74ALVCH16373 Low Voltage 16-Bit Transparent Latch with Bushold

General Description

Features

- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant control inputs and outputs
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- t_{PD} (I_n to O_n)
 - 3.6 ns max for 3.0V to 3.6V V_{CC}
 - 4.5 ns max for 2.3V to 2.7V V_{CC}
 - 6.8 ns max for 1.65V to 1.95V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up conforms to JEDEC JED78
- ESD performance:
- Human body model > 2000V Machine model > 200V

Ordering Code:

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.		ge 16-Bit Tr	•
Order Number Package Number Package Description IALVCH16373T MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Widevices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Logic Symbol Image: Specify the symbol of	he ALVCH16373 cc rith 3-STATE output pplications. The dev ppear to be transp inable (LE) is HIGH. he setup time is lato the Output Enable (C utputs are in a high i he ALVCH16373 da uitry, eliminating the old unused or floatin he 74ALVCH16373. 6V) V _{CC} application he 74ALVCH16373 is connology to achieve	A state of the sta	verting latches r bus oriented . The flip-flops hen the Latch data that meets the bus when1.65V to $3.6V V_{CC}$ supply operation $3.6V$ tolerant control inputs and outputs $Bushold on data inputs eliminates the need for externalpull-up/pull-down resistorst_{PD} (In to O_n)3.6 ns max for 3.0V to 3.6V V_{CC}4.5 ns max for 2.3V to 2.7V V_{CC}6.8 ns max for 1.65V to 1.95V V_{CC}l logic level.l logic level.luge (1.65V to)luge (1.65V to)lility up to 3.6V.vanced CMOSwhile maintain$
ALVCH16373T MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wid evices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. .ogic Symbol		Package	Package Description
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Logic Symbol $ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$-\mathbf{O} \begin{bmatrix} i_0 & i_1 & i_2 & i_3 & i_4 & i_5 & i_6 & i_7 & i_8 & i_9 & i_10 & i_11 & i_{12} & i_{13} & i_{14} & i_{15} \\ \hline \overline{O\overline{E}}_1 & & & & & \\ L\overline{E}_1 & & & & & L\overline{E}_2 \end{bmatrix} \mathbf{O} -$			
		$-\mathbf{O} \begin{bmatrix} \mathbf{I}_{0} & \mathbf{I}_{1} & \mathbf{I} \\ \overline{\mathbf{O}} \overline{\mathbf{E}}_{1} \\ \mathbf{L} \mathbf{E}_{1} \end{bmatrix}$	$\overline{OE}_2 - LE_2$

74ALVCH16373

Connection D	Diagram		
I I	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	48 47 46 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26	LE1 GND GND GND GND GND GND GND GND
<u>,</u> —	24	25	— LE ₂

Pin Descriptions

Pin Names	Description			
OEn	Output Enable Input (Active LOW)			
LEn	Latch Enable Input			
I ₀ —I ₁₅	Bushold Inputs			
O ₀ -O ₁₅	Outputs			
NC	No Connect			

Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ –I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	н	н
L	L	Х	O ₀
	Inputs		Outputs
LE ₂	$\frac{\text{Inputs}}{\text{OE}_2}$	I ₈ —I ₁₅	Outputs O ₈ -O ₁₅
LE ₂		I ₈ –I ₁₅ X	-
	0E ₂		0 ₈ –0 ₁₅
х	OE ₂	Х	0 ₈ -0 ₁₅ Z

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (HIGH or LOW, control inputs may not float) Z = High Impedance O₀ = Previous O₀ before HIGH-to-LOW of Latch Enable

Functional Description

The 74ALVCH16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the ${\rm I}_{\rm n}$ enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_n . The 3-STATE outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW the standard outputs are in the 2-state mode. When $\overline{\text{OE}}_n$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operating

Conditions (Note 3)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate (Δt/ΔV)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 -1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
VIL	LOW Level Input Voltage		1.65 -1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 12mA	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3		0.55	
1	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μΑ
I(HOLD)	Bushold Input Minimum	$V_{IN} = 0.58V$	1.65	25		
	Drive Hold Current	$V_{IN} = 1.07V$	1.65	-25		
		$V_{IN} = 0.7V$	2.3	45		
		$V_{IN} = 1.7V$	2.3	-45		μΑ
		$V_{IN} = 0.8V$	3.0	75		
		$V_{IN} = 2.0V$	3.0	-75		
		$0 < V_O \le 3.6V$	3.6		±500	
oz	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μΑ
I _{CC}	Quiescent Supply Current	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	3.6		40	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μΑ

AC Electrical Characteristics

		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$								
Symbol	I Parameter	C _L = 50 pF		C _L = 30 pF			Units			
		V $_{CC}$ = 3.3V \pm 0.3V		V _{CC} = 2.7V		V $_{CC}$ = 2.5V \pm 0.2V		V $_{CC}$ = 1.8V \pm 0.15V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	1
t _W	Pulse Width	3.3		3.3		3.3		4.0		ns
t _S	Setup Time	1.1		1		1		2.5		ns
t _H	Hold Time	1.4		1.7		1.5		1.0		ns
t _{PHL} , t _{PLH}	Propagation Delay In to On	1.1	3.6		4.3	1	4.5	1.5	6.8	ns
t _{PHL} , t _{PLH}	Propagation Delay LE to On	1	3.9		4.6	1	4.9	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.0	4.7		5.7	1.0	6.0	1.5	9.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.4	4.1		4.5	1.2	5.1	1.5	6.8	ns

Capacitance

Symbol	Parameter		Conditions	TA =	Units	
	Parameter	v _{cc}		Typical	Units	
C _{IN}	Input Capacitance	Control	$V_I = 0V \text{ or } V_{CC}$	3.3	3	pF
		Data	$V_I = 0V \text{ or } V_{CC}$	3.3	6	р
COUT	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	22	
				2.5	19	pF
		Outputs Disabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	5	р
				2.5	4	

74ALVCH16373

www.fairchildsemi.com

6

7