74F8960/74F8961

FEATURES

- Octal latched transceiver
- Drives heavily loaded backplanes with equivalent load impedances down to 10Ω
- High drive (100mA) open collector drivers on B port
- Reduced voltage swing (1 volt) produces less noise and reduces power consumption
- High speed operation enhances performance of backplane buses and facilitates incident wave switching
- Compatible with IEEE futurebus standards
- Built-in precision band-gap reference provides accurate receiver thresholds and improved noise immunity
- Controlled output ramp and multiple GND pins minimize ground bounce
- Glitch-free power up/down operation

DESCRIPTION

The 74F8960 and 74F8961 are octal bidirectional latched transceivers and are intended to provide the electrical interface to a high performance wired–OR bus. The B port inverting drivers are low–capacitance open collector with controlled ramp and are designed to sink 100mA from 2 volts. The B port inverting receivers have a 100 mV threshold region and a 4ns glitch filter.

The B port interfaces to 'Backplane Transceiver Logic' (BTL). BTL features a reduced (1V to 2V) voltage swing for lower power consumption and a series diode on the drivers to reduce capacitive loading.

Incident switching is employed, therefore BTL propagation delays are short. Although the

voltage swing is much less for BTL, so is its receiver threshold region, therefore noise margins are excellent.

BTL offers low power consumption, low ground bounce, EMI and crosstalk, low capacitive loading, superior noise margin and low propagation delays. This results in a high bandwidth, reliable backplane.

The 74F8960 and 74F8961 A ports have TTL 3–state drivers and TTL receivers with a latch function. A separate High–level control input (VX) is provided to limit the A side output level to a given voltage level (such as 3.3V). For 5.0V systems, VX is simply tied to VCC.

The 74F8961 is the non-inverting version of 74F8960.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT(TOTAL)
74F8960	6.5ns	80mA
74F8961	6.5ns	80mA

ORDERING INFORMATION

	ORDER CODE
DESCRIPTION	COMMERCIAL RANGE V _{CC} = 5V \pm 10%, T _{amb} = 0°C to +70°C
28–pin plastic DIP (300 mil) ¹	N74F8960N, N748961N
28–pin PLCC ¹	N74F8960A, N74F8961A

NOTE: Thermal mounting techiques are recommended.

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 – A8	PNP latched inputs	3.5/0.117	70μΑ/70μΑ
B0 – B8	Data inputs with threshold circuitry	5.0/0.167	100μΑ/100μΑ
OEA	A output enable input (active high)	1.0/0.033	20μΑ/20μΑ
OEB0, OEB1	B output enable inputs (active low)	1.0/0.033	20μΑ/20μΑ
LE	Latch enable input (active low)	1.0/0.033	20μΑ/20μΑ
A0 – A7	3-state outputs	150/40	3mA/24mA
B0 – B7	Open collector outputs	OC/166.7	OC/100mA

NOTES:

1. One (1.0) FAST unit load is defined as: 20µA in the high state and 0.6mA in the low state.

2. OC = Open collector.

74F8960/74F8961

PIN CONFIGURATION PIN CONFIGURATION PLCC LOGIC SYMBOL 74F8961 74F8961 74F8961 28 LE VCC 1 12 13 10 OEA 2 27 B0 GND A0 OEAVCC LE B0 B1 Å 4 3 2 1 28 27 26 26 B1 A0 3 A1 5 25 GND 25 GND A0 A1 A2 A3 A4 A5 A6 A7 GND 4 A2 6 A1 5 24 B2 24 B2 OEB0 15 A2 6 A3 7 23 B3 OEA 23 B3 2 28 LE A3 7 GND 8 PLCC 22 GND 22 GND 16 OEB1 GND 8 21 B4 A4 9 21 B4 A4 9 20 B5 B0 B1 B2 B3 B4 В5 B6 B7 A5 10 20 B5 A5 10 19 B6 GND 11 19 B6 GND 11 18 GND 12 13 14 15 16 17 18 26 24 23 21 20 19 17 27 A6 12 17 B7 A6 A7 VX OEB2 OEB1 B7 GND 16 OEB1 A7 13 15 OEB0 Vx 14 V_{CC} = Pin 1, V_X = Pin 14 GND = Pin 4, 8, 11, 18, 22, 25

