 Word Burst Read
	Figure 10.30 Dual-Port 4 Word Burst Write

	Synchronous DRAM Controller
	Introduction
	Features
	SDRAM Enhancements in Y Silicon Revision
	Table 11.1 SDRAM Differences Between Z and Y Revisions (Part 1 of 2)
	Table 11.2 Modified and New SDRAM Control Registers

	Block Diagram
	Figure 11.1 SDRAM Block Diagram

	Functional Overview
	Table 11.3 Supported SDRAMs (Part 1 of 2)
	Table 11.4 SDRAM Address Multiplexing (Part 1 of 3)
	Table 11.5 SDRAM Command Encoding
	Base Address Decoding
	Table 11.6 Base Address and Base Mask Address Map
	Page Row Comparators
	Burst Support
	Figure 11.2 Subblock Ordered Retrieval Method
	RAS/CAS Address MUX
	Refresh Timer
	Error Recovery

	SDRAM Initialization
	Register Definitions
	Table 11.7 SDRAM Register Address Map

	SDRAM Control Registers
	SDRAM Primary Control Register
	Figure 11.3 SDRAM Primary Control Register Fields
	Table 11.8 SDRAM Primary Control Register Field Descriptions (Part 1 of 4)
	SDRAM Secondary Control Register
	Figure 11.4 SDRAM Secondary Control Register Fields
	Table 11.9 SDRAM Secondary Control Register Field Descriptions (Part 1 of 2)

	Timing Diagrams
	Figure 11.5 SDRAM Non-Page Burst Read
	Figure 11.6 SDRAM Non-Page Burst Write
	Figure 11.7 SDRAM Non-Page Word Read
	Figure 11.8 SDRAM Non-Page Word Write
	Figure 11.9 SDRAM Page-Hit Burst Read
	Figure 11.10 SDRAM Page-Hit Burst Write
	Figure 11.11 SDRAM Page-Hit Word Read
	Figure 11.12 SDRAM Page-Hit Word Write
	Figure 11.13 SDRAM Page-Miss Burst Read
	Figure 11.14 SDRAM Page-Miss Word Read
	Figure 11.15 SDRAM Refresh

	SODIMM
	SODIMM Configuration
	SDRAM SODIMM Even Bank Non-Page Word Read
	Figure 11.16 SDRAM SODIMM Even Bank Non-page Word Read
	SDRAM SODIMM Odd Bank Non-Page Word Read
	Figure 11.17 SDRAM SODIMM Odd Bank Non-page Word Read
	SDRAM SODIMM Refresh
	Figure 11.18 SDRAM SODIMM Refresh
	output_clk Usage

	PCI Interface Controller
	Introduction
	Features
	PCI Interface Enhancements in Y Silicon Revision
	Table 12.1 PCI Differences Between Z and Y Revisions
	Table 12.2 Additional PCI Control Registers

	Functional Overview
	Table 12.3 Initialization Pins mem_addr[22:20] Settings
	Figure 12.1 PCI Interface Controller Block Diagram
	Memory Mapping
	Figure 12.2 CPU to PCI Memory Mapping
	Figure 12.3 PCI to CPU Memory Mapping
	RC32334 PCI Bus Target Operation
	RC32334 PCI Bus Master Operation
	Table 12.4 PCI Address Map �
	RC32334 PCI Bus Target Operation
	PCI Satellite Mode
	Table 12.5 PCI Serial EEPROM Address Fields
	PCI Commands Supported
	Table 12.6 PCI Commands (Part 1 of 2)
	PCI Configuration Register Access
	Table 12.7 PCI Device to IDSEL Mapping �
	PCI Polling Error Handling
	PCI Interrupts

