167

16 Vcc

15 S1

14 So

13 MR

12 E y

11 CE 10 Ez

9 CP

CONNECTION DIAGRAM PINOUT A

NC 1

S2 2

S3

MS

Ο₇ [5

TC 7

GND 8

SYNCHRONOUS DECADE RATE MULTIPLIER

DESCRIPTION — The '167 contains a synchronous decade counter and four decoding gates that serve to gate the clock through to the output at a submultiple of the clock frequency. The output pulse rate, relative to the clock frequency, is determined by signals applied to the Select $(S_0 - S_3)$ inputs. Both true and complement outputs are available, along with an enable input for each. A Count Enable input and a Terminal Count output are provided for cascading two or more packages. Asynchronous Master Reset and Master Set inputs prevent counting and clear the counter or set it to maximum, respectively.

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG	
PKGS	Ουτ	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	TYPE	
Plastic DIP (P)	A	74167PC		9B	
Ceramic DIP (D)	A	74167DC	54167DM	7B	
Flatpak (F)	A	74167FC	54167FM	4L	

Vcc = Pin 16 GND = Pin 8

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	
S0 — S3	Rate Select Inputs	1.0/1.0	
So — S3 Ēz	Oz Enable Input (Active LOW)	1.0/1.0	
	Oy Enable Input	1.0/1.0	
EY CE	Count Enable Input (Active LOW)	1.0/1.0	
СР	Clock Pulse Input (Active Rising Edge)	2.0/2.0	
MS	Asynchronous Master Set Input (Active HIGH) (Set to 9)	1.0/1.0	
MR	Asynchronous Master Reset Input (Active HIGH)	1.0/1.0	
Ōz	Gated Clock Output (Active LOW)	10/10	
OY TC	Complement Output (Active HIGH)	10/10	
TC	Terminal Count Output (Active LOW)	10/10	

TRUTH TABLE

	INPUTS						OUTPUTS					
MR	CE	Ēz	S3	S2	S1	S ₀	CLOCK PULSES	Εγ	Oy	ōz	TC	NOTES
	X L L L L L L L L L L L	Τιι ιιι ιιιι ι	XLLL LLLL LHHHH HH	X L L L H H H L L L H H	XLLH HLLH HLLHH LL	XLHL HLHL HLHLH LH	X 10 10 10 10 10 10 10 10 10 10 10 10 10	 	L L 12 34 56 78 98 9 89 8 98	HH1234567898989898	H 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2,3 2,3 2,3
		L L L	H H H	H H L	H H L	L H H	10 10 10	H L	о 9 Н	9 9	1 1 1	2, 3 2, 3 4

1. This is a simplified illustration of the clear function. CP and \vec{E}_z also affect the logic level of O_Y and \overline{O}_z . A LOW signal on E_Y will cause O_Y to remain HIGH.

2. Each rate illustrated assumes $S_0 - S_3$ are constant throughtout the cycle; however, these illustrations in no way prohibit variable-rate operation. 3. These input conditions exceed the range of the decade rate Select inputs.

4. Ey can be used to inhibit output Oy.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

S ₃	S ₂	S1	S ₀	m	Oz PULSE PATTERN
L	L	L	н	1	1111011111
L	L	н	L	2	1101111011
L	L	н	н	3	1101011011
L	н	L	L	4	1010110101
L	н	L	н	5	1010010101
L	н	н	L	6	1000110001
L	н	н	н	7	1000010001
н	L	L	L	8	0000100001
н	L	L	н	9	0000000001

PULSE PATTERN TABLE

H = HIGH Voltage Level

L = LOW Voltage Level

FUNCTIONAL DESCRIPTION — The '167 contains four JK flip-flops connected as a synchronous decade counter with a count sequence of 0-1-2-3-4-8-9-10-11-12. A LOW signal on the Count Enable $\overline{(CE)}$ input permits counting, with all state changes initiated simultaneously by the rising edge of the clock. When the count reaches maximum (12) the Terminal Count (TC) output goes LOW if CE is LOW. A HIGH signal on Master Reset (MR) clears the flip-flops and prevents counting, although output pulses can still occur if the clock is running, \overline{Ez} is LOW and S₃ is HIGH. A HIGH signal on Master Set (MS) prevents counting and sets the counter to 12, the only state in which no output pulses can occur.