74F8960/74F8961

IEC/IEEE SYMBOL FOR 74F8960

PIN DESCRIPTION

SYMBOL	PINS	TYPE	NAME AND FUNCTION
A0 – A7	3, 5, 6, 7, 9, 10, 12, 13	I/O	PNP latched input/3–state output (with V_X control option)
B0 – B7	27, 26, 24, 23, 21, 20, 19, 17	I/O	Data input with special threshold circuitry to reject noise/ open collector output, high current drive
OEB0	15	Input	Enables the B outputs when both pins are low
OEB1	16	Input	Enables the A outputs when high
LE	28	Input	Latched when high (a special feature is buillt in for proper enabling times)
V _X	14	Input	Clamping voltage keeping V_{OH} from rising above V_X ($V_X = V_{cc}$ for normal use)

IEC/IEEE SYMBOL FOR 74F8961

74F8960/74F8961

LOGIC DIAGRAM

FUNCTION TABLE FOR 74F8960

		IN	IPUTS			LATCH	Ουτι	PUTS	OPERATING MODE
An	Bn*	LE	OEA	OEB	OEB	STATE	An	Bn	
н	Х	L	L	Ľ	Ĺ	Н	Z	L	A 3-state, data from A to B
L	Х	L	L	L	L	L	Z	H**	
Х	Х	Н	L	L	L	Qn	Z	Qn	A 3-state, latched data to B
-	-	L	Н	L	L	(1)	(1)	(1)	Feedback: A to B, B to A
-	Н	Н	Н	L	L	H (2)	Н	Z(2)	Preconditioned latch enabling data transfer from B to A
-	L	Н	н	L	L	H (2)	L	Z(2)	
-	-	Н	н	L	L	Qn	Qn	Qn	Latch state to A and B
Н	Х	L	L	Н	Х	Н	Z	Z	
1	Х	L	L	Н	Х	I	Z	Z	B and A 3-state
Х	Х	Н	L	Н	Х	Qn	Z	Z	
-	Н	L	Н	Н	Х	Н	Н	Z	
-	L	L	Н	Н	Н	L	L	Z	B 3-state, data from B to A
-	Н	Н	Н	Н	Н	Qn	Н	Z	
-	L	Н	Н	Н	Н	Qn	L	Z	
Н	Х	L	L	Х	Н	Н	Z	Z	
Ι	Х	L	L	Х	Н		Z	Z	B and A 3–state
Х	Х	Н	L	Х	Н	Qn	Z	Z	
-	Н	L	Н	Х	Н	Н	Н	Z	
-	L	L	Н	Х	Н	L	L	Z	B 3–state, data from B to A
-	Н	Н	Н	Х	Н	Qn	н	Z	
-	L	Н	Н	Х	Н	Qn	L	Z	

NOTES:

1. H = High-voltage level

2. L = Low-voltage level

3. X = Don't care

- = Input not externally driven 4.

5. Z = High impedance (off) state

6. $Q_n =$ High or low voltage level one setup time prior to the low-to-high \overline{LE} transition.

7. (1) = Condition will cause a feedback loop path: A to B and B to A. 8. (2) = The latch must be preconmittioned such that B inputs may assume a high or low level while $\overline{OEB0}$ and $\overline{OEB1}$ are low and \overline{LE} is high.

9. H**= Goes to level of pullup voltage.

 $10.B^* =$ Precaution should be taken to insure the B inputs do not float. If they do they are equal to low state.