	Signal Definitions
	Table 12.8 RC32334 Muxed PCI Pin Names and Directions �

	Register Definitions
	Table 12.9 PCI Interface Control Register Address Map (Part 1 of 2)
	PCI Controller Interrupt Pending Register 11
	Figure 12.4 PCI Controller Interrupt Pending Register 11 Fields
	Table 12.10 PCI Controller Interrupt Pending Register 11 Field Descriptions
	CPU to PCI Mailbox Interrupt Pending Register 12
	Figure 12.5 CPU to PCI Mailbox Interrupt Pending Register 12 Fields
	Table 12.11 CPU to PCI Mailbox Interrupt Pending Register 12 Field Descriptions
	PCI to CPU Mailbox Interrupt Pending Register 13
	Figure 12.6 PCI to CPU Mailbox Interrupt Pending Register 13 Fields
	Table 12.12 PCI to CPU Mailbox Interrupt Pending Register 13 Field Descriptions
	PCI Memory Space [1,2,3] Base Register
	Figure 12.7 PCI Memory Space [1,2,3] Base Register
	Table 12.13 PCI Memory Space [1,2,3] Base Register Field Descriptions
	PCI I/O Base Register
	Figure 12.8 PCI I/O Base Register
	Table 12.14 PCI I/O Base Register Field Descriptions (Part 1 of 2)
	New Feature Register
	Figure 12.9 PCI New Feature Register
	Table 12.15 PCI New Feature Register Field Descriptions
	PCI Target Control Register
	Figure 12.10 PCI Target Control Register
	Table 12.16 PCI Target Control Register Field Descriptions (Part 1 of 4)
	PCI Arbitration Register
	Figure 12.11 PCI Arbitration Register Fields
	Table 12.17 PCI Arbitration Register Field Descriptions
	PCI to CPU Memory/IO Space [1,2,3,4] Base Registers
	Figure 12.12 PCI to CPU Memory/IO Space [1,2,3,4] Base Register
	Table 12.18 PCI to CPU Memory/IO Space [1,2,3,4] Base Register Field Descriptions �
	PCI Configuration Address Register
	Figure 12.13 PCI Configuration Address Register Fields
	Table 12.19 PCI Configuration Address Register Field Descriptions �
	PCI Configuration Data Register
	Figure 12.14 PCI Configuration Data Register Field
	Table 12.20 PCI Configuration Data Register Field Description

	RC32334 PCI Configuration Registers
	Table 12.21 RC32334 PCI Configuration Registers�
	Vendor ID Register
	Figure 12.15 Vendor ID Register
	Table 12.22 Vendor ID Address Field Description
	Device ID Register
	Figure 12.16 Device ID Register
	Table 12.23 Device ID Address Field Description
	PCI Command Register
	Figure 12.17 PCI Command Register
	Table 12.24 Command Register
	PCI Status Register
	Figure 12.18 PCI Status Register
	Table 12.25 Configuration PCI Status Register
	Device Revision Identification Register
	Figure 12.19 Configuration Device Revision Identification Register
	Table 12.26 Configuration Device Revision Identification Register Field Description
	Class Code Register
	Figure 12.20 Class Code Register
	Table 12.27 Class Code Register Field Description
	Table 12.28 Class Code Definitions �
	Cacheline Size
	Figure 12.21 Cacheline Size Register
	Table 12.29 Configuration Cacheline Size Field Description
	Master Latency Timer Register
	Figure 12.22 Master Latency Timer Register Fields
	Table 12.30 Master Latency Timer Register Field Descriptions
	Header Type
	Figure 12.23 Header Type Register Field
	Table 12.31 Header Type Register Field Description
	BIST
	Figure 12.24 BIST Register Field
	Table 12.32 BIST Register Field Description
	PCI Memory/IO Base Address [1,2,3,4] Registers
	Figure 12.25 PCI Memory/IO Base Address [1,2,3,4] Register
	Table 12.33 Memory/IO Base Address Register 1 (BAR1) Field Description
	Table 12.34 Memory/I/O Base Address Registers 2 and 4 (BAR2,4) Field Description
	Table 12.35 Memory/I/O Base Address Register (BAR3) Field Description
	Subsystem Vendor ID
	Figure 12.26 Subsystem Vendor ID Register
	Table 12.36 Subsystem Vendor ID Field Description
	Subsystem ID
	Figure 12.27 Subsystem ID Register
	Table 12.37 Subsystem ID Field Description
	Interrupt Line Register
	Figure 12.28 Interrupt Line Register
	Table 12.38 Interrupt Line Register Field Description
	Interrupt Pin Register
	Figure 12.29 Interrupt Pin Register
	Table 12.39 Interrupt Pin Register Field Description
	MIN_GNT Register
	Figure 12.30 MIN_GNT Register
	Table 12.40 MIN_GNT Register Field Description
	MAX_LAT Register
	Figure 12.31 MAX_LAT Register
	Table 12.41 MAX_LAT Register field Description
	TRDY Timeout Value
	Figure 12.32 TRDY Timeout Value Register
	Table 12.42 TRDY Timeout Value Field Description
	Retry Timeout Value
	Figure 12.33 Retry Timeout Register
	Table 12.43 Retry Timeout Value Field Description

