INTEGRATED CIRCUITS

Product specification

1992 Jul 24

IC15 Data Handbook

Philips Semiconductors

V_{CC} = Pin 14 GND = Pin 7

Hex inverter/buffer drivers (open-collector)

74F06, 74F06A, 74F07, 74F07A

TYPICAL SUPPLY

CURRENT

(TOTAL)

30mA

30mA

32mA

32mA

TYPICAL

PROPAGATION

DELAY

3.5ns

9.0ns

4.5ns

10.0ns

TYPE

74F06

74F06A

74F07

74F07A

FEATURES OF 74F06, 74F07

- Open Collector output drive 64mA
- High speed
- 12V output termination voltage
- Symmetrical propagation delays

FEATURES OF 74F06A, 74F07A

- Open Collector output drive 48mA
- High speed
- 30V output termination voltage
- Replaces 74F06 and 74F07
- Improved performance upgrade for 74F06 and 74F07
- Reduced I_{OH} leakage @ 30V

ORDERING INFORMATION

DESCRIPTION	$\begin{array}{l} \text{COMMERCIAL RANGE} \\ \text{V}_{\text{CC}} = 5\text{V} \pm 10\%, \\ \text{T}_{\text{amb}} = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C} \end{array}$	PKG DWG #
14-pin plastic Dual In-line Package	N74F06N, N74F06AN	SOT27–1
14-pin plastic Small Outline	N74F07D, N74F07AD	SOT108-1

PIN CONFIGURATIONS

LOGIC SYMBOLS

74F06/74F06A

A1 A2 A3 A4 A5

 $\overline{Y}0$ $\overline{Y}1$ $\overline{Y}2$ $\overline{Y}3$ $\overline{Y}4$ $\overline{Y}5$

8 10 12

SF00018

6

9 11 13

3 5

1

A0

2 4

74F07/74F07A A0 1 14 V_{CC} 13 A5 Y0 2 12 Y5 3 A1 4 11 A4 Y1 10 Y4 A2 5 Y2 6 9 A3 GND 7 8 Y3 SF00017

Product specification

74F06, 74F06A, 74F07, 74F07A

IEC/IEEE SYMBOLS

LOGIC DIAGRAMS

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
An	Data inputs ('F06, 'F07)	1.0/1.0	20µA/0.6mA
An	Data inputs ('F06A, 'F07A)	1.0/0.7	20µA/0.4mA
Ϋ́n	Data outputs ('F06)	OC/106.7	OC/64mA
Ϋ́n	Data outputs ('F06A)	OC/80	OC/48mA
Yn	Data outputs ('F07)	OC/106.7	OC/64mA
Yn	Data outputs ('F07A)	OC/80	OC/48mA

NOTES:

1. One (1.0) FAST unit load is defined as: 20µA in the High state and 0.6mA in the Low state.

2. OC = Open Collector

FUNCTION TABLE

INPUTS	OUTPUTS				
	'F06, 'F06A	'F07, 'F07A			
An	Ϋ́n	Yn			
L	н	L			
н	L	Н			

NOTES:

1. H = High voltage level

2. L = Low voltage level

74F06, 74F06A, 74F07, 74F07A

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT	
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _{IN}	Input voltage		-0.5 to +7.0	V
I _{IN}	Input current		-30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	'F06, 'F07	-0.5 to 12	V
		'F06A, 'F07A	-0.5 to 30	V
I _{OUT}	Current applied to output in Low output state	'F06, 'F07	128	mA
		'F06A, 'F07A	96	mA
T _{amb}	Operating free air temperature range		0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UNIT			
			MIN	NOM	МАХ	1
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IH}	High-level input voltage		2.0			V
V _{IL}	Low-level input voltage				0.8	V
l _{lk}	Input clamp current				-18	mA
V _{OH}	High-level output voltage	'F06, 'F07			12	V
		'F06A, 'F07A			30	V
I _{OL}	Low-level output current	'F06, 'F07			64	mA
		'F06A, 'F07A			48	mA
T _{amb}	Operating free air temperature range		0		+70	°C