74F8960/74F8961

FUNCTION TABLE FOR 74F8961

		IN	IPUTS			LATCH	Ουτι	PUTS	OPERATING MODE
An	Bn*	LE	OEA	OEB	OEB	STATE	An	Bn	
н	Х	L	L	Ê	Ľ	Н	Z	H**	A 3-state, data from A to B
L	Х	L	L	L	L	L	Z	L	
Х	Х	Н	L	L	L	Qn	Z	Qn	A 3-state, latched data to B
-	-	L	Н	L	L	(1)	(1)	(1)	Feedback: A to B, B to A
-	Н	Н	Н	L	L	H (2)	н	Z(2)	Preconditioned latch enabling data transfer from B to A
-	L	Н	Н	L	L	H (2)	L	Z(2)	
-	-	Н	н	L	L	Qn	Qn	Qn	Latch state to A and B
н	Х	L	L	Н	Х	Н	Z	Z	
I	Х	L	L	Н	Х	I	Z	Z	B and A 3-state
Х	Х	Н	L	Н	Х	Qn	Z	Z	
-	Н	L	Н	Н	Х	Н	н	Z	
-	L	L	Н	Н	Н	L	L	Z	B 3-state, data from B to A
-	Н	Н	Н	Н	Н	Qn	Н	Z	
-	L	Н	Н	Н	Н	Qn	L	Z	
Н	Х	L	L	Х	Н	Н	Z	Z	
I	Х	L	L	Х	Н		Z	Z	B and A 3–state
Х	Х	Н	L	Х	Н	Qn	Z	Z	
-	Н	L	Н	Х	Н	Н	Н	Z	
-	L	L	Н	Х	Н	L	L	Z	B 3–state, data from B to A
-	Н	Н	Н	Х	Н	Qn	н	Z	
-	L	Н	Н	Х	Н	Qn	L	Z	

NOTES:

1. H = High–voltage level 2. L = Low–voltage level

3. X = Don't care

Input not externally driven 4. — =

5. Z = High impedance (off) state 6. $Q_n =$ High or low-voltage level one setup time prior to the low-to-high LE transition.

7. (1) = Condition will cause a feedback loop path: A to B and B to A.

8. (2) = The latch must be preconditioned such that B inputs may assume a high or low level while OEB0 and OEB1 are low and LE is high.

9. H^{**}= Goes to level of pullup voltage.

10.B* = Precaution should be taken to insure the B inputs do not float. If they do they are equal to low state.

74F8960/74F8961

74F8960/74F8961

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _X	Threshold control		-0.5 to +7.0	V
V _{IN}	Input voltage	OEB, OEA, LE	-0.5 to +7.0	V
		A0 – A7, B0 – B7	-0.5 to +5.5	V
I _{IN}	Input current		-40 to +5	mA
V _{OUT}	Voltage applied to output in high output state		–0.5 to V_{CC}	V
I _{OUT}	Current applied to output in low output state	A0 – A7	-0.5 to +7.0 -0.5 to +5.5 -40 to +5	mA
		B0 – B7	200	mA
T _{amb}	Operating free air temperature range	•	0 to +70	°C
Tstg	Storage temperature range		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

				LIMITS		
SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IH}	High-level input voltage	Except B0 – B7	2.0			V
		B0 – B7	1.6			V
V _{IL}	Low-level input voltage	Except B0 – B7			5.5 0.8 1.475 -18 -40 -3 24 100	V
		B0 – B7			1.475	V
l _{lk}	Input clamp current	Except A0 – A7			-18	mA
		A0 – A7			-40	mA
I _{OH}	High-level output current	A0 – A7			-3	mA
I _{OL}	Low-level output current	A0 – A7			24	mA
		B0 – B7			100	mA
T _{amb}	Operating free air temperature	-	0		+70	°C