	DMA Controllers
	Introduction
	List of Features
	DMA Enhancements in Y Silicon Revision
	Table 13.1 DMA Differences Between Z and Y Revisions
	Table 13.2 New Fields in DMA Configuration Register

	Block Diagram
	Figure 13.1 Diagram of DMA General Block with IP Bus Interface

	DMA Operations
	Endianness Swapping

	DMA Transfer Modes
	DMA Transfer Operations
	Figure 13.2 DMA Transfer Configuration
	Last Partial Word Transfers
	Transfer Restrictions

	DMA Arbitration Methods
	Figure 13.3 Diagram Showing the Rotating Arbitration Scheme
	Table 13.3 Fixed Priority Encoding
	DMA Access

	Signal Definitions
	DMA Ready
	Figure 13.4 DMA Ready Sampling Point
	DMA Done
	Table 13.4 DMA Signal Pins and Definitions
	Figure 13.5 DMA Done Timing Diagram
	Internal DMA Interrupt Signals
	Table 13.5 DMA Interrupt Definitions (Part 1 of 2)
	Restarting DMA Channels

	Register Mapping and Descriptions
	Table 13.6 DMA Channel 0 Register Address Map
	Table 13.7 DMA Channel 1 Register Address Map
	Table 13.8 DMA Channel 2 Register Address Map
	Table 13.9 DMA Channel 3 Register Address Map

	Configuration Register
	Figure 13.6 Configuration Register Fields
	Table 13.10 Configuration Register Field Descriptions (Part 1 of 3)

	Base Descriptor Address Register
	Figure 13.7 Base Descriptor Address Register Field
	Table 13.11 Base Descriptor Address Field Description
	DMA Example

	Current Address Register
	Figure 13.8 Next Descriptor Address Field
	Table 13.12 Current Descriptor Address Field Description

	Source Address Register
	Figure 13.9 Source Address Field
	Table 13.13 Source Address Register Field Description

	Destination Address Register
	Figure 13.10 Destination Address Fields
	Table 13.14 Destination Address Field Description

	Next Descriptor Address Register
	Figure 13.11 Next Descriptor Address Field
	Table 13.15 Next Descriptor Address Field Description

	Status Register
	Figure 13.12 Status Register Fields
	Table 13.16 Status Register (Part 1 of 3)

	Timing Diagrams
	Figure 13.13 Two Word SRAM to SRAM Access by DMA

	Expansion Interrupt Controller
	Introduction
	Features
	Block Diagram
	Figure 14.1 Expansion Interrupt Controller Block Diagram
	Figure 14.2 Expansion Interrupt Block Diagram Group/Bit-Slice

	Operational Overview
	Signal Definitions
	Table 14.1 Interrupt Signal Pins and Definitions

	Registers and Address Mapping
	Table 14.2 Expansion Interrupt Register Group 0 Address Map
	Table 14.3 Bus Error Register Group 1 Address Map
	Table 14.4 PIO Low Register Group 2 Address Map
	Table 14.5 PIO High Register Group 3 Address Map
	Table 14.6 Timer Rollover Interrupt Register Group 4 Address Map
	Table 14.7 UART 0 Interrupt Register Group 5 Address Map
	Table 14.8 UART 1 Interrupt Register Group 6 Address Map
	Table 14.9 DMA Channel 0 Register Group 7 Address Map
	Table 14.10 DMA Channel 1 Register Group 8 Address Map
	Table 14.11 DMA Channel 2 Register Group 9 Address Map
	Table 14.12 DMA Channel 3 Register Group 10 Address Map
	Table 14.13 PCI Controller Interrupt Register Group 11 Address Map
	Table 14.14 External Interrupt Register Group 12 Address Map
	Table 14.15 PCI to CPU Interrupt Register Group 13 Address Map
	Table 14.16 SPI Interrupt Register Group 14 Address Map

