to operate in a re	aistered. or flow thro	uah buffer mode by	1 65\/_3 6\/ \	/supply operation		
utilizing the regist	er enable (REGE) a	nd Clock (CLK) sig-		V _{CC} supply operation inputs and outputs		
	operates in a 20-bit w liced into 3-STATE the			esistors in the outputs		
	s are ideally suited for	•	■ t _{PD} (CLK to C	•		
•	200 pin SDRAM D	DIMM memory mod-	4.1 ns max for 3.0V to 3.6V V_{CC}			
iles.	O is designed for los	wyshage (1 CE)/ to		c for 2.3V to 2.7V V_{CC}		
	9 is designed for lor ations with I/O comp	•		c for 1.65V to 1.95V V_{CC}		
	9 is also designed w			h impedance inputs and outputs		
	. This design reduce			insertion and withdrawal (Note 1)		
ations such as m ous transceivers/t	emory address driver ansmitters.	rs, clock drivers, and	Static Drive (
	9 is fabricated with a	an advanced CMOS	±12 mA @	3.0V V _{CC}		
	eve high speed opera	ation while maintain-	taSheet40.comA @	2.3V V _{CC}		
ig low CMOS pov	ver dissipation.	www.bb		1.65V V _{CC}		
			Uses patente	ed noise/EMI reduction circuitry		
			Latch-up per	formance exceeds 300 mA		
			ESD perform	ance:		
			Human bo	dy model > 2000V		
			Note 1: To ensure down, OE should b	$\label{eq:odel} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		
Ordering (ode:		Note 1: To ensure down, OE should b	the high-impedance state during power up or power		
	-		Note 1: To ensure down, OE should b value of the resistor driver.	the high-impedance state during power up or power e tied to V_{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the		
Order Number	Package Number		Note 1: To ensure down, OE should b value of the resistor driver. Packag	the high-impedance state during power up or power e tied to V_{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the generative determined by the current source of the state of		
Order Number	Package Number MTD56		Note 1: To ensure down, OE should b value of the resistor driver. Packag Small Outline Pac	the high-impedance state during power up or power e tied to V_{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the		
Order Number 4VCX162839MTD Devices also available	Package Number MTD56 in Tape and Reel. Specify	56-Lead Thin Shrink S	Note 1: To ensure down, OE should b value of the resistor driver. Packag Small Outline Pac	the high-impedance state during power up or power e tied to V _{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the ge Description kage (TSSOP), JEDEC MO-153, 6.1mm Wid		
Order Number VCX162839MTD levices also available	Package Number MTD56 in Tape and Reel. Specify DOI	56-Lead Thin Shrink S by appending suffix letter "X"	Note 1: To ensure down, OE should b value of the resistor driver. Packag Small Outline Pac to the ordering code.	the high-impedance state during power up or power e tied to V _{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the ge Description kage (TSSOP), JEDEC MO-153, 6.1mm Wid		
Order Number VCX162839MTD evices also available	Package Number MTD56 in Tape and Reel. Specify	56-Lead Thin Shrink S by appending suffix letter "X"	Note 1: To ensure down, OE should b value of the resistor driver. Packag Small Outline Pac to the ordering code. Pin Desc	the high-impedance state during power up or power e tied to V _{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the ge Description kage (TSSOP), JEDEC MO-153, 6.1mm Wid riptions		
Drder Number VCX162839MTE evices also available eogic Sym	Package Number MTD56 in Tape and Reel. Specify DOI 15 16 17 18 19 10 1 12 1	56-Lead Thin Shrink S by appending suffix letter "X" Image: start s	Note 1: To ensure down, OE should b value of the resistor driver. Package Small Outline Pact to the ordering code. Pin Desci Pin Names	the high-impedance state during power up or power e tied to V _{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the ge Description kage (TSSOP), JEDEC MO-153, 6.1mm Wid riptions Description		
Drder Number VCX162839MTE evices also available eogic Sym	Package Number MTD56 in Tape and Reel. Specify DOI	56-Lead Thin Shrink S by appending suffix letter "X" Image: start s	Note 1: To ensure down, OE should b value of the resistor driver. Package Small Outline Pac to the ordering code. Pin Desco Pin Names OE I ₀ -I ₁₉	the high-impedance state during power up or power e tied to V _{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the ge Description kage (TSSOP), JEDEC MO-153, 6.1mm Wid riptions Description Output Enable Input (Active LOW)		
Order Number VCX162839MTE vevices also available Logic Sym -0 00000000000000000000000000000000000	Package Number MTD56 in Tape and Reel. Specify DOI 15 16 17 18 19 10 1 12 1	56-Lead Thin Shrink S by appending suffix letter "X" Image: start s	Note 1: To ensure down, OE should b value of the resistor driver. Packag Small Outline Pac to the ordering code. Pin Desco Pin Names OE	the high-impedance state during power up or power e tied to V _{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the ge Description kage (TSSOP), JEDEC MO-153, 6.1mm Wide riptions Description Output Enable Input (Active LOW) Inputs Outputs		
AVCX162839MTE Devices also available Logic Sym	Package Number MTD56 in Tape and Reel. Specify DOI 15 16 17 18 19 10 1 12 1	56-Lead Thin Shrink S by appending suffix letter "X" Image: start s	Note 1: To ensure down, OE should b value of the resistor driver. Package Small Outline Pact to the ordering code. Pin Descl OE I0-I19 O0-O19	the high-impedance state during power up or power e tied to V _{CC} through a pull-up resistor; the minimum is determined by the current-sourcing capability of the ge Description kage (TSSOP), JEDEC MO-153, 6.1mm Wid riptions Description Output Enable Input (Active LOW) Inputs		

