74ABT853

FEATURES

- Low static and dynamic power dissipation with high speed and high output drive
- Open-collector ERROR output
- Output capability: +64mA/–32mA
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model
- Power-up 3-State
- Live insertion/extraction permitted

DESCRIPTION

The 74ABT853 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

QUICK REFERENCE DATA

The 74ABT853 is an octal transceiver with a parity generator/checker and is intended for bus–oriented applications.

When Output Enable A (\overline{OEA}) is High, it will place the A outputs in a high impedance state. Output Enable B (\overline{OEB}) controls the B outputs in the same way.

The parity generator creates an odd parity output (PARITY) when $\overline{\text{OEB}}$ is Low. When $\overline{\text{OEA}}$ is Low, the parity of the B port, including the PARITY input, is checked for odd parity. When an error is detected, the error data is sent to the input of a latch. The error data can then be passed, stored, cleared, or sampled depending on the ENABLE and CLEAR control signals.

If both \overrightarrow{OEA} and \overrightarrow{OEB} are Low, data will flow from the A bus to the B bus and the part is forced into an error condition which creates an inverted PARITY output. This error condition can be used by the designer for system diagnostics.

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay An to Bn or Bn to An	$C_L = 50 pF; V_{CC} = 5V$	3.4	ns
t _{PLH} t _{PHL}	Propagation delay An to PARITY	$C_L = 50 pF; V_{CC} = 5V$	7.4	ns
C _{IN}	Input capacitance	$V_{I} = 0V \text{ or } V_{CC}$	4	pF
C _{I/O}	I/O capacitance	Outputs disabled; $V_0 = 0V$ or V_{CC}	7	pF
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} =5.5V	50	μΑ

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
24-Pin Plastic DIP	-40°C to +85°C	74ABT853 N	74ABT853 N	SOT222-1
24-Pin plastic SO	-40°C to +85°C	74ABT853 D	74ABT853 D	SOT137-1
24-Pin Plastic SSOP Type II	-40°C to +85°C	74ABT853 DB	74ABT853 DB	SOT340-1
24-Pin Plastic TSSOP Type I	-40°C to +85°C	74ABT853 PW	74ABT853PW DH	SOT355-1

PIN CONFIGURATION

LOGIC SYMBOL

74ABT853

PIN DESCRIPTION

SYMBOL	PIN NUMBER	NAME AND FUNCTION
A0 – A7	2, 3, 4, 5, 6, 7, 8, 9	A port 3–State inputs/outputs
B0 – B7	23, 22, 21, 20, 19, 18, 17, 16	B port 3–State inputs/outputs
OEA	1	Enables the A outputs when Low
OEB	14	Enables the B outputs when Low
PARITY	15	Parity output/input
ERROR	10	Error output (open collector)
CLEAR	11	Clears the error flag register when Low
ENABLE	13	Enable input (active-Low)
GND	12	Ground (0V)
V _{CC}	24	Positive supply voltage

FUNCTION TABLE

		INPUTS				OUTPUTS			
MODE		OEA	An Σ OF HIGHS	Bn + PARITY Σ OF HIGHS	An	Bn	PARITY		
A data to B bus and generate odd parity output	L	Н	Odd Even	(output)	(input)	An	L H		
B data to A bus and check for parity error ¹	н	L	(output)	Х	Bn	(input)	(input)		
A bus and B bus disabled ²	Н	Н	Х	Х	Z	Z	Z		
A data to B bus and generate inverted parity output	L	L	Odd Even	(output)	(input)	An	H L		

NOTES:

Error checking is detailed in the Error Flag Function Table below.
When ENABLE is Low, ERROR is Low if the sum of A inputs is even or ERROR is High if the sum of A inputs is odd.