74F8960/74F8961

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETI	ER		TE		UNIT			
				COND	MIN.	TYP. 2	MAX.		
I _{OH}	High–level output current	B0	– B7	$V_{CC} = MAX, V_{IL} = MAX$	K, V _{IH} = MIN, V _{OH} = 2.1V			100	μA
I _{OFF}	Power-off output current	B0	– B7	$V_{CC} = 0.0V, V_{IL} = MAX$, V _{IH} = MIN, V _{OH} = 2.1V			100	μA
				V _{CC} = MIN,	$I_{OH} = -3mA, V_X = V_{CC}$	2.5		V _{CC}	V
V _{OH}	High-level output voltage	A0	– A7 ⁴	$V_{IL} = MAX, V_{IH} = MIN$	$I_{OH} = -4mA$, V _X =3.13V and 3.47V	2.5			V
		A0	– A7 ⁴	V _{CC} = MIN,	I_{OL} = 20mA, V_X = V_{CC}			0.50	V
V _{OL}	Low-level output voltage	B0	– B78	V _{IL} = MAX	I _{OL} = 100mA			1.15	V
				V _{IH} = MIN	I _{OL} = 4mA	0.40			V
V _{IK}	Input clamp voltage	A0	– A7	$V_{CC} = MIN, I_I = I_{IK}$	-			-0.5	V
		Except	t A0 – A7	$V_{CC} = MIN, I_I = I_{IK}$			-1.2	V	
lı	Input current at	OEBn,	OEA, LE	$V_{CC} = MAX, V_I = 7.0V$			100	μΑ	
	maximum input voltage	A0–A7, B0 – B7		$V_{CC} = MAX, V_I = 5.5V$				1	mA
I _{IH}	High-level input current	OEBn,	OEA, LE	V_{CC} = MAX, V_{I} = 2.7V			20	μΑ	
		BC)–B7	$V_{CC} = MAX, V_I = 2.1V,$			100	μΑ	
IIL	Low-level input current	OEBn,	OEA, LE	V_{CC} = MAX, V_{I} = 0.5V				-20	μΑ
		B0	– B7	$V_{CC} = MAX, V_I = 0.3V$				-100	μΑ
I _{OZH} + I _{IH}	Off-state output current, high-level current applied	A0	– A7	V_{CC} = MAX, V_{O} = 2.7V				70	μΑ
I _{OZL} + I _{IL}	Off-state output current, low-level voltage applied	A0	– A7	$V_{CC} = MAX, V_I = 0.5V$				-70	μΑ
I _X	High–level control current			V _{CC} = MAX, V _X = V _{CC} 2.7V, A0 – A7 = 2.7V, B	,	-100		100	μA
				$\frac{V_{CC}}{OEBn} = MAX, V_X = 3.13$ $\overline{OEBn} = A0 - A7 = 2.7$	& 3.47V, <u>LE</u> = OEA = /, B0 – B7 = 2.0V,	-10		10	μΑ
I _{OS}	Short circuit output	A0–A7	74F8960	V _{CC} = MAX, Bn = 1.3V, 2.7V	$OEA = 2.0V, \overline{OEB}n =$	-60		-150	mA
	current ³	only	74F8961	V _{CC} = MAX, Bn = 1.8V, 2.7V	$OEA = 2.0V, \overline{OEB}n =$				
		I _{ССН}		V _{CC} = MAX			65	100	mA
I _{CC}	Supply current (total)	l,	CCL	$V_{CC} = MAX, V_{IL} = 0.5V$			100	145	mA
		l	CCZ				75	100	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.

2. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$.

3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

4. Due to test equipment limitations, actual test conditions are for V_{IH} =1.8v and V_{IL} = 1.3V.

74F8960/74F8961

AC ELECTRICAL CHARACTERISTICS FOR 74F8960

					A POR	T LIMITS		
SYMBOL	PARAMETER	TEST CONDITION	v	_{mb} = +25 _{CC} = +5.0)pF, R _L :	V	T _{amb} = 0°(V _{CC} = +5. C _L = 50p,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Bn to An	Waveform 1, 2	4.5 6.0	6.0 10.0	8.5 13.5	3.5 7.5	9.5 14.5	ns
t _{PZH} t _{PZL}	Output enable time to high or low, OEA to An	Waveform 4 Waveform 5	8.0 8.5	10.5 11.0	13.5 13.5	7.5 8.5	15.0 16.0	ns
t _{PHZ} t _{PLZ}	Output enable time from high or low, OEA to An	Waveform 4 Waveform 5	2.0 2.0	3.5 4.5	6.5 7.0	2.0 2.0	7.0 7.5	ns
					B POR			
			Ta	_{mb} = +25	°C	$T_{amb} = 0^{\circ}$		
SYMBOL	PARAMETER	TEST	V.	_{CC} = +5.0	V	V _{CC} = +5.	UNIT	
		CONDITION	C _D = 5	50pF, R _U	= 9 Ω	C _D = 50pF		
			MIN	TYP	MAX	MIN	MAX	1
t _{PLH} t _{PHL}	Propagation delay An to Bn	Waveform 1, 2	3.5 3.5	5.5 5.0	8.0 8.0	2.0 3.0	9.5 9.0	ns
t _{PLH} t _{PHL}	Propagation delay LE to Bn	Waveform 1, 2	3.5 4.0	5.5 6.5	8.5 9.0	2.5 3.0	9.5 10.5	ns
t _{PLH} t _{PHL}	Output enable/disable time OEBn to Bn	Waveform 1, 2	2.5 3.5	4.5 5.5	7.5 8.5	1.5 3.5	8.0 9.0	ns
t _{TLH} t _{THL}	Transition time, Bn port 1.3V to 1.7V, 1.7V to 1.3V	Test circuit and waveforms	0.5 0.5	2.0 2.0	4.5 4.5	0.5 0.5	5.0 6.0	ns

