Silicon N-Channel/P-Channel Power MOS FET Array

HITACHI

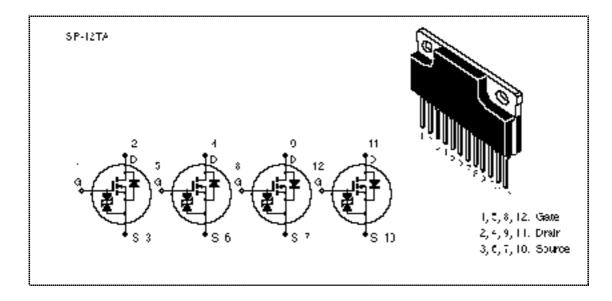
Application

High speed power switching

Features

• Low on-resistance

N Channel: $R_{DS(on)}$ 0.5 , V_{GS} = 10 V, I_D = 2 A P Channel: $R_{DS(on)}$ 0.9 , V_{GS} = -10 V, I_D = -2 A


· Low drive current

• High speed switching

• High density mounting

• Suitable for H-bridged motor driver

Outline

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

		Ratings		
Item	Symbol	Nch	Pch	Unit
Drain to source voltage	V _{DSS}	200	-200	V
Gate to source voltage	V _{GSS}	±20	±20	V
Drain current	I _D	4	-4	A
Drain peak current	I _{D(pulse)} *1	16	- 16	Α
Body to drain diode reverse drain current	I_{DR}	4	-4	A
Channel dissipation	Pch (Tc = 25°C)* ²			W
	Pch* ²	4.0		W
Channel temperature	Tch	150		°C
Storage temperature	Tstg	–55 to		°C

Notes: 1. PW 10 µs, duty cycle 1%

2. 4 Device Operation

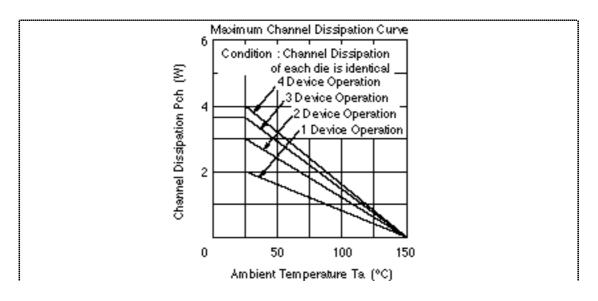
Electrical Characteristics ($Ta = 25^{\circ}C$)

N Channel

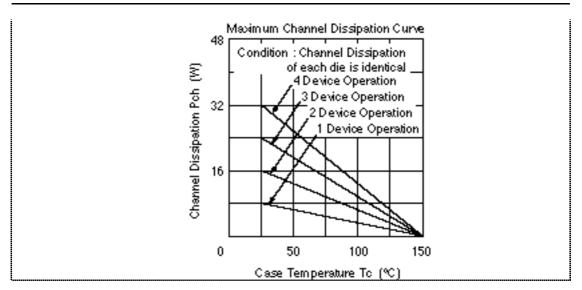
Symbol	Min	Тур	Max	Unit	Test conditions
V(BR)DS S	200	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
V _{(BR)GS} S	±20			V	I _G = ±100 μA, V _{DS} = 0
l _{GSS}	—	_	±10	μΑ	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
I _{DSS}	_	_	250	μΑ	V _{DS} = 160 V, V _{GS} = 0
V _{GS(off)}	2.0	_	4.0	V	I _D = 1 mA, V _{DS} = 10 V
R _{DS(on)}	—	0.33	0.5		I _D = 2 A, V _{GS} = 10 V* ¹
y _{fs}	1.5	3.0	<u>—</u>	S	I _D = 2 A V _{DS} = 10 V* ¹
Ciss	<u> </u>	750	<u>—</u>	pF	V _{DS} = 10 V
Coss	<u> </u>	260	<u>—</u>	pF	V _{GS} = 0
Crss	—	40	—	pF	f = 1 MHz
^t d(on)	—	19	—	ns	I _D = 2 A
t _r	_	26	—	ns	$V_{GS} = 10 \text{ V}$
^t d(off)	<u>—</u>	45	<u>—</u>	ns	R _L = 15
t _f	_	24	_	ns	••••
V _{DF}	<u>—</u>	1.0	<u>—</u>	V	I _F = 4 A, V _{GS} = 0
t _{rr}	—	125	—	ns	I _F = 4 A, V _{GS} = 0, diF/dt = 100 A/μs
	S V(BR)GS S IGSS IDSS VGS(off) RDS(on) IYfs Ciss Coss Crss td(on) tr td(off) tf VDF	V(BR)GS ±20 S IGSS — IDSS — VGS(off) 2.0 RDS(on) — IYfs	S V(BR)GS ±20 — IGSS — IDSS — VGS(off) 2.0 RDS(on) — 0.33 Iyfsl 1.5 3.0 Ciss — 750 Coss — 260 Crss — 40 td(on) — 19 tr — 26 td(off) — 45 tf — VDF —	S V(BR)GS ±20 — — S — ±10 IDSS — — ±50 VGS(off) 2.0 — 4.0 RDS(on) — 0.33 0.5 IyfsI 1.5 3.0 — Ciss — 750 — Coss — 260 — Crss — 40 — td(on) — 19 — tr — 26 — td(off) — 45 — tf — 24 — VDF — 1.0 —	S V(BR)GS ±20 — V S IGSS — ±10 μA IDSS — 250 μA VGS(off) 2.0 — 4.0 V RDS(on) — 0.33 0.5 Vfsl 1.5 3.0 — S Ciss — 750 — pF Coss — 260 — pF Crss — 40 — pF td(on) — 19 — ns tr — 26 — ns tf — 24 — ns VDF — 1.0 — V