Features

specifications

74VCX162839 Low Voltage 20-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs

General Description

FAIRCHILD

SEMICONDUCTOR

The VCX162839 contains twenty non-inverting selectable buffered or registered paths. The device can be configured to operate in a registered, or flow through buffer mode by

■ Compatible with PC100 and PC133 DIMM module

March 1998

Revised December 2000

Resistors in the Outputs

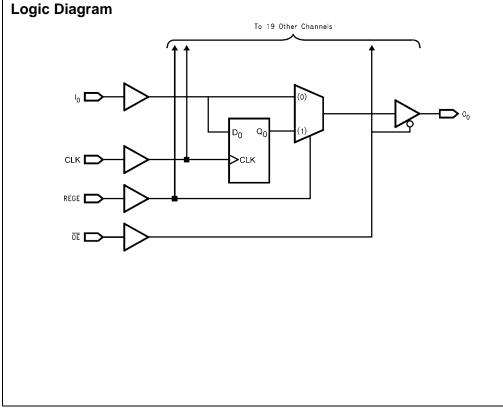
74VCX162839 Low Voltage 20-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series

Order Number	Package Number	Package Description			
74VCX162839MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.					

© 2000 Fairchild Semiconductor Corporation DS500127

74VCX162839

Truth Table


	Inputs					
CLK	REGE	I _n	OE	0 _n		
\uparrow	Н	Н	L	н		
\uparrow	н	L	L	L		
х	L	н	L	н		
х	L	L	L	L		
х	Х	х	н	Z		

H = Logic HIGH L = Logic LOW X = Don't Care, but not floating

Z = High Impedance $\uparrow = LOW-to-HIGH Clock Transition$

Functional Description

The 74VCX162839 consists of twenty selectable noninverting buffers or registers with word wide modes. Mode functionality is selected through operation of the CLK and REGE pin as shown by the truth table. When REGE is held at a logic HIGH the device operates as a 20-bit register. Data is transferred from ${\rm I}_{\rm n}$ to ${\rm O}_{\rm n}$ on the rising edge of the CLK input. When the REGE pin is held at a logic LOW the device operates in a flow through mode and data propagates directly from the ${\rm I}_{\rm n}$ to the ${\rm O}_{\rm n}$ outputs. All outputs can be 3-stated by holding the $\overline{\text{OE}}$ pin at a logic HIGH.

www.fairchildsemi.com

Absolute Maximum Ra	tings(Note 2)	Recommended Operating		
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 4)		
DC Input Voltage (VI)	-0.5V to +4.6V	Power Supply		
Output Voltage (V _O)		Operating	1.65V to 3.6V	
Outputs 3-STATE	-0.5V to +4.6V	Data Retention Only	1.2V to 3.6V	
Outputs Active (Note 3)	–0.5V to V _{CC} + 0.5V	Input Voltage	-0.3V to +3.6V	
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA	Output Voltage (V _O)		
DC Output Diode Current (I _{OK})		Output in Active States	0V to V _{CC}	
$V_{O} < 0V$	–50 mA	Output in "OFF" State	0V to 3.6V	
$V_{O} > V_{CC}$	+50 mA	Output Current in I _{OH} /I _{OL}		
DC Output Source/Sink Current		$V_{CC} = 3.0V$ to 3.6V	±12 mA	
(I _{OH} /I _{OL})	±50 mA	$V_{CC} = 2.3V$ to 2.7V	±8 mA	
DC V _{CC} or GND Current per		V _{CC} = 1.65V to 2.3V	±3 mA	
Supply Pin (I _{CC} or GND)	±100 mA	Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$	
Storage Temperature Range (T _{STG})	-65°C to +150°C	Minimum Input Edge Rate ($\Delta t/\Delta V$)		
		V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V	