ERROR FLAG FUNCTION TABLE

	INPUTS			INTERNAL NODE	OUTPUT	
MODE	ENABLE	CLEAR	Bn + PARITY Σ OF HIGHS	POINT "P"	PRE-STATE ERRORn-1	ERROR OUTPUT
Pass	L	L	Odd Even	H L	х	H L
Sample	L	Н	Odd Even X	H L X	H X L	H L L
Clear	Н	L	Х	Х	Х	Н
Store	н	Н	Х	Х	L H	L H

High voltage level steady stateLow voltage level steady state н

L

= Don't care

X Z = High impedance "off" state

74ABT853

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{ОК}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
I _{OUT}	DC output current	output in Low state	128	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74ABT853

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT
		MIN	MAX	
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
VIL	Low-level input voltage		0.8	V
I _{OH}	High-level output current		-32	mA
I _{OL}	Low-level output current		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0	5	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

	PARAMETER					LIMITS			
SYMBOL			TEST CONDITIONS	T _{amb} = +25°C			T _{amb} = −40°C to +85°C		UNIT
				Min	Тур	Max	Min	Max	
V _{IK}	Input clamp vol	tage	$V_{CC} = 4.5V; I_{IK} = -18mA$		-0.9	-1.2		-1.2	V
			V_{CC} = 4.5V; I_{OH} = -3mA; V_I = V_{IL} or V_{IH}	2.5	3.5		2.5		V
V _{OH}	High–level outp All outputs exce		V_{CC} = 5.0V; I_{OH} = -3mA; V_I = V_{IL} or V_{IH}	3.0	4.0		3.0		V
			V_{CC} = 4.5V; I_{OH} = -32mA; V_{I} = V_{IL} or V_{IH}	2.0	2.6		2.0		V
V _{OL}	Low-level output	ut voltage	V_{CC} = 4.5V; I_{OL} = 64mA; V_I = V_{IL} or V_{IH}		0.42	0.55		0.55	V
lı	Input leakage	Control pins	$V_{CC} = 5.5V; V_{I} = GND \text{ or } 5.5V$		±0.01	±1.0		±1.0	μΑ
	current	Data pins	$V_{CC} = 5.5V; V_{I} = GND \text{ or } 5.5V$		±5	±100		±100	μΑ
I _{OFF}	Power-off leakage current		V_{CC} = 0.0V; V_{O} or $V_{I}\ \leq 4.5V$		±5.0	±100		±100	μA
I _{PU/PD}	Power-up/down 3-State output current ³		$V_{CC} = 2.1V; V_O = 0.5V; V_I = GND \text{ or } V_{CC};$ $V_{OE} = Don't \text{ care}$		±5.0	±50		±50	μΑ
I _{IH} + I _{OZH}	3-State output	High current	V_{CC} = 5.5V; V_{O} = 2.7V; V_{I} = V_{IL} or V_{IH}		5.0	50		50	μΑ
I _{IL} + I _{OZL}	3-State output	Low current	V_{CC} = 5.5V; V_{O} = 0.5V; V_{I} = V_{IL} or V_{IH}		-5.0	-50		-50	μΑ
I _{CEX}	Output high lea	kage current	V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND or V_{CC}		5.0	50		50	μΑ
I _O	Output current ¹	I	$V_{CC} = 5.5V; V_{O} = 2.5V$	-50	-100	-180	-50	-180	mA
I _{CCH}			V_{CC} = 5.5V; Outputs High, V_{I} = GND or V_{CC}		0.5	250		250	μA
I _{CCL}	Quiescent supp	oly current	V_{CC} = 5.5V; Outputs Low, V_I = GND or V_{CC}		25	38		38	mA
I _{CCZ}			V_{CC} = 5.5V; Outputs 3-State; V _I = GND or V _{CC}		0.5	50		50	μA
			Outputs enabled, one input at 3.4V, other inputs at V _{CC} or GND; V _{CC} = $5.5V$		0.5	1.5		1.5	mA
ΔI_{CC}	Additional supp input pin ²	bly current per	Outputs 3-State, one data input at 3.4V, other inputs at V_{CC} or GND; $V_{CC} = 5.5V$		0.01	50		50	μΑ
			Outputs 3-State, one enable input at 3.4V, other inputs at V_{CC} or GND; $V_{CC} = 5.5V$		0.5	1.5		1.5	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input at 3.4V.
This parameter is valid for any V_{CC} between 0V and 2.1V, with a transition time of up to 10msec. From V_{CC} = 2.1V to V_{CC} = 5V ± 10%, a transition time of up to 100µsec is permitted. The ERROR output pin 10 is not included in this spec due to the open collector design.

