74ABT573A

FEATURES

- 74ABT573A is flow-through pinout version of 74ABT373
- Inputs and outputs on opposite side of package allow easy interface to microprocessors
- 3-State output buffers
- Common output enable
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model
- Power-up 3-State
- Power-up reset

DESCRIPTION

The 74ABT573A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT573A device is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Enable (E) and Output Enable (OE) control gates. The 74ABT573A is functionally identical to the 74ABT373 but has a flow-through pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.

The data on the D inputs are transferred to the latch outputs when the Latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-State buffers independent of the latch operation.

When OE is Low, the latched or transparent data appears at the outputs. When \overline{OE} is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay Dn to Qn	C _L = 50pF; V _{CC} = 5V	2.8 3.3	ns
C _{IN}	Input capacitance	$V_I = 0V \text{ or } V_{CC}$	3	pF
C _{OUT}	Output capacitance	Outputs disabled; $V_O = 0V$ or V_{CC}	6	pF
I _{CCZ}	Total supply current	Outputs disabled; V_{CC} =5.5V	100	μΑ

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
20-Pin Plastic DIP	-40°C to +85°C	74ABT573A N	74ABT573A N	SOT146-1
20-Pin plastic SO	-40°C to +85°C	74ABT573A D	74ABT573A D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +85°C	74ABT573A DB	74ABT573A DB	SOT339-1
20-Pin Plastic TSSOP Type I	-40°C to +85°C	74ABT573A PW	74ABT573APW DH	SOT360-1

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	ŌĒ	Output enable input (active-Low)
2, 3, 4, 5, 6, 7, 8, 9	D0-D7	Data inputs
19, 18, 17, 16, 15, 14, 13, 12	Q0-Q7	Data outputs
11	E	Enable input (active-High)
10	GND	Ground (0V)
20	V _{CC}	Positive supply voltage

74ABT573A

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

FUNCTION TABLE

INPUTS		INTERNAL	OUTPUTS	OPERATING MODE	
OE	E	Dn	REGISTER	Q0 – Q7	
L	エエ	L H	L H	L H	Enable and read register
L	$\rightarrow \rightarrow$	l h	L H	L H	Latch and read register
L	L	Х	NC	NC	Hold
H H	L H	X Dn	NC Dn	Z Z	Disable outputs

H = High voltage level

High voltage level one set-up time prior to the High-to-Low E transition h =

L = Low voltage level

Low voltage level one set-up time prior to the High-to-Low E transition L =

NC= No change

Don't care =

X Z↓ High impedance "off" state High-to-Low E transition =

=

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
I _{OUT}	DC output current	output in Low state	128	mA
T _{stg}	Storage temperature range		–65 to 150	°C

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		Min	Max	
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level input voltage		0.8	V
I _{ОН}	High-level output current		-32	mA
I _{OL}	Low-level output current		64	mA
Δt/Δv	Input transition rise or fall rate	0	5	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

