74AC11593 8-BIT BINARY COUNTER WITH 3-STATE I/O INPUT REGISTERS SCAS202 – MARCH 1992 – REVISED APRIL 1993

 Parallel 3-State I/O: Register Inputs/	DW OR NT PACKAGE
Counter Outputs	(TOP VIEW)
 Counter Has Direct Overriding Load and	$A/Q_A \begin{bmatrix} 1 & 24 \end{bmatrix} CCK$
Clear	$B/Q_B \begin{bmatrix} 2 & 23 \end{bmatrix} CCLR$
 Flow-Through Architecture Optimizes	C/Q _C [] 3 22] CCKEN
PCB Layout	D/Q _D [] 4 21] CCKEN
 Center-Pin V_{CC} and GND Configurations	GND 5 20 CLOAD
Minimize High-Speed Switching Noise	GND 6 19 V _{CC}
 EPIC[™] (Enhanced-Performance Implanted	GND [] 7 18] V _{CC}
CMOS) 1-µm Process	GND [] 8 17] <u>OE</u>
 500-mA Typical Latch-Up Immunity	E/Q _E [] 9 16]] OE
at 125°C	F/Q _F [] 10 15] RCK
 Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs 	G/Q _G [] 11 14 [] <u>RCK</u> H/Q _H [] 12 13] RCO

description

The 74AC11953 consists of a parallel input, an 8-bit storage register feeding an 8-bit counter, and a 3-state I/O which provides parallel count outputs. Both the register and the counter have individual positive-edge triggered clocks.

The function tables show the operation of the counter clock-enable (CCKEN, CCKEN) and output-enable (OE, OE) inputs. A register clock-enable (RCK) input is also provided.

The counter (\overline{RCO}) input has direct load and clear functions. A low-going \overline{RCO} pulse will be obtained when the counter reaches the hex word FF. Expansion is easily accomplished for two stages by connecting \overline{RCO} of the first stage to \overline{CCKEN} of the second stage. Cascading for larger count chains can be accomplished by connecting \overline{RCO} of each stage to CCK of the following stage.

The 74AC11593 is characterized for operation from -40° C to 85° C.

CC	COUNTER CLOCK ENABLE									
INP	UTS	OUTPUTS								
CCKEN	CCKEN	A/Q _A THRU H/Q _H								
L	L	Enable								
L	Н	Disable								
н	L	Enable								
н	Н	Enable								

Function Tables

OUTPUT ENABLE								
INP	UTS	OUTPUTS						
OE	OE	A/Q _A THRU H/Q _H						
L	L	Input mode						
L	Н	Input mode						
Н	L	Output mode						
н	Н	Input mode						

EPIC is a trademark of Texas Instruments Incorporated.

SCAS202 - MARCH 1992 - REVISED APRIL 1993

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCAS202 – MARCH 1992 – REVISED APRIL 1993

typical operating sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	± 20 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	$\dots \dots \pm 50 \text{ mA}$
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	$\dots \dots \pm 50 \text{ mA}$
Continuous current through V _{CC} or GND	± 225 mA
Storage temperature range	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V
		$V_{CC} = 5.5 V$	3.85			
		$V_{CC} = 3 V$			0.9	
VIL	Low-level input voltage	$V_{CC} = 4.5 V$			1.35	V
		$V_{CC} = 5.5 V$			1.65	
VI	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		$V_{CC} = 3 V$			- 4	
ЮН	High-level output current	$V_{CC} = 4.5 V$			- 24	mA
		$V_{CC} = 5.5 V$			-24	
		$V_{CC} = 3 V$			12	
IOL	Low-level output current	$V_{CC} = 4.5 V$			24	mA
		V _{CC} = 5.5 V			24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0		10	ns/V
т _А	Operating free-air temperature		- 40		85	°C

