

NPN 2SC4550

SILCON EPITAXIAL TRANSISTOR FOR HIGH-SPEED SWITCHING

The 2SC4550 is a power transistor developed for high-speed switching and features low $V_{CE(sat)}$ and high h_{FE} . This transistor is ideal for use in drivers such as DC/DC converters and actuators. In addition, a small resin-molded insulation type package contributes to high-density mounting and reduction of cost. Compliance to RoHS.

1 3 PIN 1. BASE 2.COLLECTOR 3. BMITTER TO-220F package

Symbol	Rat	Value	Unit		
V _{CEO}	Collector-Emitter Voltage	60	V		
V _{CBO}	Collector-Base Voltage	100	V		
V _{EBO}	Emitter-Base Voltage	7	V		
Ic	Collector Current	7	А		
I _{C(pulse)}	Collector Current (pulse)		14	А	
I _B	Base Current		3.5	A	
P _D	Total Power Dissipation	@ T _C = 25°C	30	W	
P _D	Total Power Dissipation	@ T _a = 25°C	2	W	
TJ	Junction Temperature		150	°C	
T _{Stg}	Storage Temperature		-65 to +200	°C	

ABSOLUTE MAXIMUM RATINGS

NPN 2SC4550

h_{FE} CLASSIFICATION

Marking	Test Condition(s)	Μ	L	к	
h _{FE2}	$I_{C} = 1.5 \text{ A}, V_{CE} = 2 \text{ V}$	100 to 200	150 to 300	200 to 400	

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings		Test Condition(s)	Min	Тур	Max	Unit
V _{CEO}	Collector to Emitter Vo	oltage	$I_{C} = 4 \text{ A}, I_{B} = 0.4 \text{ A}, L = 1 \text{ mH}$	60	-	-	
V _{CEX}	Collector to Emitter Voltage		I_{C} = 4 A, I_{B1} = - I_{B2} = 0.4 A $V_{BE(OFF)}$ = -1.5V, L = 180 µH clamped	60	-	-	V
I _{CBO}	Collector Cutoff Current		$V_{CB} = 60 \text{ V}, I_{E} = 0$	-	-	10	μA
I _{CER}	Collector Cutoff Current		$V_{CE} = 60 \text{ V}, \text{ R}_{BE} = 50 \Omega$ T _a = 125°C	-	-	1	mA
	Collector Cutoff Current		$V_{CE} = 60 \text{ V}, \text{ V}_{BE(OFF)} = -1.5 \text{ V}$	-	-	10	μA
I _{CEX}			$V_{CE} = 60 \text{ V}, V_{BE(OFF)} = -1.5 \text{ V}$ $T_a = 125^{\circ}\text{C}$	-	-	1	mA
I _{EBO}	Emitter Cutoff Current		$V_{EB} = 5.0 \text{ V}, I_{C} = 0$	-	-	10	μA
	h	h _{FE1}	$I_{C} = 0.7 \text{ A}, V_{CE} = 2 \text{ V}$	100	-	-	
h _{FE}	DC Current Gain (*)	h _{FE2}	$I_{C} = 1.5 \text{ A}, V_{CE} = 2 \text{ V}$	100	200	400	-
		h _{FE3}	$I_{C} = 4 \text{ A}, V_{CE} = 2 \text{ V}$	60	-	-	
V	V _{CE(SAT)} Collector-Emitter saturation Voltage (*)		$I_{\rm C} = 4$ A, $I_{\rm B} = 0.2$ A	-	-	0.3	
♥ CE(SAT)			$I_{\rm C} = 6 \text{ A}, I_{\rm B} = 0.3 \text{ A}$	-	-	0.5	V
V	Base-Emitter saturation Voltage (*)		$I_{\rm C} = 4$ A, $I_{\rm B} = 0.2$ A	-	-	1.2	
♥ BE(SAT)			$I_{\rm C} = 6 \text{ A}, I_{\rm B} = 0.3 \text{ A}$	-	-	1.5	
C _{ob}	Collector capacitance		$V_{CB} = 10 \text{ V}, I_E = 0$ f = 1.0MHz	-	100	-	pF
f _T	Gain bandwidth product		$I_{C} = 1 \text{ A}, V_{CE} = 10 \text{ V}$	-	150	-	MHz
t _{on}	Turn-on time		$I_{c} = 4 \text{ A}, R_{L} = 12.5 \Omega$	-	0.1	0.3	
t _{stg}	Storage time		$I_{B1} = -I_{B2} = 0.2 \text{ A}, V_{CC} = 50 \text{ V}$	-	1	1.5	μs
t _f	Fall time		Refer to the test circuit.	-	0.1	0.3	_

(*) Pulse conditions : tp < 300 $\mu\text{s},\,\delta$ =2%

NPN 2SC4550

MECHANICAL DATA CASE TO-220

Revised August 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.

www.comsetsemi.com

info@comsetsemi.com