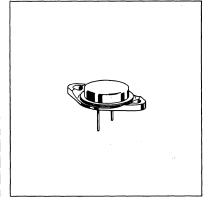
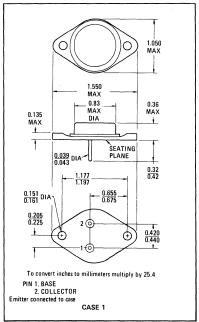
2N4130 NPN (SILICON)


The RF Line

NPN SILICON RF POWER TRANSISTOR

. . . designed primarily for use in large-signal output amplifier stages. Intended for use in industrial communications equipment operating to 100 MHz. High breakdown voltages allow a high percentage of up-modulation in AM circuits operated at 28 volts.

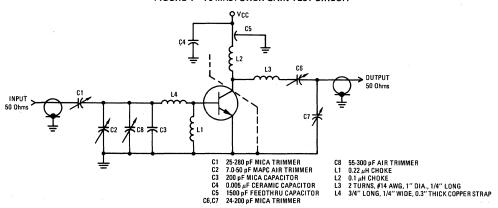
- Balanced Emitter Construction
- Power Output − Pout = 50 W @ 70 MHz
- Collector-Base Voltage − 80 Vdc
- Case Common to Emitter


50 W - 70 MHz RF POWER TRANSISTOR NPN SILICON

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	65	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	Iс	10	Adc
Base Current — Continuous	IВ	2.0	Adc
Total Device Dissipation @ T _C = 25 ^o C Derate above 25 ^o C	PD	120 0.8	Watts W/ ^O C
Operating Junction Temperature	Tj	+175	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

^{*}Indicates JEDEC Registered Data


*ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C = 50 mAdc, I _B = 0)	VCEO(sus)	65	_		Vdc
Collector-Emitter Sustaining Voltage (I _C = 50 mAdc, R _{BE} = 0)	VCES(sus)	80	_	_	Vdc
Collector Cutoff Current ($V_{CE} = 75 \text{ Vdc}$, $V_{BE} = -1.5 \text{ Vdc}$) ($V_{CE} = 50 \text{ Vdc}$, $V_{BE} = -1.5 \text{ Vdc}$, $T_{C} = 150^{\circ}\text{C}$)	ICEV			0.2 1.0	mAdc
Collector Cutoff Current $(V_{CB} = 80 \text{ Vdc}, I_E = 0)$	¹ CBO	-	-	0.02	mAdc
Emitter Cutoff Current (VEB = 4.0 Vdc, IC = 0)	IEBO	_	-	1.0	mAdc
ON CHARACTERISTICS					
DC Current Gain(1) (I _C = 2.0 Adc, V _{CE} = 5.0 Vdc) (I _C = 10 Adc, V _{CE} = 5.0 Vdc)	hFE	10 10	_	60 	_
Collector-Emitter Saturation Voltage(1) (I _C = 10 Adc, I _B = 2.0 Adc)	VCE(sat)	_	volum	2.0	Vdc
DYNAMIC CHARACTERISTICS					
Current-Gain—Bandwidth Product(2) (I C = 2.0 Adc, V _{CE} = 10 Vdc, f = 50 MHz)	fŢ	125	· -	_	MHz
Output Capacitance $(V_{CB} = 28 \text{ Vdc}, I_E = 0, f = 0.13 \text{ MHz})$	C _{ob}	_	125	200	pF
FUNCTIONAL TEST (Figure 1)					
Power Input (Figure 1) $(P_{Out} = 50 \text{ W, } R_S = 50 \text{ Ohms, } V_{CE} = 28 \text{ Vdc, } f = 70 \text{ MHz})$	Pin	_		8.0	Watts
Collector Efficiency ($P_{Out} = 50 \text{ W, } R_S = 50 \text{ Ohms}, V_{CE} = 28 \text{ Vdc}, f = 70 \text{ MHz}$)	η	50		_	%

^{*}Indicates JEDEC Registered Data

Notes:

FIGURE 1 - 70 MHz POWER GAIN TEST CIRCUIT

⁽¹⁾ Pulse Test: Pulse Width \leq 100 μ s, Duty Cycle = 1.0%.

⁽²⁾ f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.