74ABT573A

74ABT573A

DC ELECTRICAL CHARACTERISTICS

				LIMITS			
PARAMETER	TEST CONDITIONS	T _{amb} = +25°C			T _{amb} = −40°C to +85°C		UNIT
		Min	Тур	Max	Min	Max	
Input clamp voltage	$V_{CC} = 4.5V; I_{IK} = -18mA$		-0.9	-1.2		-1.2	V
	V_{CC} = 4.5V; I_{OH} = -3mA; V_I = V_{IL} or V_{IH}	2.5	2.9		2.5		V
High-level output voltage	V_{CC} = 5.0V; I_{OH} = -3mA; V_I = V_{IL} or V_{IH}	3.0	3.4		3.0		V
	V_{CC} = 4.5V; I_{OH} = -32mA; V_I = V_{IL} or V_{IH}	2.0	2.4		2.0		V
Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 64mA; V_I = V_{IL} or V_{IH}		0.42	0.55		0.55	V
Power-up output low voltage ³	V_{CC} = 5.5V; I_O = 1mA; V_I = GND or V_{CC}		0.13	0.55		0.55	V
Input leakage current	V _{CC} = 5.5V; V _I = GND or 5.5V		±0.01	±1.0		±1.0	μΑ
Power-off leakage current	V_{CC} = 0.0V; V_O or $V_I \leq 4.5V$		±5.0	±100		±100	μΑ
Power-up/down 3-State output current ⁴	V_{CC} = 2.0V; V_O = 0.5V; V_{OE} = Don't Care; V_I = GND or V_{CC}		±5.0	±50		±50	μΑ
3-State output High current	V_{CC} = 5.5V; V_{O} = 2.7V; V_{I} = V_{IL} or V_{IH}		5.0	50		50	μΑ
3-State output Low current	V_{CC} = 5.5V; V_{O} = 0.5V; V_{I} = V_{IL} or V_{IH}		-5.0	-50		-50	μΑ
Output High leakage current	V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND or V_{CC}		5.0	50		50	μΑ
Output current ¹	$V_{CC} = 5.5V; V_{O} = 2.5V$	-40		-180	-40	-180	mA
	V_{CC} = 5.5V; Outputs High, V_I = GND or V_{CC}		100	250		250	μΑ
Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_{I} = GND or V_{CC}		24	30		30	mA
	V_{CC} = 5.5V; Outputs 3-State; V _I = GND or V _{CC}		100	250		250	μA
Additional supply current per input pin ²	V_{CC} = 5.5V; one input at 3.4V, other inputs at V_{CC} or GND		0.5	1.5		1.5	mA
	Input clamp voltage High-level output voltage Low-level output voltage Power-up output low voltage ³ Input leakage current Power-off leakage current Power-up/down 3-State output current ⁴ 3-State output High current 3-State output Low current Output High leakage current Output current ¹ Quiescent supply current per	$\begin{tabular}{ c c c c c c } \hline \end{tabular} & tabula$	$\begin{tabular}{ c $	$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \mbox{PARAMETER} & \mbox{TEST CONDITIONS} & \begin{tabular}{ c c c c c c } \hline $T_{amb} = +25^\circ C$ \\ \hline Min Typ Max \\ \hline $Input clamp voltage$ $V_{CC} = 4.5V; $I_{IK} = -18mA$ $1 & -0.9$ -1.2 \\ \hline $V_{CC} = 4.5V; $I_{OH} = -3mA; $V_1 = V_{IL} or V_{IH} 2.5 2.9 \\ \hline $V_{CC} = 5.0V; $I_{OH} = -3mA; $V_1 = V_{IL} or V_{IH} 3.0 3.4 \\ \hline $V_{CC} = 4.5V; $I_{OH} = -3mA; $V_1 = V_{IL} or V_{IH} 2.0 2.4 \\ \hline $V_{CC} = 4.5V; $I_{OL} = 64mA; $V_1 = V_{IL} or V_{IH} 2.0 2.4 \\ \hline $V_{CC} = 4.5V; $I_{OL} = 64mA; $V_1 = V_{IL} or V_{IH} 2.0 2.4 \\ \hline $V_{CC} = 5.5V; $I_0 = 1mA; $V_1 = OND or V_{CC} 0.13 0.55 \\ \hline $Power-up output low voltage$ $V_{CC} = 5.5V; $I_0 = 1mA; $V_1 = GND or V_{CC} 0.13 0.55 \\ \hline $Input leakage current$ $V_{CC} = 5.5V; $V_0 = 0.5V; $V_{OE} = Don't $Care;$ 1.00 1100 \\ \hline $Power-off leakage current$ $V_{CC} = 0.0V; $V_0 or $V_1 \le 4.5V$ 1.00 1.00 \\ \hline $Power-up/down 3-State$ $V_{CC} = 5.5V; $V_0 = 0.5V; $V_{OE} = Don't $Care;$ 1.50 1.50 1.00 \\ \hline $Power-up/down 3-State$ $V_{CC} = 5.5V; $V_0 = 0.5V; $V_1 = V_{IL} or V_{IH} 1.0 50 \\ \hline $3-State output Low current$ $V_{CC} = 5.5V; $V_0 = 0.5V; $V_1 = V_{IL} or V_{IH} 1.0 50 \\ \hline $0utput current^4$ $V_{CC} = 5.5V; $V_0 = 0.5V; $V_1 = V_{IL} or V_{IH} 1.0 50 \\ \hline $0utput High leakage current$ $V_{CC} = 5.5V; $V_0 = 2.7V; $V_1 = V_{IL} or V_{IH} 1.0 50 \\ \hline $0utput High leakage current$ $V_{CC} = 5.5V; $V_0 = 2.5V$ 1.100 V_{CC} 5.0 50 \\ \hline $0utput High leakage current$ $V_{CC} = 5.5V; $V_0 = 5.5V; $V_1 = OND or V_{CC} 5.0 50 \\ \hline $0utput current^1$ $V_{CC} = 5.5V; $Outputs Bigh, $V_1 = GND or V_{CC} 100 250 \\ \hline $V_{CC} = 5.5V; $Outputs Low, $V_1 = GND or V_{CC} 100 250 \\ \hline $V_{CC} = 5.5V; $Outputs 10, $V_1 = GND or V_{CC} 100 250 \\ \hline $V_{CC} = 5.5V; $Outputs 3-State;$ 100 100 250 $2.5V$ 1.5 1	TEST CONDITIONS Tamb = +25°C Tamb = +25°C Tamb = to the tot to the tot tot tot tot tot tot tot tot tot to	$ \begin{array}{ c c c c c c c } \mbox{PARAMETER} & TEST CONDITIONS & $$T_{amb} = +25^{\circ}C$ & $T_{amb} = -40^{\circ}C$ \\ \hline $T_{amb} = +25^{\circ}C$ & $$T_{to +85^{\circ}C}$ & $$Min $$ Max$ \\ \hline $Min $$ to $$Power $$ No $$ $