NOTE 2: Unused or floating inputs must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	N	Т	₄ = 25°C	;	MIN	МАХ	
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX			UNIT
		3 V	2.9			2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
VOH	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
	1	4.5 V	3.94			3.8		
	I _{OH} = – 24 mA	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
	I _{OL} = 50 μA	3 V			0.1		0.1	
		4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36		0.44	V
		4.5 V			0.36		0.44	
	I _{OL} = 24 mA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
lj	$V_{I} = V_{CC}$ or GND	5.5 V			± 0.1		± 1	μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.5 V			± 0.5		± 5	μA
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			8		80	μA
Ci	$V_I = V_{CC} \text{ or } GND$	5 V		4.5				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

SCAS202 - MARCH 1992 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A =	25°C	MIN	МАХ	UNIT
			MIN MAX	WIIN	WAX		
fclock	Clock frequency, CCK or RCK			40		40	MHz
tw		CCK high or low	6		6		
		RCK high or low	6		6		
	Pulse duration	RCK high or low	4.5		4.5		ns
		CCLR low	7.5		7.5		
		CLOAD low	6.1		6.1		
		CCKEN low before CCK1	5.2		5.2		
		CCKEN high before CCK↑	6.4		6.4		
	Catura tima	CCLR high before CCK↑	1.7		1.7		
t _{su}	Setup time	CLOAD high before CCK [↑]	8.2		8.2		ns
		RCK [↑] before CLOAD ^{↑†}	11.1		11.1		
		Data A thru H before RCK↑	2.3		2.3		
4.		Data A thru H after RCK↑	0.5		0.5		
th	Hold time	All others	0.2		0.2		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 2	T _A = 25°C MIN MAX			UNIT
			MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency, CCK or RCK			70		70	MHz
olook		CCK high or low	5		5		
		RCK high or low	5		5		
tw	Pulse duration	RCK high or low	4.5		4.5		ns
		CCLR low	5		5		
		CLOAD low	4.7		4.7		
		CCKEN low before CCK1	3.1		3.1		
		CCKEN high before CCK↑	4.3		4.3		
	Coture time	CCLR high before CCK↑	1.1		1.1		
t _{su}	Setup time	CLOAD high before CCK [↑]	5.4		5.4		ns
		RCK [↑] before CLOAD ^{↑†}	7.8		7.8		
		Data A thru H before RCK↑	2		2		
4.		Data A thru H after RCK↑	1.1		1.1		
th	Hold time	All others	0.8		0.8		ns

[†] This time insures the data saved by RCK[↑] will also be loaded into the counter.

74AC11593 **8-BIT BINARY COUNTER** WITH 3-STATE I/O INPUT REGISTERS SCAS202 – MARCH 1992 – REVISED APRIL 1993

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	FROM TO	то т,	Α = 25°C	;	MIN	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	MAX	UNIT
f _{max}			40			40		MHz
^t PLH	ССК	Q	6.8	14.4	19.3	6.8	22.4	ns
^t PHL	CCK	Q Q	6.4	14.1	18.8	6.4	21.1	115
^t PLH	CLOAD	Q	6.7	17.3	23.6	6.7	27.1	ns
^t PHL		Y Y	3.9	18.9	29.1	3.9	32.3	115
^t PHL	CCLR	Q	5.4	13	17.6	5.4	19.8	ns
^t PZH	OE	Q	7.3	15.7	20.8	7.3	24.1	ns
^t PZL	OL	α	8	17.7	23.2	8	26.7	26.7
^t PZH	ŌĒ	Q	6.9	15.2	20.2	6.9	23.3	ns
^t PZL		α	7.8	17.3	22.7	7.8	26.1	115
^t PHZ	OE	Q	6.4	10.3	13.8	6.4	15.2	ns
^t PLZ	OL	Y Y	6.6	10.8	14.1	6.6	16.1	115
^t PHZ	OE	Q	5.7	9.6	12.8	5.7	14.1	ns
^t PLZ	UE	Y Y	5.9	10.2	13.4	5.9	15.2	115
^t PLH	ССК	RCO	5.3	12	16	5.3	18.6	ns
^t PHL	CON	RCO	7.1	15.4	20.3	7.1	23.1	115
^t PLH	CLOAD	RCO	5.9	12.4	16.5	5.9	18.8	ne
^t PHL	GLUAD	RCU	10.1	19.6	25.5	10.1	29.4	ns
^t PLH	CCLR	RCO	5.6	12.3	16.6	5.6	19.2	ns
^t PLH	DCK		8.6	17.3	22.2	8.6	25.8	
^t PHL	RCK	RCO	10.3	20.3	26.2	10.3	30.3	ns

