INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # **74HC/HCT4518**Dual synchronous BCD counter Product specification File under Integrated Circuits, IC06 December 1990 # **Dual synchronous BCD counter** # 74HC/HCT4518 #### **FEATURES** · Output capability: standard I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT4518 are high-speed Si-gate CMOS devices and are pin compatible with the "4518" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4518 are dual 4-bit internally synchronous BCD counters with an active HIGH clock input (nCP₀) and an active LOW clock input (n $\overline{\text{CP}}_1$), buffered outputs from all four bit positions (nQ₀ to nQ₃) and an active HIGH overriding asynchronous master reset input (nMR). The counter advances on either the LOW-to-HIGH transition of nCP_0 if nCP_1 is HIGH or the HIGH-to-LOW transition of nCP_1 if nCP_0 is LOW. Either nCP_0 or nCP_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on nMR resets the counter (nQ_0 to nQ_3 = LOW) independent of nCP_0 and nCP_1 . #### **APPLICATIONS** - Multistage synchronous counting - · Multistage asynchronous counting - · Frequency dividers #### **QUICK REFERENCE DATA** GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYP | UNIT | | |-------------------------------------|--|---|-----|------|------| | | PARAMETER | CONDITIONS | НС | нст | UNII | | t _{PHL} / t _{PLH} | propagation delay nCP ₀ , nCP ₁ to nQ _n | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 20 | 24 | ns | | t _{PHL} | propagation delay nMR to nQ _n | | 13 | 14 | ns | | f _{max} | maximum clock frequency | | 61 | 55 | MHz | | Cı | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per counter | notes 1 and 2 | 29 | 27 | pF | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$ #### ORDERING INFORMATION See "74HC/HCT/HCU/HCMOS Logic Package Information". # Dual synchronous BCD counter # 74HC/HCT4518 # **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |----------------|---|--| | 1, 9 | 1CP ₀ , 2CP ₀ | clock inputs (LOW-to-HIGH, edge-triggered) | | 2, 10 | 1 CP ₁ , 2 CP ₁ | clock inputs (HIGH-to-LOW, edge-triggered) | | 3, 4, 5, 6 | 1Q ₀ to 1Q ₃ | data outputs | | 7, 15 | 1MR, 2MR | asynchronous master reset inputs (active HIGH) | | 8 | GND | ground (0 V) | | 11, 12, 13, 14 | 2Q ₀ to 2Q ₃ | data outputs | | 16 | V _{CC} | positive supply voltage | Philips Semiconductors Product specification # Dual synchronous BCD counter # 74HC/HCT4518 # **FUNCTION TABLE** | nCP ₀ | n CP ₁ | MR | MODE | |------------------|-------------------|----|----------------------| | \uparrow | Н | L | counter advances | | L | \downarrow | L | counter advances | | \downarrow | X | L | no change | | X | 1 | L | no change | | ↑ | L | L | no change | | Н | \downarrow | L | no change | | X | X | Н | Q_0 to $Q_3 = LOW$ | # **Notes** 1. H = HIGH voltage level L = LOW voltage level X = don't care ↑ = LOW-to-HIGH clock transition \downarrow = HIGH-to-LOW clock transition Philips Semiconductors Product specification # Dual synchronous BCD counter 74HC/HCT4518 # DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI # **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | PARAMETER | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|-------------------|-------| | SYMBOL | | 74HC | | | | | | | | | | | | | +25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEFORMS | | | | | min. | typ. | max. | min. | max. | min. | max. | | (, | | | t _{PHL} / t _{PLH} | propagation delay nCP ₀ , nCP ₁ to nQ _n | | 66
24
19 | 210
42
36 | | 265
53
45 | | 315
63
59 | ns | 2.0
4.5
6.0 | Fig.9 | | t _{PHL} | propagation delay nMR to nQ _n | | 44
16
13 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig.8 | | t _{THL} / t _{TLH} | output transition time | | 19
7
6 | 75
15
13 | | 95
19
16 | | 110
22
19 | ns | 2.0
4.5
6.0 | Fig.9 | | t _W | clock pulse width
HIGH or LOW | 80
16
14 | 25
9
7 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig.8 | | t _W | master reset pulse width HIGH | 120
24
20 | 39
14
11 | | 150
30
26 | | 180
36
31 | | ns | 2.0
4.5
6.0 | Fig.8 | | t _{rem} | removal time nMR to nCP ₀ , nCP ₁ | 0
0
0 | -22
-8
-6 | | 0
0
0 | | 0
0
0 | | ns | 2.0
4.5
6.0 | Fig.8 | | t _{su} | set-up time
nCP ₁ to nCP ₀ ;
nCP ₀ to nCP ₁ | 80
16
14 | 22
8
6 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig.7 | | f _{max} | maximum clock pulse frequency nCP ₀ , nCP ₁ | 6.0
30
35 | 18
55
66 | | 4.8
24
28 | | 4.0
20
24 | | MHz | 2.0
4.5
6.0 | Fig.8 | Philips Semiconductors Product specification # Dual synchronous BCD counter 74HC/HCT4518 #### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: standard I_{CC} category: MSI # Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |------------------------------|-----------------------| | nCP_0 , $n\overline{CP}_1$ | 0.80 | | nMR | 1.50 | # **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | SYMBOL | PARAMETER | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|------|------|------------|------|-------------|------|------|------------------------|-----------| | | | 74HCT | | | | | | | UNIT | | | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNII | V _{CC}
(V) | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (,, | | | t _{PHL} / t _{PLH} | propagation delay nCP ₀ , nCP ₁ to nQ _n | | 28 | 53 | | 66 | | 80 | ns | 4.5 | Fig.9 | | t _{PHL} | propagation delay nMR to nQ _n | | 17 | 35 | | 44 | | 53 | ns | 4.5 | Fig.8 | | t _{THL} / t _{TLH} | output transition time | | 7 | 15 | | 19 | | 22 | ns | 4.5 | Fig.9 | | t _W | clock pulse width
HIGH or LOW | 20 | 11 | | 25 | | 30 | | ns | 4.5 | Fig.8 | | t _W | master reset pulse width HIGH | 20 | 11 | | 25 | | 30 | | ns | 4.5 | Fig.8 | | t _{rem} | removal time nMR to nCP ₀ , nCP ₁ | 0 | -11 | | 0 | | 0 | | ns | 4.5 | Fig.8 | | t _{su} | set-up time
nCP ₁ to nCP ₀ ;
nCP ₀ to nCP ₁ | 16 | 5 | | 20 | | 24 | | ns | 4.5 | Fig.7 | | f _{max} | maximum clock pulse
frequency
nCP ₀ , nCP ₁ | 25 | 50 | | 20 | | 17 | | MHz | 4.5 | Fig.8 | # Dual synchronous BCD counter # 74HC/HCT4518 #### **AC WAVEFORMS** # **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".