74VCX162839

 $V_{IN} = 0.8V \ to \ 2.0V, \ V_{CC} = 3.0V \qquad 10 \ ns/V$ Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $< V_{CC} \leq 3.6V)$

Symbol	Parameter	Parameter Conditions V _{CC} (V)		Min	Max	Units	
V _{IH}	HIGH Level Input Voltage		2.7 – 3.6	2.0		V	
V _{IL}	LOW Level Input Voltage		2.7 – 3.6		0.8	V	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 – 3.6	V _{CC} - 0.2			
		$I_{OH} = -6 \text{ mA}$	2.7	2.2		v	
		I _{OH} = -8 mA	3.0	2.4		v	
		$I_{OH} = -12 \text{ mA}$	3.0	2.2			
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7 – 3.6		0.2		
		I _{OL} = 6 mA	2.7		0.4	v	
		I _{OL} = 8 mA	3.0		0.55	v	
		I _{OL} = 12 mA	3.0		0.8	1	
I _I	Input Leakage Current	$0V \le V_I \le 3.6V$	2.7 – 3.6		±5.0	μΑ	
l _{oz}	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.7 – 3.6		±10	μA	
		$V_I = V_{IH} \text{ or } V_{IL}$	2.7 - 3.0		10	μΑ	
I _{OFF}	Power-OFF Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μΑ	
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7 - 3.6		20	μA	
		$V_{CC} \leq (V_{I}, V_{O}) \leq 3.6V$ (Note 5)	2.7 - 3.0		±20	μΑ	
ΔI _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 – 3.6		750	μΑ	

Ο,
က
œ
N
Ö
~
×
65
2
2
4
\sim

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.6		V
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
V _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 – 2.7	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.3	2.0		v
		$I_{OH} = -6 \text{ mA}$	2.3	1.8		v
		$I_{OH} = -8 \text{ mA}$	2.3	1.7		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 2.7		0.2	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 8 mA	2.3		0.6	
I	Input Leakage Current	$0V \le V_I \le 3.6V$	2.3 – 2.7		±5.0	μA
OZ	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.3-2.7		±10	
		$V_I = V_{IH} \text{ or } V_{IL}$	2.3-2.7		±10	μA
OFF	Power-OFF Leakage Current	$0V \leq (V_I, V_O) \leq 3.6V$	0		10	μΑ
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND	22.27		20	
		$V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 6)	2.3 – 2.7		±20	μA

Note 6: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 - 2.3	0.65 x V _{CC}		
V _{IL}	LOW Level Input Voltage		1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		V
		$I_{OH} = -3 \text{ mA}$	1.65	1.25		v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 2.3		0.2	V
		I _{OL} = 3 mA	1.65		0.3	v
l	Input Leakage Current	$0V \le V_I \le 3.6V$	1.65 - 2.3		±5.0	μΑ
l _{oz}	3-STATE Output Leakage	$0V \le V_0 \le 3.6V$ $V_1 = V_{1H} \text{ or } V_{1I}$	1.65 - 2.3		±10	μA
I _{OFF}	Power-OFF Leakage Current	$V_{I} = V_{IH} OV V_{IL}$ $OV \le (V_{I}, V_{O}) \le 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65 - 2.3		20	μA
		$V_{CC} \le (V_I, V_O) \le 3.6V \text{ (Note 7)}$	1.03 - 2.3		±20	μΑ

Note 7: Outputs disabled or 3-STATE only.

			$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to $+\textbf{85}^{\circ}\textbf{C},$ $\textbf{C}_{\textbf{L}}=\textbf{30}$ pF, $\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$					
Symbol	Parameter	Parameter $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 2.5V \pm 0.2V$ $V_{CC} = 1.8V \pm 0.15V$		Units				
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		125		MHz
t _{PHL}	Propagation Delay In to On	0.8	3.5	1.0	4.9	1.5	9.8	ns
t _{PLH}	(REGE = 0)							
t _{PHL}	Propagation Delay CLK to On	0.8	4.1	1.0	5.8	1.5	9.8	ns
t _{PLH}	(REGE = 1)	0.0		1.0	0.0	1.0	0.0	110
t _{PHL} , t _{PLH}	Propagation Delay REGE to On	0.8	4.9	1.0	6.4	1.5	9.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.8	4.3	1.0	6.1	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.8	4.3	1.0	4.9	1.5	8.8	ns
t _S	Setup Time	1.0		1.0		2.5		ns
t _H	Hold Time	0.7		0.7		1.0		ns
t _W	Pulse Width	1.5		1.5		4.0		ns
t _{osHL}	Output to Output Skew		0.5		0.5		0.75	ns
t _{osLH}	(Note 9)							