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input at 3.4V.
For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.

4. This parameter is valid for any V_{CC} between 0V and 2.1V with a transition time of up to 10msec. For V_{CC} = 2.1V to V_{CC} = 5V \pm 10%, a transition time of up to 100µsec is permitted.

AC CHARACTERISTICS

GND = 0V, t_R = t_F = 2.5ns, C_L = 50pF, R_L = 500 Ω

					LIMITS			
SYMBOL	PARAMETER	WAVEFORM	ŗ	「 _{amb} = +25° V _{CC} = +5.0∖	с /	+8	= -40 to 5°C .0V ±0.5V	NIT ns
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay Dn to Qn	2	1.5 2.2	2.8 3.3	4.0 4.8	1.5 2.2	4.5 5.3	ns
t _{PLH} t _{PHL}	Propagation delay E to Qn	1	1.2 1.8	2.5 3.0	4.0 4.4	1.2 1.8	4.5 4.7	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	4 5	1.2 2.7	3.0 3.8	4.5 5.3	1.2 2.7	5.2 5.7	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	4 5	1.5 1.2	2.8 2.2	4.1 3.4	1.5 1.2	4.5 3.8	ns

74ABT573A

Product specification

AC SETUP REQUIREMENTS

GND = 0V, t_{R} = t_{F} = 2.5ns, C_{L} = 50pF, R_{L} = 500 Ω

				LIN	NITS	
SYMBOL	PARAMETER	WAVEFORM	T _{amb} = V _{CC} =	= +25°C = +5.0V	T _{amb} = -40 to +85°C V _{CC} = +5.0V ±0.5V	UNIT
			Min	Тур	Min	
t _s (H) t _s (L)	Setup time, High or Low Dn to E	3	1.0 1.0	0.3 0.2	1.0 1.0	ns
t _h (H) t _h (L)	Hold time, High or Low Dn to E	3	1.0 1.0	-0.1 -0.2	1.0 1.0	ns
t _w (H)	E pulse width High	1	2.0	0.7	2.0	ns

AC WAVEFORMS

 $V_{\rm M} = 1.5 V, V_{\rm IN} = G ND$ to 3.0V

Waveform 1. Propagation Delay, Enable to Output, and Enable **Pulse Width**

Waveform 2. Propagation Delay for Data to Outputs

Waveform 3. Data Setup and Hold Times

Waveform 4. 3-State Output Enable Time to High Level and **Output Disable Time from High Level**

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

74ABT573A

TEST CIRCUIT AND WAVEFORM

SA00012