SCAS202 - MARCH 1992 - REVISED APRIL 1993

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	1 то	Т	T _A = 25°C	MIN MAX		UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	MAX	
f _{max}			70			70		MHz
^t PLH	ССК	Q	4.1	8.7	12.4	4.1	14.3	ns
^t PHL	CON	4	4.2	8.9	12.6	4.2	14.2	115
^t PLH	CLOAD	Q	3.7	10	15.3	3.7	17.4	ns
^t PHL		4	3.4	11.4	18.3	3.4	20.6	115
^t PHL	CCLR	Q	3.3	7.9	11.8	3.3	13.4	ns
^t PZH	OE	Q	4.1	9.1	13.2	4.1	15.3	ns
^t PZL	OL		4.1	9.4	13.8	4.1	16	115
^t PZH	ŌĒ	Q	3.8	8.7	13	3.8	15	ns
t _{PZL}			3.9	9.1	13.4	3.9	15.4	115
^t PHZ	OE	Q	4.2	7.6	10.6	4.2	11.6	ns
^t PLZ	OL	C C	5.3	8.8	11.8	5.3	13.1	115
^t PHZ	OE	Q	4.4	7.3	10.1	4.4	11	ns
^t PLZ	UE		5.2	8.5	11.6	5.2	13	115
^t PLH	ССК	RCO	3.5	7.6	11.2	3.5	12.8	
^t PHL	CCK	RCU	4.1	9.2	13.4	4.1	15.4	ns
^t PLH		RCO	3.5	7.8	11.2	3.5	12.8	ns
^t PHL	CLOAD	RCO	5.6	11.7	16.6	5.6	19	115
^t PLH	CCLR	RCO	3.6	8	11.6	3.6	13.4	ns
^t PLH	RCK	R CO	5	10.3	14.4	5	16.7	
^t PHL	RUN	RCO	5.5	11.7	16.6	5.5	19.2	ns

operating characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER			TEST CON	TYP	UNIT	
C _{pd} Po	Dower discinction conscitutes	Outputs enabled	C _L = 50 pF,	£ 4 MU-	66	л г
	Power dissipation capacitance	Outputs disabled CL = 50 pF		CL = 50 pF,	CL = 50 pF,	f = 1 MHz

74AC11593 8-BIT BINARY COUNTER WITH 3-STATE I/O INPUT REGISTERS SCAS202 – MARCH 1992 – REVISED APRIL 1993

 $2 \times V_{CC}$ TEST **S**1 0 S1 tPLH/tPHL Open **500** Ω O Open From Output tPLZ/tPZL $2 \times V_{CC}$ $\Lambda\Lambda$ **Under Test** GND GND tPHZ/tPZH $C_L = 50 \text{ pF}$ **500** Ω (see Note A) LOAD CIRCUIT Vcc **Timing Input** 50% (see Note B) 0 V tw th Vcc tsu Vcc Input 50% 50% 50% Data Input 50% 0 V 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** Output Vcc Vcc Input Control 50% 50% 50% 50% (see Note B) (low-level 0 V 0 V enabling) tPZL -^tPHL ^tPLH tPLZ -Output ۷он ≈ Vcc In-Phase Waveform 1 50% V_{CC} 50% V_{CC} 50% V_{CC} 20% V_{CC} S1 at $2 \times V_{CC}$ Output VoL VOL (see Note C) tPHZ -^tPLH tPHL tPZH -Output Vон ۷он **Out-of-Phase** Waveform 2 80% V_{CC} 50% VCC 50% V_{CC} 50% V_{CC} S1 at GND Output VOL 0 V (see Note C) **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS**

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CI includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated