

P-CHANNEL MOSFET Qualified per MIL-PRF-19500/564

DESCRIPTION

This 2N6849 switching transistor is military qualified up to the JANS level for high-reliability applications. This device is also available in a low profile U surface mount package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6849 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/564. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Lightweight top-hat design with flexible terminals offers a variety of mounting flexibility.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ $T_A = +25^{\circ}C$ unless otherwise stated

Parameters / Test Conditions		Symbol	Value	Unit °C
Operating & Storage Junction Te	T _J & T _{stg}	-55 to +150		
Thermal Resistance Junction-to-	Case	R _{eJC} 5.0		
Total Power Dissipation	@ T _A = +25 °C	Рт	0.8	W
	@ $T_{C} = +25 \ ^{\circ}C^{(1)}$		25	
Drain-Source Voltage, dc		V _{DS}	-100	V
Gate-Source Voltage, dc		V_{GS}	± 20	V
Drain Current, dc @ T _C = +25 °C	(2)	I _{D1}	-6.5	Α
Drain Current, dc @ $T_C = +100^{\circ}$	C ⁽²⁾	I _{D2}	-4.1	Α
Off-State Current (Peak Total Va	lue) ⁽³⁾	I _{DM}	-25	A (pk)
Source Current		I _S	-6.5	Α


Notes: 1. Derate linearly 0.2 W/°C for $T_c > +25$ °C.

2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.

 $I_{D} = \sqrt{\frac{T_{J} (max) - T_{C}}{R_{\theta JC} x R_{DS(on)} @ T_{J} (max)}}$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

<u>Qualified Levels</u>: JAN, JANTX, JANTXV and JANS

TO-205AF (TO-39) Package

Also available in:

U-18 LCC package (surface mount)

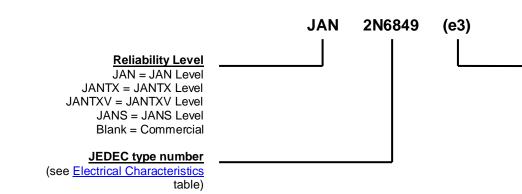
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead solder dip nickel plate or RoHS compliant pure tin plate (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

RoHS Compliance e3 = RoHS compliant (available on commercial grade only) Blank = non-RoHS compliant

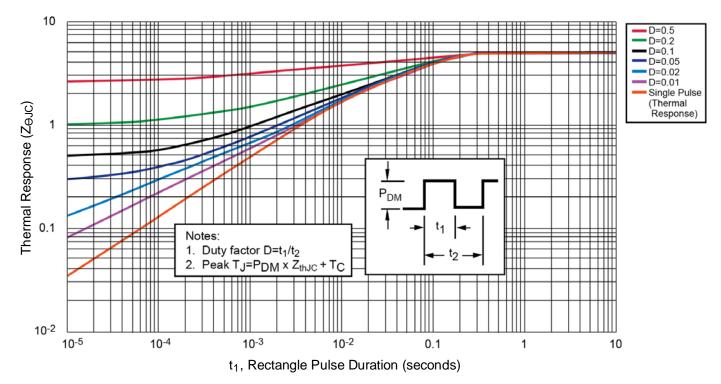
	SYMBOLS & DEFINITIONS					
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
lF	Forward current					
R _G	Gate drive impedance					
V _{DD}	Drain supply voltage					
V _{DS}	Drain source voltage, dc					
V _{GS}	Gate source voltage, dc					

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = -1.0 \text{ mA}$	V _{(BR)DSS}	-100		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}, I_D = -0.25 \text{ mA}$ $V_{DS} \ge V_{GS}, I_D = -0.25 \text{ mA}, T_J = +125^{\circ}\text{C}$ $V_{DS} \ge V_{GS}, I_D = -0.25 \text{ mA}, T_J = -55^{\circ}\text{C}$	V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	-2.0 -1.0	-4.0 -5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_J = +125^{\circ}\text{C}$	I _{GSS1} I _{GSS2}		±100 ±200	nA
Drain Current $V_{GS} = 0 V, V_{DS} = -80 V$	I _{DSS1}		-25	μA
Drain Current V _{GS} = 0 V, V _{DS} = -80 V, T _J = +125 °C	I _{DSS2}		-0.25	mA
Static Drain-Source On-State Resistance V_{GS} = -10 V, I_D = -4.1 A pulsed	r _{DS(on)1}		0.30	Ω
Static Drain-Source On-State Resistance V_{GS} = -10 V, I_D = -6.5 A pulsed	r _{DS(on)2}		0.32	Ω
Static Drain-Source On-State Resistance $T_J = +125$ °C $V_{GS} = -10$ V, $I_D = -4.1$ A pulsed	r _{DS(on)3}		0.54	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = -6.5 \text{ A pulsed}$	V _{SD}		-4.3	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge V _{GS} = -10 V, I _D = -6.5 A, V _{DS} = -50 V	$Q_{g(on)}$		34.8	nC
Gate to Source Charge V_{GS} = -10 V, I_D = -6.5 A, V_{DS} = -50 V	Q _{gs}		6.8	nC
Gate to Drain Charge V _{GS} = -10 V, I _D = -6.5 A, V _{DS} = -50 V	Q_{gd}		23.1	nC


