INTEGRATED CIRCUITS ## DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # **74HC/HCT243**Quad bus transceiver; 3-state Product specification File under Integrated Circuits, IC06 December 1990 #### **74HC/HCT243** #### **FEATURES** - Non-inverting 3-state outputs - 2-way asynchronous data bus communication - · Output capability: bus driver - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT243 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT243 are quad bus transceivers featuring non-inverting 3-state bus compatible outputs in both send and receive directions. They are designed for 4-line asynchronous 2-way data communications between data buses. The output enable inputs $(\overline{OE}_A \text{ and } OE_B)$ can be used to isolate the buses. The "243" is similar to the "242" but has non-inverting (true) outputs. #### **QUICK REFERENCE DATA** $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYP | LINUT | | | |-------------------------------------|---|---|-----|-------|------|--| | STIVIBUL | PARAIVIETER | CONDITIONS | НС | нст | UNIT | | | t _{PHL} / t _{PLH} | propagation delay A _n to B _n ; B _n to A _n | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 6 | 11 | ns | | | Cı | input capacitance | | 3.5 | 3.5 | pF | | | C _{I/O} | input/output capacitance | | 10 | 10 | pF | | | C _{PD} | power dissipation capacitance per transceiver | notes 1 and 2 | 26 | 34 | pF | | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V #### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". ## 74HC/HCT243 #### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--------------|----------------------------------|----------------------------------| | 1 | OE _A | output enable input (active LOW) | | 2, 12 | n.c. | not corrected | | 3, 4, 5, 6 | A_0 to A_3 | data inputs/outputs | | 7 | GND | ground (0 V) | | 11, 10, 9, 8 | B ₀ to B ₃ | data inputs/outputs | | 13 | OEB | output enable input | | 14 | V _{CC} | positive supply voltage | ## 74HC/HCT243 #### **FUNCTION TABLE** | INP | UTS | INPUTS/OUTPUTS | | | | | |----------------------------|-----|----------------|----------------|--|--|--| | OE _A | OEB | A _n | B _n | | | | | L | L | inputs | B = A | | | | | Н | L | Z | Z | | | | | L | Н | Z | Z | | | | | Н | Н | A = B | inputs | | | | #### **Notes** - 1. H = HIGH voltage level - L = LOW voltage level - Z = high impedance OFF-state Philips Semiconductors Product specification ## Quad bus transceiver; 3-state 74HC/HCT243 #### DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI #### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | SYMBOL | PARAMETER | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|----------------|-----------------|------|-----------------|------|-----------------|------------------------|-------------------|--------------| | | | 74HC | | | | | | | | | WAVEFORMS | | STWIBOL | | +25 | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEI OKINO | | | | | min. | typ. | max. | min. | max. | min. | max. | | (', | | | t _{PHL} / t _{PLH} | propagation delay A _n to B _n ; B _n to A _n | | 22
8
6 | 90
18
15 | | 115
23
20 | | 135
27
23 | ns | 2.0
4.5
6.0 | Fig.5 | | t _{PZH} / t _{PZL} | | | 50
18
14 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Figs 6 and 7 | | t _{PHZ} / t _{PLZ} | | | 61
22
18 | 165
33
28 | | 205
41
35 | | 250
50
43 | ns | 2.0
4.5
6.0 | Figs 6 and 7 | | t _{THL} / t _{TLH} | output transition time | | 14
5
4 | 60
12
10 | | 75
15
13 | | 90
18
15 | ns | 2.0
4.5
6.0 | Fig.5 | Philips Semiconductors Product specification ## Quad bus transceiver; 3-state 74HC/HCT243 #### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI #### Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | | | | | | | |-------------------|-----------------------|--|--|--|--|--|--| | A _n | 1.10 | | | | | | | | <u>B</u> n | 1.10 | | | | | | | | \overline{OE}_A | 1.00 | | | | | | | | OEB | 1.00 | | | | | | | #### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 \text{ V; } t_r = t_f = 6 \text{ ns; } C_L = 50 \text{ pF}$ | | PARAMETER | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|--|-----------------------|------|------|------------|------|-------------|------|------|-----------------|--------------| | SYMBOL | | 74HCT | | | | | | | UNIT | | WAVEFORMS | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | VVAVEI OKING | | | | min. | typ. | max. | min. | max. | min. | max. | | (' ' | | | t _{PHL} /t _{PLH} | $\begin{array}{c} \text{propagation delay} \\ A_n \text{ to } B_n; \\ B_n \text{ to } A_n \end{array}$ | | 13 | 22 | | 28 | | 33 | ns | 4.5 | Fig.5 | | t _{PZH} / t _{PZL} | | | 18 | 34 | | 43 | | 51 | ns | 4.5 | Figs 6 and 7 | | t _{PHZ} / t _{PLZ} | | | 23 | 35 | | 44 | | 53 | ns | 4.5 | Figs 6 and 7 | | t _{THL} / t _{TLH} | output transition time | | 5 | 12 | | 15 | | 18 | ns | 4.5 | Fig.5 | #### 74HC/HCT243 #### **AC WAVEFORMS** Fig.5 Waveforms showing the input (A_n, B_n) to output (B_n, A_n) propagation delays and the output transition times. Philips Semiconductors Product specification ## Quad bus transceiver; 3-state 74HC/HCT243 #### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".