INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # **74HC/HCT242**Quad bus transceiver; 3-state; inverting Product specification File under Integrated Circuits, IC06 December 1990 # Quad bus transceiver; 3-state; inverting # 74HC/HCT242 #### **FEATURES** - Inverting 3-state outputs - 2-way asynchronous data bus communication - · Output capability: bus driver - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT242 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT242 are quad bus transceivers featuring inverting 3-state bus compatible outputs in both send and receive directions. They are designed for 4-line asynchronous 2-way data communications between data buses. The output enable inputs $(\overline{OE}_A \text{ and } OE_B)$ can be used to isolate the buses. The "242" is similar to the "243" but has inverting outputs. #### **QUICK REFERENCE DATA** $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ | SYMBOL | DADAMETER | CONDITIONS | TYP | LINUT | | |-------------------------------------|---|---|-----|-------|------| | | PARAMETER | CONDITIONS | нс | нст | UNIT | | t _{PHL} / t _{PLH} | propagation delay A _n to B _n ; B _n to A _n | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 7 | 10 | ns | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{I/O} | input/output capacitance | | 10 | 10 | pF | | C _{PD} | power dissipation capacitance per transceiver | notes 1 and 2 | 29 | 32 | pF | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V #### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". # Quad bus transceiver; 3-state; inverting # 74HC/HCT242 # **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--------------|----------------------------------|----------------------------------| | 1 | ŌĒA | output enable input (active LOW) | | 2, 12 | n.c. | not connected | | 3, 4, 5, 6 | A ₀ to A ₃ | data inputs/outputs | | 7 | GND | ground (0 V) | | 11, 10, 9, 8 | B ₀ to B ₃ | data inputs/outputs | | 13 | OEB | output enable input | | 14 | V _{CC} | positive supply voltage | # Quad bus transceiver; 3-state; inverting # 74HC/HCT242 # **FUNCTION TABLE** | INP | UTS | INPUTS/OUTPUTS | | | | | | |---------------------------------|-----|--------------------|--------------------|--|--|--|--| | OE _A OE _B | | A _n | B _n | | | | | | L | L | inputs | $B = \overline{A}$ | | | | | | Н | L | Z | Z | | | | | | L | Н | Z | Z | | | | | | Н | Н | $A = \overline{B}$ | inputs | | | | | # Note 1. H = HIGH voltage level L = LOW voltage level Z = high impedance OFF-state Philips Semiconductors Product specification # Quad bus transceiver; 3-state; inverting 74HC/HCT242 # DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI # **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | PARAMETER | T _{amb} (°C) | | | | | | | UNIT | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|----------------|-----------------|------------|-----------------|-------------|-----------------|------|------------------------|--------------| | SYMBOL | | 74HC | | | | | | | | | WAVEFORMS | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNII | V _{CC}
(V) | VVAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (', | | | t _{PHL} / t _{PLH} | propagation delay A _n to B _n ; B _n to A _n | | 25
9
7 | 90
18
15 | | 115
23
20 | | 135
27
23 | ns | 2.0
4.5
6.0 | Fig.5 | | t _{PZH} / t _{PZL} | | | 41
15
12 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Figs 6 and 7 | | t _{PHZ} / t _{PLZ} | | | 52
19
15 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Figs 6 and 7 | | t _{THL} / t _{TLH} | output transition time | | 14
5
4 | 60
12
10 | | 75
15
13 | | 90
18
15 | ns | 2.0
4.5
6.0 | Fig.5 | Philips Semiconductors Product specification # Quad bus transceiver; 3-state; inverting 74HC/HCT242 #### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI # Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | | | | | | | |-------------------|-----------------------|--|--|--|--|--|--| | A _n | 1.10 | | | | | | | | B _n | 1.10 | | | | | | | | \overline{OE}_A | 1.00 | | | | | | | | OEB | 1.00 | | | | | | | # **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | SYMBOL | PARAMETER | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|------|------|------------|------|-------------|------|------|-----------------|--------------| | | | 74HCT | | | | | | | UNIT | | WAVEFORMS | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | VVAVEFORIVIS | | | | min. | typ. | max. | min. | max. | min. | max. | | (') | | | t _{PHL} / t _{PLH} | propagation delay A _n to B _n ; B _n to A _n | | 12 | 20 | | 25 | | 30 | ns | 4.5 | Fig.5 | | t _{PZH} / t _{PZL} | | | 16 | 34 | | 43 | | 51 | ns | 4.5 | Figs 6 and 7 | | t _{PHZ} / t _{PLZ} | | | 22 | 35 | | 44 | | 53 | ns | 4.5 | Figs 6 and 7 | | t _{THL} / t _{TLH} | output transition time | | 5 | 12 | | 15 | | 18 | ns | 4.5 | Fig.5 | Philips Semiconductors Product specification # Quad bus transceiver; 3-state; inverting 74HC/HCT242 #### **AC WAVEFORMS** Fig.5 Waveforms showing the input (A_n, B_n) to output (B_n, A_n) propagation delays and the output transition times. # **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".