	Interrupt Pending Register
	Figure 14.3 Interrupt Pending Register Fields
	Table 14.17 Interrupt Pending Field Description

	Interrupt Mask Register
	Figure 14.4 Interrupt Mask Register
	Table 14.18 Interrupt Mask Register

	Interrupt Clear Register
	Figure 14.5 Interrupt Clear Register Field
	Table 14.19 Interrupt Clear Register Field Descriptions

	Register Group Settings
	Register Group 0 Settings
	Table 14.20 Group 0 Register Settings
	Register Group 1 Settings
	Table 14.21 Group 1 (Bus Error) Register Settings
	Register Group 2 Settings
	Table 14.22 Group 2 (PIO Low) Register Settings�
	Register Group 3 Settings
	Table 14.23 Group 3 (PIO High) Register Settings
	Register Group 4 Settings
	Table 14.24 Group 4 (Timer Rollover Interrupt) Register Settings
	Register Group 5 Settings
	Table 14.25 Group 5 (UART 0 Interrupt) Register Settings
	Register Group 6 Settings
	Table 14.26 Group 6 (UART 1 Interrupt) Register Settings
	Register Group 7 Settings
	Table 14.27 Group 7 (DMA Memory2I/O Interrupt 0) Register Settings
	Register Group 8 Settings
	Table 14.28 Group 8 (DMA Memory2IO Interrupt 1) Register Settings
	Register Group 9 Settings
	Table 14.29 Group 9 (DMA PCI Master Interrupt 0) Register Settings
	Register Group 10 Settings
	Table 14.30 Group 10 (DMA PCI Master Interrupt 1) Register Settings
	Register Group 11 Settings
	Table 14.31 Group 11 (PCI Controller) Register Settings
	Register Group 12 Settings
	Table 14.32 Group 12 Register Settings�
	Register Group 13 Settings
	Table 14.33 Group 13 Register Settings
	Register Group 14 Settings
	Table 14.34 Group 14 Register Settings

	Timing Diagrams
	Figure 14.6 PIO Input Asserting Internal cpu_int_n[3]
	Figure 14.7 Internal Condition Asserting Internal cpu_int_n[3] Interrupt
	Figure 14.8 Pending Register Write Asserting Internal cpu_int_n[3]
	Figure 14.9 Pending or Clear Register Write De-Asserting Internal cpu_int_n[3] Interrupt
	Figure 14.10 Internal Condition Asserting PCI Interrupt
	Figure 14.11 Pending or Clear Register Write De-Asserting PCI Interrupt
	Figure 14.12 CPU Interrupts

	RC32334 Interrupt Flow
	1. Initialize Interrupts
	2. Wait for Interrupt
	3. Software Interrupt Service Routine (ISR)
	Optional Algorithm for Priority Interrupts
	Optional Algorithm for Non-Prioritized Interrupts

	Programmable I/O (PIO) Controller
	Introduction
	Features
	Overview
	Block Diagram
	Figure 15.1 PIO Block Diagram
	Figure 15.2 PIO Block Diagram Bit-Slice

	Performing Initialization Programming
	Signal Definitions
	Table 15.1 Serial Mode Protocol/Alternate Signal Descriptions (Part 1 of 2)
	Table 15.2 UART Interface/Alternate Signal Descriptions
	Table 15.3 Timer/Alternate Signal Descriptions
	Table 15.4 DMA Interface/Alternate Signal Descriptions
	Table 15.5 PIO Interface/Alternate Signal Descriptions

	Register Mapping and Definitions
	Table 15.6 PIO Register Address Map
	PIO Data Register 0
	Figure 15.3 PIO Data Register 0 Fields
	Table 15.7 PIO Data Register 0 Field Description �
	Table 15.8 PIO Data Register 0 High/Low Descriptions
	PIO Data Register 1
	Figure 15.4 PIO Data Register 1 Fields
	Table 15.9 PIO Data Register 1 Field Description
	Table 15.10 PIO Data Register 1 High/Low Descriptions
	PIO Direction Register 0
	Figure 15.5 PIO Direction Register 0 Fields
	Table 15.11 PIO Function Direction Register 0 Field Description (Part 1 of 2)
	Table 15.12 PIO Direction Register 0 Input/Output Descriptions
	PIO Direction Register 1
	Figure 15.6 PIO Direction Register 1 Fields
	Table 15.13 PIO Direction Register 1 Field Description
	Table 15.14 PIO Direction Register 1 Input/Output Description
	PIO Function Select Register 0
	Figure 15.7 PIO Function Select Register 0 Fields
	Table 15.15 PIO Function Select Register 0 Field Description (Part 1 of 2)
	Table 15.16 PIO Special Function/General Purpose Select Register 0 Description
	PIO Function Select Register 1
	Figure 15.8 PIO Function Select Register 1 Fields
	Table 15.17 PIO Function Select Register 1 Field Description�
	Table 15.18 PIO Function Select Register 1 Special Function/General Purpose Description
	New Feature Register
	Figure 15.9 PIO New Feature Register Fields
	Table 15.19 PIO New Feature Register Field Description

	Timing Diagrams
	Figure 15.10 PIO Input, Affecting Data Register
	Figure 15.11 Data Register Write, Affecting PIO Output

	Timer Controller
	Introduction
	Features
	Block Diagram
	Figure 16.1 Timer Block Diagram
	Figure 16.2 Diagram of Individual Timer Core

	Overview
	Signal Definitions
	Table 16.1 Pin Definitions for the Timer/Counter Signals

	Register Mapping
	Table 16.2 Timer Register 0 (General Purpose) Address Map
	Table 16.3 Timer Register 1 (General Purpose) Address Map
	Table 16.4 Timer Register 2 (General Purpose) Address Map
	Table 16.5 Register 3 for Watchdog Address Map
	Table 16.6 Register 4 for CPU Bus Time-out Address Map
	Table 16.7 Register 5 for IP Bus Time-out Address Map
	Table 16.8 Register 6 for DRAM Refresh Address Map
	Table 16.9 Register 7 for Warm Reset Address Map
	Timer Control Register Description
	Figure 16.3 Timer Control Register Fields
	Table 16.10 Timer Controller Register Field Descriptions
	Timer Count Register
	Figure 16.4 Count Register Fields
	Table 16.11 Count Register Fields Descriptions
	Timer Compare Register
	Figure 16.5 Compare Register Fields
	Table 16.12 Compare Register Fields Descriptions

	Timing Diagrams
	Figure 16.6 Timer Rollover Causing timer_tc_n to Toggle
	Figure 16.7 timer_gate_n Input Causing Timer to Count

	UART Controller
	Introduction
	Block Diagram
	Figure 17.1 UART Block Diagram

	Overview
	Table 17.1 Divisor Value Examples for Typical Baud Rates.
	UART Operation

	User Interrupts
	Figure 17.2 Interrupt Flow

	Signal Definitions
	Table 17.2 RC32334 Pin Descriptions (Part 1 of 2)
	UART 0&1 Registers
	UART 0 Registers
	Table 17.3 UART0 Register Address Map
	UART 1 Registers
	Table 17.4 UART1 Register Address Map (Part 1 of 2)
	Receive Buffer Register (RBR)
	Figure 17.3 Receive Buffer Register
	Transmit Buffer Register (TBR)
	Figure 17.4 Transmit Buffer Register
	Interrupt Enable Register (IER)
	Figure 17.5 Interrupt Enable Register
	Table 17.5 Interrupt Enable Register Field Descriptions
	Divisor Latch Least Register (DLL)
	Figure 17.6 Divisor Latch Least Register (DLL)
	Divisor Latch Most Register (DLM)
	Figure 17.7 Divisor Latch Most Register (DLM)
	Interrupt Identity Register (IIR)
	Figure 17.8 Interrupt Identity Register
	Table 17.6 Interrupt Identity Register Fields and Descriptions�
	Buffer Control Register (BCR)
	Figure 17.9 Buffer Control Register (BCR) Fields
	Table 17.7 Buffer Control Register Field Descriptions�
	Line Control Register (LCR)
	Figure 17.10 Line Control Register Fields
	Table 17.8 Line Control Register Field Descriptions�
	Modem Control Register (MCR)
	Figure 17.11 MODEM Control Register Fields
	Table 17.9 MODEM Control Register Field Descriptions �
	Line Status Register (LSR)
	Figure 17.12 Line Status Register Fields
	Table 17.10 Line Status Register Field Descriptions (Part 1 of 2)
	Modem Status Register (MSR)
	Figure 17.13 MODEM Status Register Fields
	Table 17.11 MODEM Status Register Field Descriptions�
	Scratch Register (SCR)
	Figure 17.14 Scratch Register Field
	Table 17.12 Scratch Register Field Descriptions
	Reset Register (RR)
	Figure 17.15 Reset Register Field