AC SETUP REQUIREMENTS FOR 74F8960

	PARAMETER	TEST CONDITION	LIMITS					
SYMBOL			v.	_{mb} = +25 _{CC} = +5.0)pF, R _L =	v	$T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V \pm 10\%$ $C_{L} = 50pF, R_{L} = 500\Omega$		UNIT
			MIN	TYP	MAX	MIN	MAX	1
t _{su} (H) t _{su} (L)	Setup time, high or low An to LE	Waveform 3	5.0 3.0			5.0 5.0		ns
$\begin{array}{c} t_h(H) \\ t_h(L) \end{array}$	Hold time, high or low An to LE	Waveform 3	0.0 0.0			0.0 0.0		ns
t _w (L)	LE pulse width, low	Waveform 3	4.5			5.0		ns

74F8960/74F8961

AC ELECTRICAL CHARACTERISTICS FOR 74F8961

						T LIMITS		
SYMBOL	PARAMETER	TEST CONDITION	v	_{mb} = +25 _{CC} = +5.0)pF, R _L :	V	T _{amb} = 0°0 V _{CC} = +5. C _L = 50p,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Bn to An	Waveform 1, 2	5.5 4.5	8.0 6.0	12.0 9.0	5.5 4.5	12.0 9.0	ns
t _{PZH} t _{PZL}	Output enable time to high or low, OEA to An	Waveform 4 Waveform 5	8.0 8.5	10.5 11.0	13.5 13.5	7.5 8.0	15.0 15.5	ns
t _{PHZ} t _{PLZ}	Output enable time from high or low, OEA to An	Waveform 4 Waveform 5	2.0 2.0	3.5 4.5	6.0 7.0	1.5 2.0	6.5 7.5	ns
			Ta	_{mb} = +25	°C	$T_{amb} = 0^{\circ}$		
SYMBOL	PARAMETER	TEST	V.	_{CC} = +5.0	V	V _{CC} = +5.	UNIT	
		CONDITION	C _D = 5	50pF, R _U	ı = 9 Ω	C _D = 50pF		
			MIN	TYP	MAX	MIN	MAX	1
t _{PLH} t _{PHL}	Propagation delay An to Bn	Waveform 1, 2	3.0 3.0	5.0 4.5	7.0 7.5	2.5 2.5	8.0 8.5	ns
t _{PLH} t _{PHL}	Propagation delay LE to Bn	Waveform 1, 2	3.5 3.5	5.0 5.0	8.0 8.0	3.0 2.5	9.0 9.0	ns
t _{PLH} t _{PHL}	Output enable/disable time OEBn to Bn	Waveform 1, 2	3.0 3.5	4.5 5.5	7.0 9.0	2.5 3.5	8.0 10.0	ns
t _{TLH} t _{THL}	Transition time, Bn port 1.3V to 1.7V, 1.7V to 1.3V	Test circuit and waveforms	0.5 0.5	2.0 2.0	4.5 4.5	0.5 0.5	5.0 4.5	ns

AC SETUP REQUIREMENTS FOR 74F8961

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					
			$\label{eq:Tamb} \begin{array}{l} \textbf{T}_{amb} = +25^{\circ}\textbf{C} \\ \textbf{V}_{CC} = +5.0\textbf{V} \\ \textbf{C}_{L} = 50\textbf{pF}, \ \textbf{R}_{L} = 500\Omega \end{array}$			$T_{amb} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V \pm 10\%$ $C_{L} = 50pF, R_{L} = 500\Omega$		UNIT
			MIN	TYP	MAX	MIN	MAX	
t _{su} (H) t _{su} (L)	Setup time, high or low An to LE	Waveform 3	3.5 4.5			4.5 5.0		ns
$\begin{array}{c} t_h(H) \\ t_h(L) \end{array}$	Hold time, high or low An to LE	Waveform 3	0.0 0.0			0.0 0.0		ns
t _w (L)	LE pulse width, low	Waveform 3	4.0			5.0		ns

74F8960/74F8961

AC WAVEFORMS

NOTES:

- 1. For all waveforms, $V_{\rm M} = 1.5V$.
- 2. The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUITS AND WAVEFORMS

- $C_D =$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
- R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.