FAIRCHILD

SEMICONDUCTOR

74ALVC162827

Low Voltage 20-Bit Buffer/Line Driver with 3.6V Tolerant Inputs and Outputs and 26 Ω Series Resistors in the Outputs

General Description

The ALVC162827 contains twenty non-inverting buffers with 3-STATE outputs to be employed as a memory and address driver, clock driver, or bus oriented transmitter/ receiver. The device is byte controlled. Each byte has NOR output enables for maximum control flexibility.

The 74ALVC162827 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O capability up to 3.6V. The ALVC162827 is also designed with 26Ω resistors in the outputs.

The 74ALVC162827 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

- \blacksquare 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- 26Ω series resistors in outputs
- t_{PD}
 - 3.9 ns max for 3.0V to 3.6V V_{CC} 4.6 ns max for 2.3V to 2.7V V_{CC} 8.2 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78 ■ ESD performance:

Human body model > 2000V Machine model > 200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Description

Ordering Code:

Order Number	Package Number	Package Description
74ALVC162827T	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix "X" to the ordering code.

© 2001 Fairchild Semiconductor Corporation DS500698

74ALVC162827

Connection Diagram					
$\overline{OE}_{1} - O_{0} - O_{1} - O_{0} - O_{1} - O_{1} - O_{2} - O_{2} - O_{2} - O_{3} - O_{4} - $	1 2 3 4 5 6 7 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
OS	9 10 11 12 13 14 15 16 17 18	$48 - 1_{5}$ $47 - 1_{6}$ $46 - GND$ $45 - 1_{7}$ $44 - 1_{8}$ $43 - 1_{9}$ $42 - 1_{10}$ $41 - 1_{11}$ $40 - 1_{12}$ $39 - GND$			
0 ₁₃ 0 ₁₄ 0 ₁₅ V _{CC} 0 ₁₅ 0 ₁₇ GND 0 ₁₈ 0 ₁₉ 0 ₁₈ 0 ₁₉	19 20 21 22 23 24 25 26 27 28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

Truth Tables

	Inputs		Outputs
OE ₁		I ₀ —I ₉	0 ₀ –0 ₉
L	L	L	L
L	L	Н	н
н	Х	Х	Z
Х	Н	Х	Z
	Inputs		Outputs
OE ₃	Inputs OE ₄	I ₀ —I9	Outputs O ₁₀ –O ₁₉
OE ₃	-	l₀−l9 L	-
	OE ₄		O ₁₀ -O ₁₉
L	OE ₄	L	0 ₁₀ -0 ₁₉

H = HIGH Voltage Level

 $\begin{array}{l} \mbox{Lowel} \label{eq:lowel} \\ \mbox{X} = \mbox{Immaterial (HIGH or LOW, inputs may not float)} \\ \mbox{Z} = \mbox{High Impedance} \end{array}$

Functional Description

The 74ALVC162827 contains twenty non-inverting buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of each other. The control pins may be shorted together to obtain full 20-bit operation. The 3-STATE outputs are controlled by Output Enable (\overline{OE}_n) inputs. When \overline{OE}_1 , and \overline{OE}_2 are LOW, $O_0 - O_{10}$ are in the 2-state mode. When either \overline{OE}_1 or $\overline{\text{OE}}_2$ are HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the inputs. The same applies for byte two with $\overline{\text{OE}}_3$ and $\overline{\text{OE}}_4.$

Logic Diagrams

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	-0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4) Power Supply 0 Operating 1.65V to 3.6V Input Voltage 0V to V_{CC} Output Voltage (V_O) 0V to V_{CC} Free Air Operating Temperature (T_A) -40° C to $+85^{\circ}$ C Minimum Input Edge Rate ($\Delta t/\Delta V$) $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

74ALVC162827

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be held HIGH or LOW.

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.65	1.2		
		$I_{OH} = -4 \text{ mA}$	2.3	1.9		
		$I_{OH} = -6 \text{ mA}$	2.3	1.7		V
			3	2.4		
		$I_{OH} = -8 \text{ mA}$	2.7	2		
		$I_{OH} = -12 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 2 mA	1.65		0.45	
		I _{OL} = 4 mA	2.3		0.4	
		I _{OL} = 6 mA	2.3		0.55	V
			3		0.55	
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3		0.8	
I _I	Input Leakage Current	$0 \le V_1 \le 3.6V$	3.6		±5.0	μA
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
ΔI _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μA

DC Electrical Characteristics

www.fairchildsemi.com

74ALVC162827

AC Electrical Characteristics

			$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$							
Symbol Para	Parameter		C _L = 50 pF			C _L = 30 pF				Units
	Farameter	V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V$	± 0.3V V _{CC} = 2.7V		$\textbf{V}_{\textbf{CC}} = \textbf{2.5V} \pm \textbf{0.2V}$		$V_{CC}=1.8V\pm0.15V$		onits
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PL}	Propagation Delay Bus to Bus	1.3	3.9	1.5	4.6	1.0	4.1	1.5	8.2	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.8	1.5	5.4	1.0	5.9	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.8	1.5	5.4	1.0	4.9	1.5	8.8	ns

Capacitance

Cumhal	Parameter		Conditions	T _A = -	Units	
Symbol			Conditions	V _{CC}	Typical	Units
CIN	Input Capacitance		$V_1 = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	20	pF
				2.5	20	pi

TABLE 1. Values for Figure 1				
TEST	SWITCH			
t _{PLH} , t _{PHL}	Open			
t _{PZL} , t _{PLZ}	VL			
t _{PZH} , t _{PHZ}	GND			

74ALVC162827

FIGURE 1. AC Test Circuit TABLE 2. Variable Matrix (Input Characteristics: f = 1MHz; t_r = t_f = 2ns; Z_0 = 50 Ω

Symbol	V _{cc}				
Symbol	$\textbf{3.3V} \pm \textbf{0.3V}$	2.7V	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2	
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2	
V _X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V	
V _Y	$V_{OH} - 0.3V$	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V	
VL	6V	6V	V _{CC} *2	V _{CC} *2	

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

www.fairchildsemi.com