	Timing Diagram
	Figure 17.16 UART Timing

	Serial Peripheral Interface
	Introduction
	Figure 18.1 SPI Block Diagram

	Signal Descriptions
	Table 18.1 SPI Signal Descriptions
	Figure 18.2 Serial Peripheral Interface (SPI) Clock/Data Timing
	SPI Data Setup/Hold and Delay Timing

	SPI Setup and Register Descriptions
	SPI Interrupt Description
	Table 18.2 SPI Register Address Map
	Serial Peripheral Clock Register (SPCNT)
	Figure 18.3 SPI Clock Register Field
	Table 18.3 SPI Clock Register (SPCNT) Field Description
	Serial Peripheral Control Register (SPCNTL)
	Figure 18.4 Serial Peripheral Control (SPCNTL) Register Fields
	Table 18.4 SPI Control Register Field Descriptions (Part 1 of 2)
	Serial Peripheral Status Register (SPSR)
	Figure 18.5 SPI Status Register (SPSR) Fields
	Table 18.5 SPI Status Register (SPSR) Field Descriptions
	Serial Peripheral Data I/O Register (SPDR)
	Figure 18.6 SPI Data I/O Register
	Table 18.6 SPI Data I/O Register (SPDR) Field Description
	Interface to SPI Serial E2PROMs by ATMEL (AT25128)
	Figure 18.7 Illustration of Glueless Connection Between RC32334 Processor and ATMEL SPI Serial E2...

	Master Programming Example
	Timing Diagrams
	Figure 18.8 SPI Clock-to-Data Output Relationship
	Figure 18.9 SPI Clock-to-Data Input Relationship

	Clocking, Reset, and Initialization
	Introduction
	Signal Terminology
	Figure 19.1 Signal Transitions
	Figure 19.2 Clock-to-Q Delay

	Basic System Clocks
	Cpu_masterclk
	Figure 19.3 System Clocks Data Setup, Output, and Hold Timing
	PClock
	Figure 19.4 Timing Illustration of cpu_masterclk-to-PClock Multiply by 2

	Phase-Locked Loop (PLL) Operation
	PLL Components and Operation
	Figure 19.5 PLL Passive Components

	PLL Analog Power Filtering
	Figure 19.6 PLL Filter Circuit for Noisy Environments

	Reset Function
	Reset and Initialization Interface
	Figure 19.7 Mode Configuration Interface Reset Sequence
	Boot-Mode Configuration Settings
	Table 19.1 Boot-Mode Configuration Settings (Part 1 of 2)
	reset_boot_mode Settings
	Table 19.2 RC32334 reset_boot_mode Initialization Settings�
	pci_host_mode Settings
	Reset of On-chip System Controller Logic
	Figure 19.8 Reset Vector Initialization Part 1 of 2
	Figure 19.9 Reset Vector Initialization Part 2 of 2

	JTAG Boundary Scan
	Introduction
	Figure 20.1 Dual TAP Controller Block Diagram

	System Logic TAP Controller Overview
	Figure 20.2 Diagram of the JTAG Logic

	Signal Definitions
	Table 20.1 JTAG Pin Descriptions �
	Figure 20.3 State Diagram of RC32334’s TAP Controller

	Test Data Register (DR)
	Boundary Scan Registers
	Figure 20.4 Diagram of Observe-only Input Cell
	Figure 20.5 Diagram of Output Cell
	Figure 20.6 Diagram of Output Enable Cell
	Figure 20.7 Diagram of Bidirectional Cell