ELECTRICAL CHARACTERISTICS @ $T_A = +25 \text{ °C}$, unless otherwise noted (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time				
I_{D} = -6.5 A, V_{GS} = -10 V, R_{G} = 7.5 Ω , V_{DD} = -40 V	t _{d(on)}		60	ns
Rinse time I _D = -6.5 A, V _{GS} = -10 V, R _G = 7.5 Ω, V _{DD} = -40 V	tr		140	ns
Turn-off delay time $I_D = -6.5 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 7.5 \Omega, V_{DD} = -40 \text{ V}$	t _{d(off)}		140	ns
Fall time $I_D = -6.5 \text{ A}, \text{ V}_{GS} = -10 \text{ V}, \text{ R}_G = 7.5 \Omega, \text{ V}_{DD} = -40 \text{ V}$	t _f		140	ns
Diode Reverse Recovery Time di/dt \leq -100 A/µs, V _{DD} \leq -50 V, I _F = -6.5 A	t _{rr}		250	ns

GRAPHS

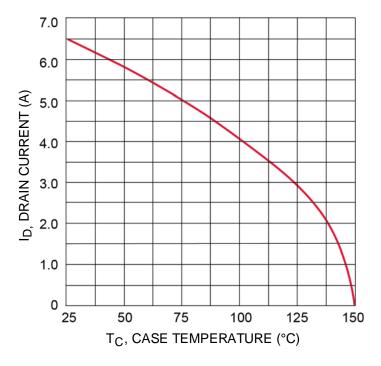
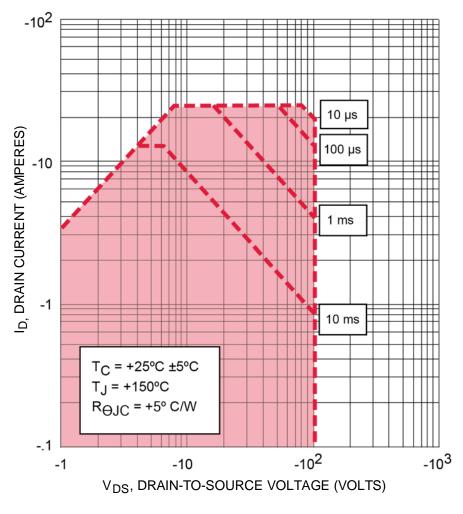
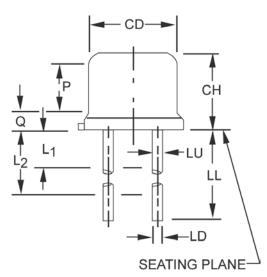


FIGURE 2 - Maximum Drain Current vs Case Temperature

GRAPHS (continued)

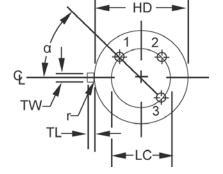


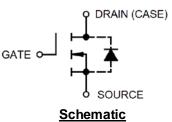

FIGURE 3 - Maximum Safe Operating Area

Note

PACKAGE DIMENSIONS

Symbol




	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.160	0.180	4.07	4.57	
HD	0.335	0.370	8.51	9.39	
LC	0.20	0.200 TP		5.08 TP	
LD	0.016	0.021	0.41	0.53	7, 8
LL	0.500	0.750	12.70	19.05	7, 8
LU	0.016	0.019	0.41	0.48	7, 8
L1	-	0.050	-	1.27	7, 8
L2	0.250	-	6.35	-	7, 8
Р	0.100	-	2.54	-	5
Q	-	0.050	-	1.27	4
TL	0.029	0.045	0.74	1.14	3
TW	0.028	0.034	0.72	0.86	2
r	-	0.010	-	0.25	9
α	45	° TP	45° TP		6

Dimensions

Millimeters

Inch

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Beyond radius (r) maximum, TW shall be held for a minimum length of 0.011 (0.028 mm).
- 3. Dimension TL measured from maximum HD.
- 4. Outline in this zone is not controlled.
- Dimension CD shall not vary more than 0.010 (0.25 mm) in zone P. This zone is controlled for automatic handling.
 Leads at gauge plane 0.054 +0.001, -0.000 (1.37 +0.03, -0.00 mm) below seating plane shall be within 0.007 (0.18
- mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. LU applies between L1 and L2. LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. Radius (r) applies to both inside corners of tab.
- 10. Drain is electrically connected to the case.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. Lead 1 =source, lead 2 =gate, lead 3 =drain.