P-CHANNEL POWER MOSFET

IRFF9130 / 2N6849

- MOSFET Transistor in a Hermetic Metal TO-205AF Package
- Designed For Switching, Power Supply, Motor Control and Amplifier Applications
- High Reliability and Screening Options Available

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise stated)

V_{DS}	Drain - Source Voltage	-100V
v_{GS}	Gate - Source Voltage	±20V
I_{D}	Continuous Drain Current @ T _C = 25°C	-5.8A
I_{D}	Continuous Drain Current @ T _C = 100°C	-3.7A
I _{DM} ⁽¹⁾	Pulsed Drain Current	-25A
P_{D}	Total Power Dissipation @ T _C = 25°C	20.833W
	Derate Above 25°C	0.167W/°C
T_J	Junction Temperature Range	-55 to +150°C
T _{stg}	Storage Temperature Range	-55 to +150°C

THERMAL PROPERTIES

Symbols	Parameters	Max.	Units
R _Ө ЈС	Thermal Resistance, Junction To Case	6	°C/W

Notes

- (1) Repetitive Rating: Pulse width limited by maximum junction temperature
- (2) Pulse Width $\leq 380 \mu s$, $\delta \leq 2\%$
- (3) By Design Only, Not A Production Test.

Semelab Limited reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab

Page: 1 of 3

Document Number: DOC 3098 Issue: 3

P-CHANNEL POWER MOSFET

IRFF9130 / 2N6849

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise stated)

Symbols	Parameters	Test Conditions		Min.	Тур.	Max.	Units
V _{(BR)DSS}	Drain - Source Breakdown Voltage	V _{GS} = 0V	I _D = -0.25mA	-100			V
		V _{GS} = -10V	I _D = -3.7A			0.3	
R _{DS} (on) ⁽²⁾	Static Drain - Source On - State Resistance		T _A = 125°C			0.54	Ω
		V _{GS} = -10V	I _D = -5.8A			0.32	
		V _{DS} = V _{GS}	I _D = -250μA	-2		-4	
V _{GS(th)}	Gate Threshold Voltage		T _A = 125°C	-1.0			V
			T _A = -55°C			-5	
gfs	Forward Transconductance	V _{DS} ≥ -5V	I _{DS} = -3.7A	2.5		7.5	S(ʊ)
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0	$V_{DS} = 0.8BV_{DSS}$			100	
			T _A = 125°C			500	μΑ
less	Gate - Source Leakage	V _{GS} = ±20V	•			±100	nA
IGSS			T _A = 125°C			±200	IIA

DYNAMIC CHARACTERISTICS (T_C = 25°C unless otherwise stated)

C _{iss}	Input Capacitance	Vpc = -25V	845		
C _{oss}	Output Capacitance	$V_{DS} = -25V$ $V_{GS} = 0V$	373		рF
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz	92		,
^t d(on)	Turn-On Delay Time			60	
t _r	Rise Time	$V_{DD} = -50V$ $I_{D} = -5.8A$ $R_{G} = 7.5\Omega$		140	nc
^t d(off)	Turn-Off Delay Time	$R_G = 7.5\Omega$		140	ns
t _f	Fall Time			140	

SOURCE-DRAIN DIODE CHARACTERISTICS

t _{rr} ⁽³⁾	Reverse Recovery Time	$I_S = -5.8A$ $V_{DD} \le -50V$	$T_J = 25$ °C di/dt = 100A/ μ s		250	ns
V _{SD}	Diode Forward Voltage	I _S = -5.8A V _{GS} = 0	T _J = 25°C		-4.3	V

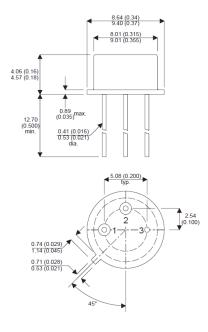
Semelab Limited

Coventry Road, Lutterworth, Leicestershire, LE17 4JB

Telephone: +44 (0) 1455 556565 Fax: +44 (0) 1455 552612 Email: lutterworth.sales@ttelectronics.com Website: http://ttelectronics.com

Semelab

Document Number: DOC 3098 Issue: 3 Page: 2 of 3


P-CHANNEL POWER MOSFET

IRFF9130 / 2N6849

MECHANICAL DATA

Dimensions in mm (inches)

TO-39 (TO-205AF)

PACKAGE PIN CONNECTIONS

Pin	Connection
1	Source
2	Gate
3	Drain

PART NUMBER VARIANTS⁽⁴⁾⁽⁵⁾

Part Number Reference	Termination Finish	SML ROHS
IRFF9130 / 2N6849	Pre-tinned 63% Tin, 37% Lead	LD ⁽⁶⁾

Notes

- (4) Specify lead finish option by part number at point of order.
- (5) All design variants contain Lead (Pb) within the construction of the device. The Lead content is fully RoHS compliant but using an exemption as currently understood from the EU directive 2011/65/EU (Annex III, exemption 7a).
- (6) LD = e0, as defined in J-STD-609 2nd Level Interconnect Category.

Semelab Limited

Telephone: +44 (0) 1455 556565

Fax: +44 (0) 1455 552612

Coventry Road, Lutterworth, Leicestershire, LE17 4JB

Email: <u>lutterworth.sales@ttelectronics.com</u> Website: <u>http://ttelectronics.com</u> Docu

Semelab

Document Number: DOC 3098 Issue: 3

Page: 3 of 3