	Instruction Register (IR)
	Table 20.2 Instructions Supported By RC32334’s JTAG Boundary Scan (Part 1 of 2)
	Extest
	Sample/Preload
	Bypass
	Clamp
	DeviceID
	Table 20.3 System Controller Device Identification Register
	Figure 20.8 System Controller Device ID Instruction Format
	Validate
	Reserved
	Unused

	Usage Considerations

	EJTAG (In-circuit Emulator) Interface
	Introduction
	Figure 21.1 Dual TAP Controller Block Diagram

	Overview
	Block Diagrams
	Figure 21.2 Block Diagram
	Figure 21.3 Simplified EJTAG Block Diagram

	Debug Support Unit
	Instruction Address Match Logic
	Data Address & Data Value Match Logic
	Processor Address Bus & Processor Data Bus Match Logic

	EJTAG Interface
	Table 21.1 EJTAG Pins� (Part 1 of 2)
	Operating Modes

	JTAG Operation
	Figure 21.4 RC32334 Debug Operating Modes
	Test Interface and Boundary-Scan Architecture
	Test Access Port Operation
	Figure 21.5 TAP Controller State Diagram
	TAP Controller State Assignments
	Instruction Register (IR)
	Test Data Register (DR)
	Table 21.2 CPU Core Device Identification Register
	Figure 21.6 CPU Core Device ID Instruction Format
	Implementation Register
	Table 21.3 Implementation Register� (Part 1 of 2)
	Figure 21.7 Byte Organization in a 32-bit EJTAG Data Register
	Figure 21.8 Examples of Byte Organization in a 32-bit EJTAG Data Register
	Table 21.4 EJTAG_Control_Register� (Part 1 of 3)
	Figure 21.9 Examples of the Sync Operation
	Processor Access
	Figure 21.10 EJTAG Processor Access
	Reset Overview
	Figure 21.11 Reset Overview
	EJTAG Module Clocking
	Instruction Register
	Table 21.5 Instruction Decoding (Part 1 of 2)
	Figure 21.12 Shift Order Sequence of the JTAG_All_IR Register
	The Debug Unit

	Extended Instructions
	SDBBP (Software Debug Breakpoint)
	DERET (Debug Exception Return)

	Extended CP0 Registers (Debug Registers)
	Debug Register
	Table 21.6 Debug Register (Part 1 of 2)
	Debug Exception Program Counter Register (DEPC)
	Table 21.7 Debug Exception Program Counter
	Debug Exception Save Register (DESAVE)
	Table 21.8 Debug Exception Save Register

	Register Map
	Table 21.9 32-bit Register Map (Base Address = 0xff30 0000) �
	Debug Control Register
	Table 21.10 Debug Control Register - DCR �
	Instruction Address Match Registers
	Table 21.11 Instruction Address Break Status Register - IBS
	Table 21.12 Instruction Address Break Register n - IBAn
	Table 21.13 Instruction Address Break Mask Register n - IBMn
	Table 21.14 Instruction Address Break Control n Register - IBCn �
	Data Address and Data Match registers
	Table 21.15 Data Address Break Status - DBS �
	Table 21.16 Data Address Break n Register - DBAn
	Processor Bus Match Registers
	Table 21.17 Processor Bus Break Status - PBS �
	Table 21.18 Processor Address Bus Break Register n - PBAn
	Table 21.19 Processor Data Bus Break n Register - PBDn
	Table 21.20 Processor Data Bus Mask n Register - PBMn
	Table 21.21 Processor Bus Break Control and Address Mask n - PBCn (Part 1 of 2)

	Debug Exception
	Debug Exception Causes
	Debug Exception Enabling/Disabling
	Debug Exception Handling
	Exception Handling when in Debug Mode (DM bit is set)
	Servicing the Debug Exception

	PC Trace
	Table 21.22 Dynamic Trace Information

	Instruction Trace Method
	PC Status and Exception Vector Encoding
	PC Status Encoding
	Table 21.23 PC Trace Status Information (Part 1 of 2)
	Exception Vector Encoding
	Table 21.24 Exception and Exception Codes at ejtag_tpc (Part 1 of 2)

