

TO-220 Plastic Package

2N6111

2N6111 PNP PLASTIC POWER TRANSISTOR General Purpose Amplifier and Switching Applications

RATINGS (at $T_A=25^{\circ}C$ unless otherwise specified)

Limiting values			
Collector-base voltage (open emitter)	V_{CBO}	max.	40 V
Collector-emitter voltage (open base)	V_{CEO}	max.	30 V
Emitter-base voltage (open collector)	V_{EBO}	max.	5.0 V
Collector current	I_C	max.	7.0 A

Collector current (Peak value)	I_C	max.	10 A
Base current	I_B	max.	3.0 A
Total power dissipation up to $T_C = 25^{\circ}C$	P _{tot}	max.	40 W
Derate above 25°C		max.	0.32 W/C
Junction temperature	T_j	max.	150 C
Storage temperature	\dot{T}_{stg}	-65 ta	o +150 ℃
THERMAL RESISTANCE			
From junction to case	R _{thj-c}	=	3.125 C/W
CHARACTERISTICS			
$T_{amb} = 25^{\circ}C$ unless otherwise specified			
Collector cutoff current			
$I_B = 0; V_{CE} = 20V$	ICEO	max.	1.0 mA
$V_{EB(off)} = 1.5V; V_{CE} = 40V$	ICEX	max.	0.1 mA
$V_{EB(off)} = 1.5V; V_{CE} = 30V; T_C = 150^{\circ}C$	ICEX	max.	2.0 mA
Emitter cut-off current	-		
$I_C = 0; \ V_{EB} = 5V$	IEBO	max.	1.0 mA
Breakdown voltages	.		
$I_C = 100 \text{ mA}; I_B = 0$	$V_{CEO(sus)}^*$	min.	30 V
$I_C = 1 mA; I_E = 0$	V _{CBO}	min.	40 V
$I_E = 1 mA; I_C = 0$	V_{EBO}	min.	5.0 V
Saturation voltages			
$I_C = 3A; I_B = 0.3A$	V_{CEsat}^*	max.	1.0 V
$I_C = 7 A; I_B = 3 A$	V_{CEsat}^*	max.	3.5 V
Base emitter on voltage			
$I_C = 3 A; V_{CE} = 4V$	$V_{BE(on)}^*$	max.	1.5 V
$I_C = 7 A; V_{CE} = 4V$	$V_{BE(on)}^*$	max.	3.0 V
D.C. current gain			
$I_C = 3A; V_{CE} = 4V$	h_{FE}^*	min.	30
		max.	150
$I_C = 7A; V_{CE} = 4V$	h_{FE}^*	min.	2.3
Small-signal current gain f = 50 KHz			
$I_C = 0.5A; V_{CE} = 4V$	hfe	min.	20
Output capacitance at $f = 1 MHz$			
$I_E = 0; V_{CB} = 10V$	C_{O}	max.	250 pF
Transition frequency at $f = 1$ MHz			
$I_C = 500 \ mA; \ V_{CE} = 4V$	f_{T} (1)	min.	10 MHz

* Pulse test: pulse width $\leq 300 \ \mu$ s; duty cycle $\leq 2\%$. (1) $f_T = /h_{\rm fe}/ \cdot f_{test}$ Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited C-120 Naraina Industrial Area, New Delhi 110 028, India. Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119 email@cdil.com www.cdilsemi.com

Data Sheet