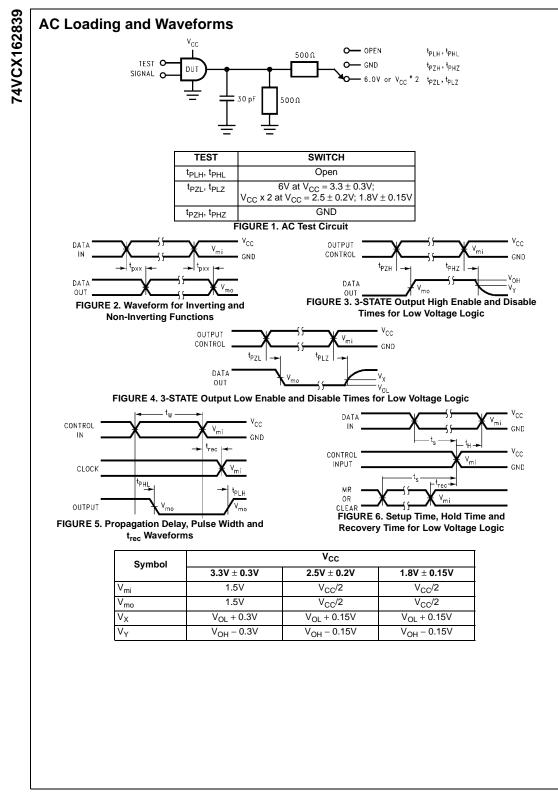
Note 8: For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

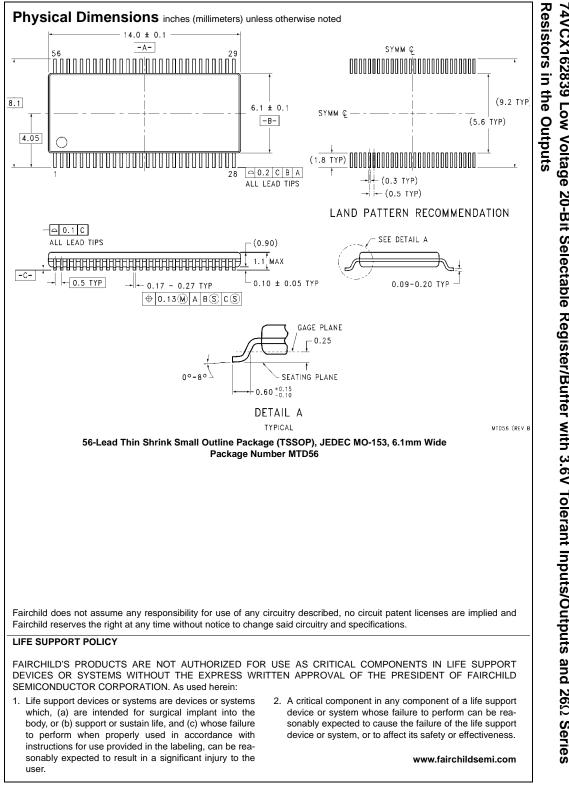
Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Extended AC Electrical Characteristics (Note 10)

Symbol		$T_A = -0^{\circ}C \text{ to } +85^{\circ}C, R_L =$	$\frac{T_{\text{A}} = -0^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ R}_{\text{L}} = 500\Omega \text{ V}_{\text{CC}} = 3.3\text{V} \pm 0.3\text{V}}{\text{C}_{\text{L}} = 50 \text{ pF}}$		
	Parameter	C _L =			
		Min	Max		
t _{PHL} , t _{PLH}	Propagation Delay I_n to O_n (REGE = 0)	1.0	3.8	ns	
t _{PHL} , t _{PLH}	Propagation Delay CLK to O _n (REGE = 1)	1.4	4.4	ns	
t _{PHL} , t _{PLH}	Propagation Delay REGE to On	1.0	5.2	ns	
t _{PZL} , t _{PZH}	Output Enable Time	1.0	4.6	ns	
t _{PLZ} , t _{PHZ}	Output Disable Time	1.0	4.6	ns	
t _S	Setup Time	1.0		ns	
t _H	Hold Time	0.7		ns	

Note 10: This parameter is guaranteed by characterization but not tested.


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC} (V)	T _A = +25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak VOL	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.15	
			2.5	0.25	V
			3.3	0.35	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.15	
			2.5	-0.25	V
			3.3	-0.35	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.55	
			2.5	2.05	V
			3.3	2.65	

Capacitance

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
CIN	Input Capacitance	V_{CC} = 1.8V, 2.5V or 3.3V, V_I = 0V or V_{CC}	6	pF
C _{OUT}	Output Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz},$ $V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20	pF

www.fairchildsemi.com

74VCX162839 Low Voltage 20-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series

www.fairchildsemi.com