	External Interface Definition
	EJTAG

	Priority of Target Address Output (ejtag_tpc)
	Real Time ejtag_tpc Output (TM=‘0’ in DCR[0])
	Non-Real Time ejtag_tpc Output (TM=‘1’ in DCR[0])

	Examples of PC Trace Output
	Conditional PC Relative Jump Instruction
	Figure 21.13 Trace of Conditional PC Relative Jump Instruction
	Indirect Jump Instruction
	Figure 21.14 Trace of Indirect Jump Instruction
	PC Trace Of An Exception Followed By A Jump Indirect Instruction
	Figure 21.15 Trace of an Exception Followed by a Jump Indirect Instruction
	PC Trace of an Indirect Instruction Followed by an Exception
	Figure 21.16 Trace of Indirect Jump Instruction Followed by an Exception

	Examples of Trace Trigger Output
	Instruction Address Trace Trigger
	Figure 21.17 instruction Address Trace Trigger
	Trace Trigger and General Exception at the Same Time
	Figure 21.18 Trace Trigger and General Exception at the Same Time
	Jump Indirect Causes Trace Trigger
	Figure 21.19 Jump Indirect Causes Trace Trigger
	Instruction after Jump Indirect Causes Trace Trigger
	Figure 21.20 Instruction after Jump Indirect Causes Trace Trigger

	Switching from Real-Time Trace to Debug
	Real-Time Trace Mode to Debug Mode (No ejtag_tpc Output)
	Figure 21.21 Real-Time Trace Mode to Debug Mode (No Tpc Output)
	Real-Time Trace Mode to Debug Mode
	Figure 21.22 Real Time Trace Mode to Debug Mode (Debug Exception in Branch Delay Slot)

	Pin Out of the Standard EJTAG
	Figure 21.23 Timing Diagram of the EJTAG Interface Signals
	Table 21.25 Pin Numbering of the JTAG and EJTAG Target Connector

	EJTAG Application Information
	Using JTAG Boundary Scan and EJTAG
	Figure 21.24 Application Diagram of Target Board and EJTAG Connection
	Hot Plug-In of the EJTAG Probe to Target System

	RC32300 CPU Core Enhancements to MIPS II ISA
	Introduction
	Prefetch (PREF)
	Figure A.1 Format of Prefetch Instruction
	Figure A.2 Flowchart for Prefetch Operation
	Table A.1 Value of Hint Field for the Prefetch Instruction �

	Elimination of 64-bit instructions
	Conditional Move Operations
	Move Conditional on Not Zero
	Move Conditional on Zero

	Instructions for DSP Support
	Multiply Add
	Multiply Add Unsigned
	Multiply Subtract
	Multiply Subtract Unsigned
	Count Leading Zeros
	Count Leading Ones

	Opcode Map
	The Timing of Cache Operations
	Introduction
	Caveats About Cache Operations
	Cache Operations Tables
	Table C.1 Primary Data Cache Operations (Part 1 of 2)
	Table C.2 Primary Instruction Cache Operations�

	Fill_I Equation Definitions

	RC32334/RC32332 Standby Mode Operation
	Introduction
	Power Management
	Power Reduction Modes

	Entering Standby Mode
	Figure D.1 Flowchart for Standby Mode Operation

	Coprocessor 0 Hazards
	Introduction
	List of Hazards

	Integer Multiply Scheduling
	Introduction
	Table F.1 Integer Multiply and Divide Performance

	RC32332 Differences
	Introduction
	Differences in Features
	Table G.1 Feature Set Comparison Between RC32332 and RC32334
	Memory Controller
	PCI Controller On-chip Arbiter
	PCI Controller Device ID
	DMA Controller Flow Control
	PIO Controller Signals
	Table G.2 PIO [Data/Direction/Function Select] Register 0 Comparison
	Table G.3 PIO [Data/Direction/Function Select] Register 1 Comparison
	TIMER Controller Signal
	Interrupt Lines
	UART Interface
	Internal Bus Interface SysID Register
	JTAG DEVICE_ID Register
	JTAG Boundary Scan Cells
	Electrical / Pinout

	Pin Description Table
	Table 21.26 Pin Description for RC32332 (Part 1 of 6)

	Logic Diagram

	Index