Note: 1. Pulse Test

See characteristic curves of 2SK1957



Electrical Characteristics ($Ta = 25^{\circ}C$)


P Channel

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source breakdown voltage	V _{(BR)DS} S	-200	_	_	V	$I_D = -10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	V _(BR) GS S	±20			V	$I_G = \pm 100 \mu A, V_{DS} = 0$
Gate to source leak current	I _{GSS}	—	—	±10	μΑ	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	<u>—</u>	—	-250	μΑ	$V_{DS} = -160 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	V _{GS(off)}	-2.0	_	-4.0	V	$I_D = -1 \text{ mA}, V_{DS} = -10 \text{ V}$
Static drain to source on state resistance	R _{DS(on)}	<u>—</u>	0.7	0.9		$I_D = -2 \text{ A}, V_{GS} = -10 \text{ V}^{*1}$
Forward transfer admittance	y _{fs}	1.5	3.0	—	S	I _D = -2 A
						$V_{DS} = -10 \text{ V}^{*1}$
Input capacitance	Ciss	_	920	_	pF	V _{DS} = -10 V
Output capacitance	Coss	_	23 0	_	рF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	—	70	—	pF	f = 1 MHz
Turn-on delay time	^t d(on)	<u>—</u>	17	<u>—</u>	ns	I _D = –2 A
Rise time	t _r	<u>—</u>	40	<u>—</u>	ns	$V_{GS} = -10 \text{ V}$
Turn-off delay time	^t d(off)	—	85	—	ns	R _L = 15
Fall time	t _f	<u> </u>	45	<u> </u>	ns	•••
Body to drain diode forward voltage	V _{DF}	<u>—</u>	-1.0	<u>—</u>	V	$I_F = -4 \text{ A}, V_{GS} = 0$
Body to drain diode reverse recovery time	^t rr		170	<u>—</u>	ns	$I_F = -4 \text{ A}, V_{GS} = 0,$ diF/dt = 100 A/µs

Note: 1. Pulse Test

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. Nappon Bidg., 2-5-2, Ohte-medii, Chiyode-ku, Tokyo 100, Japan Tat Tokyo (03, 3270-2111 Fax: (03, 3270-5109

For further in forme I on write to:

Hitachi America, Utd. Semiconductor & IC Div. 2000 Sierra Point Perkway Briebene, CA. 94005-1835 U.S.A.

Tet 415-589-8300 Fex 415-583-4207 Hischi Burope GmbH
Bedronic Components Group
Continental Burope
Donacher Streße 3
D-85622 Feldkirchen
München
Test 089-9-91-80-0
Fex: 089-9-20-30-00

Hitachi Burope Ltd.
Bectronie Componente Div.
Northern Burope Headquertere
Whitebrook Park
Lower Cook ham Road
Maidenhead
Berkehire SL68YA
Urited Kingdom
Tet 0628-778322

Hitschi Asia Pte. Ltd 45 Collyer Quey \$20-00 Hitschi Tower Snappore 0104 Tet 535-2400 Fex: 535-4533

Hischi Ásia (Hong Kong) Ltd. Unit 705, North Tower, World Finance Centra; Harbour City, Carton Road Teim Sha Telu, Kowloon Hong Kong Tet 27:359248 Fax 27:306074