The flip-flop outputs are decoded by a 4-wide AND-OR-INVERT gate. Each AND gate also contains the buffered and inverted CP and Z-enable (E_Z) functions, as well as one of the Select ($S_0 - S_3$) inputs. The Z output \overline{O}_Z is normally HIGH and goes LOW when CP and \overline{E}_Z are LOW and any of the AND gates has its other inputs HIGH. The AND gates are enabled at different times and different rates relative to the clock. For example, the gate to which S₀ is connected is enabled only when the counter is in state five, assuming that S₀ is HIGH. Thus, during one complete cycle of the counter (10 clocks) the S₀ gate can contribute only pulse to the output rate. The S₁ gate is enabled twice per cycle, the S₂ gate four times per cycle (etc.). The output pulse rate thus depends on the clock rate and which of the S₀ - S₃ inputs are HIGH, as expressed in the following formula.

> $f_{out} = \frac{m}{10} \bullet f_{in}$ where m = S₃ \bullet 2³ + S₂ \bullet 2² + S₁ \bullet 2¹ + S₀ \bullet 20

Thus by appropriate choice of signals applied to the $S_0 - S_3$ inputs, the output pulse rate can range from 1/10 to 9/10 of the clock rate. The select codes, m values and \overline{O}_Z pulse pattern are shown in the Pulse Pattern Table. In the \overline{O}_Z pattern, each column represents a clock period, with the state-12 column on the right. A one indicates that the \overline{O}_Z output will be HIGH during that entire clock period, while a zero indicates that \overline{O}_Z will be LOW when the clock is LOW during that period. Note that the output pulses are evenly spaced only when m is one or two, assuming that the clock frequency is constant, and that no output pulses can occur in state 12 of the counter.

The Y output O_Y is the complement of \overline{O}_Z and is thus normally LOW. A LOW signal on the Y-enable input E_Y disables O_Y. To expand the multiplier to 2-digit rate select, two packages can be cascaded as shown in *Figure a*. Both circuits operate from the basic clock, with the TC output of the first acting to enable both counting and the output pulses of the second package. Thus the second counter advances at only 1/10 the rate of the first and a full cycle of the two counters combined requires 100 clocks. Output pulses contributed by the second counter occur only when the first counter is in state 12. All output pulses are opposite in phase to the clock.

167

- -

SYMBOL	PARAMETER	54	/74	UNITS	CONDITIONS		
		Min Max					
los	Output Short Circuit Current	-18	-55	mA	Vcc = Max		
kc	Power Supply Current		99	mA	Vcc = Max; MS = Gnd Other Inputs = 4.5 V		
	ACTERISTICS: $V_{CC} = +5.0 \text{ V}, \text{ T}_{A} =$	+25°C (See)	Section 3 for	r waveforms a	and load configurations)		
		T	./74				
SYMBOL	PARAMETER		15 pF 400 Ω	UNITS	CONDITIONS		
		Min	Max				
f _{māx}	Maximum Clock Frequency	25		MHz	Figs. 3-1, 3-8		
tplH tpHL	Propagation Delay CP to TC		30 33	ns	⊥ rigs. 5-1, 5-0		
tplH tPHL	Propagation Delay Ez to Oy		30 33	ns	- Figs. 3-1, 3-4		
tplh tphL	Propagation Delay Ey to Oy		14 10	ns			
tplh tphl	Propagation Delay Sn to Oz		14 10	ns			
tplh tphl	Propagation Delay CP to Oy		39 30	ńs			
tplh tphL	Propagation Delay Ez to Öz		18 23	ns			
tPLH tPHL	Propagation Delay S _n to Ογ		23 23	ns	Figs. 3-1, 3-5		
telh tehl	Propagation Delay CP to Oz		18 26	ns	- Figs. 3-1, 3-3		
tplH tpHL	Propagation Delay CE to TC		20 21	ns			
tрнL	Propagation Delay MS to TC		27	ns			
tРLH	Propagation Delay MR to Oy		36	ns	Figs. 3-1, 3-16		
tphL.	Propagation Delay MR TO Oz		23	ns	-		

4-237

-- ------

4

167

SYMBOL	PARAMETER		54/74	UNITS	CONDITIONS	
		Min	Max	0.0170	CONDITIONS	
ts (L)	Setup Time LOW CE to CP Rising	25		ns		
t _h (H)	Hold Time HIGH CE to CP Rising	0	tw CP-10	ns	Fig. b	
ts ⟨L⟩	Setup Time LOW CE to CP Falling	0	tw CP-10	ns		
th (L)	Hold Time LOW CE to CP Falling	20	T-10	ns	Fig. c	
t _{inh} (H)	Inhibit Time HIGH CE to CP Falling	10		ns	Fig. b	
tw (H)	CP Pulse Width HIGH	20		ns	Fig. 3-8	
t _w (H)	MR Pulse Width HIGH	15	15			
t _w (H)	MS Pulse Width HIGH	15		ns	Fig. 3-16	

Fig. b

Fig. c