74ABT853

AC CHARACTERISTICS

GND = 0V; t_{R} = t_{F} = 2.5ns; C_{L} = 50pF, R_{L} = 500 Ω

	PARAMETER	WAVEFORMS	LIMITS					
SYMBOL			-	T _{amb} = +25°0 V _{CC} = +5.0V	C,	T _{amb} = -4 V _{CC} = +5	υνιτ	
			Min	Тур	Max	Min	Мах	
t _{PLH} t _{PHL}	Propagation delay An to Bn or Bn to An	4	1.2 1.0	3.4 2.6	4.8 4.0	1.2 1.0	5.3 4.5	ns
t _{PLH} t _{PHL}	Propagation delay An to PARITY	1, 4	2.1 2.5	7.4 7.4	9.5 9.7	2.1 2.5	11.2 11.0	ns
t _{PLH} t _{PHL}	Propagation delay OEA to PARITY	1, 4	1.8 2.3	6.6 6.7	8.5 8.6	1.8 2.3	10.5 10.0	ns
t _{PLH}	Propagation delay CLEAR to ERROR	3	1.0	3.6	5.5	1.0	6.2	ns
t _{PLH} t _{PHL}	Propagation delay ENABLE to ERROR	4	1.8 1.8	3.8 4.5	5.1 5.8	1.8 1.8	6.0 6.6	ns
t _{PLH} t _{PHL}	Propagation delay Bn or PARITY to ERROR	1, 4	2.0 3.0	7.9 9.0	10.1 11.5	2.0 3.0	11.7 12.8	ns
t _{PZH} t _{PZL}	Output enable time OEA to An or OEB to Bn, PARITY	2, 5	1.0 2.1	3.2 4.1	5.1 5.8	1.0 2.1	6.2 6.7	ns
t _{PHZ} t _{PLZ}	Output disable time OEA to An or OEB to Bn, PARITY	2, 5	3.1 3.2	5.1 5.6	7.3 7.2	3.1 3.2	7.9 8.1	ns

AC SETUP REQUIREMENTS

GND = 0V; $t_R = t_F$ = 2.5ns; C_L = 50pF, R_L = 500 Ω

SYMBOL	PARAMETER	WAVEFORMS	T _{amb} = V _{CC} =	= +25°C = +5.0V	T _{amb} = −40 to +85°C V _{CC} = +5.0V ±10%	UNIT
			MIN	ТҮР	MIN	
t _s (H) t _s (L)	Setup time, High or Low Bn or PARITY to ENABLE	6	8.5 8.5	6.5 3.6	8.5 8.5	ns
t _h (H) t _h (L)	Hold time, High or Low Bn or PARITY to ENABLE	6	0.0 0.0	-3.4 -6.3	0.0 0.0	ns
t _s (H)	Setup time, High CLEAR to ENABLE	6	2.0	-1.6	2.0	ns
t _h (L)	Hold time, Low CLEAR to ENABLE	6	3.0	1.8	3.0	ns
t _w (L)	Pulse width, Low CLEAR	3	3.5	1.0	3.5	ns
t _w (L)	Pulse width, Low ENABLE	6	4.0	2.5	4.0	ns

74ABT853

AC WAVEFORMS

Waveform 1. Propagation Delay For Inverting Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. CLEAR Pulse Width and CLEAR to ERROR Delay

Waveform 4. Propagation Delay For Non-Inverting Output

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Waveform 6. Data Setup and Hold Times and ENABLE Pulse Width

74ABT853

VCC tw AMP (V) 90% 90% • _{VX} NEGATIVE ٧M PULSE VIN VOUT 10% 10% Rχ ٥V PULSE D.U.T tTHL (tF) tTLH (tR) GENERATOR tTLH (tR) tTHL (tF) Rт AMP (V) 90% 90% POSITIVE ٧м ٧M PULSE **Test Circuit for 3-State Outputs** 10% 10% tW ٥v SWITCH POSITION LOAD VALUES $V_{M} = 1.5V$ TEST SWITCH OUTPUT Rχ $V_{\boldsymbol{X}}$ Input Pulse Definition closed t_{PLZ} ERROR 100Ω V_{CC} closed t_{PZL} All other 500Ω 7.0V All other open INPUT PULSE REQUIREMENTS DEFINITIONS FAMILY R_L = Load resistor; see AC CHARACTERISTICS for value. Amplitude Rep. Rate tw t_R tF C_L = Load capacitance includes jig and probe capacitance;

TEST CIRCUIT AND WAVEFORM

see AC CHARACTERISTICS for value. $R_T =$ Termination resistance should be equal to Z_{OUT} of

pulse generators.

2.5ns

74ABT

3.0V

1MHz

500ns

2.5ns