74F06, 74F06A, 74F07, 74F07A

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST	CONDITION	S ¹		LIMITS		UNIT
							MIN	TYP ²	MAX	1
I _{OH}	High-level output	'F06, 'F07	7	$V_{CC} = MIN, V_{IL}$	= MAX,				250	μA
	current	'F06A, 'F0)7A	V _{OH} = MAX, V _{II}	_H = MIN				100	μΑ
V _{OL}	Low-level output voltage	ow-level output voltage						0.30	0.50	V
				$V_{IH} = MIN$		\pm 5% V _{CC}		0.30	0.50	V
V _{IK}	Input clamp voltage	V _{CC} = MIN			MIN, $I_I = I_{IK}$			-0.73	-1.2	V
lj	Input current at maximun	n input voltage		$V_{CC} = MAX, V_I = 7.0V$					100	μΑ
I _{IH}	High-level input current			$V_{CC} = MAX, V_I = 2.7V$					20	μΑ
IIL	Low-level input current	'F06, 'F07	7	$V_{CC} = MAX, V_I = 0.5V$				-0.6	mA	
		'F06A, 'F0)7A	1					-0.4	mA
I _{CC}	Supply current (total)	74F06,	I _{CCH}	$V_{CC} = MAX$				5.0	8.0	mA
		74F06A	I _{CCL}	1				30	43	mA
		74F07,	I _{CCH}]				10	14	mA
		74F07A	I _{CCL}	1				32	45	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

2. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$. 3. Not more than one output should be shorted at a time. For testing I_{OS} , the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, IOS tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

						LIM	ITS		
SYMBOL	PARAMETER		TEST CONDITION	۷ T ₂ C _L = 5	V_{CC} = +5.0V T _{amb} = +25°C C _L = 50pF, R _L = 100 Ω		$\label{eq:CC} \begin{array}{l} V_{CC} = +5.0V \pm 10\% \\ T_{amb} = 0^\circ C \text{ to } +70^\circ C \\ C_L = 50 p \text{F}, \ R_L = 100 \Omega \end{array}$		UNIT
				Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation delay	'F06	Waveform 1	2.0 1.5	3.5 3.0	6.0 5.5	1.5 1.0	6.5 6.0	ns
t _{PHL}	An to Ŷn	'F06A	vvaveloini i	5.0 2.0	9.0 4.0	11.0 6.0	4.0 2.0	15.0 8.0	ns
t _{PLH}	Propagation delay	'F07	Waveform 2	2.0 3.0	4.0 5.0	6.0 7.0	2.0 2.5	6.5 7.5	ns
t _{PHL}	An to Yn	'F07A	vvavei01111 Z	6.0 5.0	10.5 7.5	13.0 10.0	5.0 4.0	17.0 13.0	ns

74F06, 74F06A, 74F07, 74F07A

TYPICAL PROPAGATION DELAYS VERSUS LOAD FOR OPEN COLLECTOR OUTPUTS

NOTE:

When using Open-Collector parts, the value of the pull-up resistor greatly affects the value of the t_{PLH} . For example, changing the specified pull-up resistor value from 500 Ω to 100 Ω will improve the t_{PLH} up to 50% with only a slight increase in the t_{PHL} . However, if the value of the pull-up resistor is changed, the user must make certain that the total I_{OL} current through the resistor and the total I_{IL} 's of the receivers does not exceed the I_{OL} maximum specification.

SF00026

Hex inverter/buffer drivers (open-collector)

74F06, 74F06A, 74F07, 74F07A

AC WAVEFORMS

Waveform 1. Propagation delay for inverting outputs NOTE: For all waveforms, V_M = 1.5V.

TEST CIRCUIT AND WAVEFORMS

An

٧M

^tPLH

٧M

Waveform 2. Propagation delay for non-inverting outputs

٧M

<- t_{PHL} →

٧M

Inverter/buffer drivers

SOT27-1

74F06, 74F06A, 74F07, 74F07A

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11

Inverter/buffer drivers

74F06, 74F06A, 74F07, 74F07A

1992 Jul 24

Inverter/buffer drivers

74F06, 74F06A, 74F07, 74F07A

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 10-98 9397-750-05054

Let's make things better.

