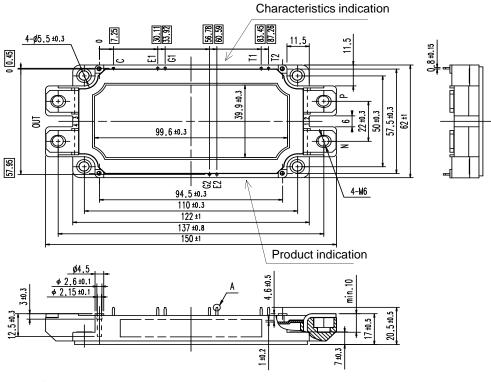


2MBI1000XRNE120-50

IGBT Modules

Power Module (X series) 1200V / 1000A / 2-in-1 package

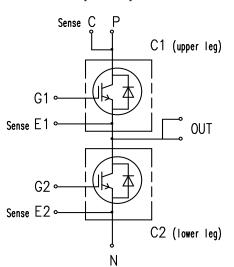

Features

Low V_{CE(sat)} Low Inductance Module structure Solder pin terminals

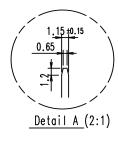
Applications

Inverter for Motor Drives, AC and DC Servo Drives Uninterruptible Power Supply Systems, Wind Turbines, PV Power Conditioning Systems

Outline drawing (Unit : mm)



NOTE) _____ shows theoretical dimension and tolerance is </u> ቀ 💋.5


Equivalent Circuit

[Inverter]

[Thermistor]

Weight: 350 g(typ.)

FM5F09473 2019/06

IGBT Modules

■ Absolute Maximum Ratings (at T_c= 25°C unless otherwise specified)

		Items	Symbols	Cond	litions	Maximum Ratings	Units	
	Collector-	emitter voltage, gate-emitter short-circuited	V _{CES}			1200	V	
	Gate-emit	ter voltage, collector-emitter short-circuited	V _{GES}			±20	V	
	Collector of	current	I _c	Continuous	T _C =100°C	1000		
	Repetitive	peak collector current	I _{CRM}	1ms		2000		
erter	Reverse-c	onducting current	I _{RC}			1000	A	
Repetitive peak reverse-conducting current		/ _{RCRM}	1ms		2000	1		
Total power dissipation		P_{tot}	1 device		8330	W		
Virtual junction temperature		T _{vj}			175			
Operating virtual junction temperature		τ			175	°C		
(under switching conditions)		${\cal T}_{ m vjop}$						
Case temperature		T _c			150	1		
St	orage temp	erature	T _{stg}			-40 ~ 150	1	
Isolation between terminals and copper base (*1)		V _{isol}	AC: 1min.		4000	Vrms		
voltage between thermistor and others (*2)		V isol						
Mounting torque for screws to heatsink (*3)		Ms	M5		6.0	- N∙m		
Mo	ounting torg	ue for terminal screws (*3)	M _t	M6		6.0		

(*1) All terminals should be connected together during the test.

(*2) Two thermistor terminals should be connected together, other terminals should be connected together

 (*3) Recommendable Value: : Mounting torque of screws to heatsink 2.5 ~ 6.0 N⋅m (M5) Recommendable Value: : Mounting torque of screws to terminals 3.5 ~ 6.0 N⋅m (M6)

> FM5F09473 2019/06

■ Electrical characteristics (at *T*_{vj}= 25°C unless otherwise specified)

ltomo	Symbols	Condition		Ch	aracterist	tics	11
Items	Symbols	Conditio	ns	min.	typ.	max.	Unite
Collector-emitter cut-off current, Collector current	/ _{CES}	$V_{GE} = 0V$ $V_{CE} = 1200V$		-	-	200	μA
Gate leakage current, collector-emitter short- circuited	I _{GES}	V_{CE} =0V, V_{GE} =±20V		-	-	400	nA
Gate-emitter threshold voltage	V _{GE(th)}	$V_{CE} = 20V$ $I_{C} = 1000mA$		5.8	6.4	7.0	V
	V _{CE(sat)} (terminal)		T _{vj} =25°C	-	2.75	3.30	
Collector-emitter		V _{GE} = 15V	T _{vj} =25°C	-	1.55	2.00	V
saturation voltage	V _{CE(sat)}	I _C = 1000A	T _{vj} =125°C	-	1.85	-	v
	(chip)		T _{vj} =150°C	-	1.95	-	
			T _{vj} =175°C	-	2.00	-	
Internal gate resistance	r _g	-		-	0.95	-	Ω
Input capacitance	Cies			-	126	-	
Output capacitance	C _{oes}	V _{CF} =10V, V _{GF} =0	V, f=1MHz	- 5.3	-	nF	
Reverse transfer capacitance	C _{res}		,	-	1.19	-]
Gate charge	Q _G	$V_{\rm CC} = 600$ V, $I_{\rm C} =$ $V_{\rm GE} = -15 \rightarrow +15$ V	1000A	-	7.8	-	μC
	V _{RC} (terminal)	V _{GE} = 0V I _{RC} = 1000A	T _{vj} =25°C	-	2.80	3.30	
Reverse-conducting voltage	V _{RC} (chip)		T _{vj} =25°C	-	1.60	2.05	v
Reverse-conducting voltage			T _{vj} =125°C	-	1.75	-	
			T _{vj} =150°C	-	1.75	-	
			T _{vj} =175°C	-	1.75	-	
	t _{d(on)}	$V_{\rm CC} = 600 V$	T _{vj} =25°C	-	0.42	-	
		$I_{\rm C}, I_{\rm F} = 1000 {\rm A}$	T _{vj} =125°C	-	0.43	-	_
Turn-on delay time (*1)		$V_{\rm GE} = +15V/-15V$	T _{vj} =150°C	-	0.43	-	
		$R_{\rm G} = 0.5\Omega$	T _{vj} =175°C	-	0.43	-	
		$L_{\rm S} = 35 \rm nH$	T _{vi} =25°C	-	0.10	-	
	t _r		T _{vi} =125°C	-	0.11	-	
Rise time			<i>T</i> _{vj} =150°C	-	0.11	-	
				0.12	-	-	
		-	T _{vj} =25°C		0.54	-	_
			T _{vj} =125°C		0.55	-	-
Turn-off delay time (*2)	$t_{d(off)}$		^{vj} T _{vi} =150°C	-	0.56	-	μs
			^{νj} T _{vi} =175°C	-	0.56	-	_
	t _f	-	$T_{\rm vi}=25^{\circ}\rm C$	-	0.12	-	-
			$T_{\rm vj}=125^{\circ}\rm C$	-	0.12	-	-
Fall time			$T_{vj} = 120^{\circ} C$ $T_{vj} = 150^{\circ} C$	-	0.15	-	-
			$T_{vj} = 130 \text{ C}$ $T_{vj} = 175^{\circ}\text{C}$	-	0.15	-	-
		-	$T_{vj} = 175 \text{ C}$ $T_{vj} = 25^{\circ}\text{C}$		0.18		-
				-		-	-
Forward recovery time	t _{fr}		T _{vj} =125°C		0.38	-	-
			$T_{\rm vj}$ =150°C	-	0.41	-	_
		T _{vj} =175°C		-	0.45	-	

(*1) Turn on time $(t_{on}) = t_{d(on)} + t_{r}$

(*2) Turn off time $(t_{off}) = t_{d(off)} + t_f$

2MBI1000XRNE120-50

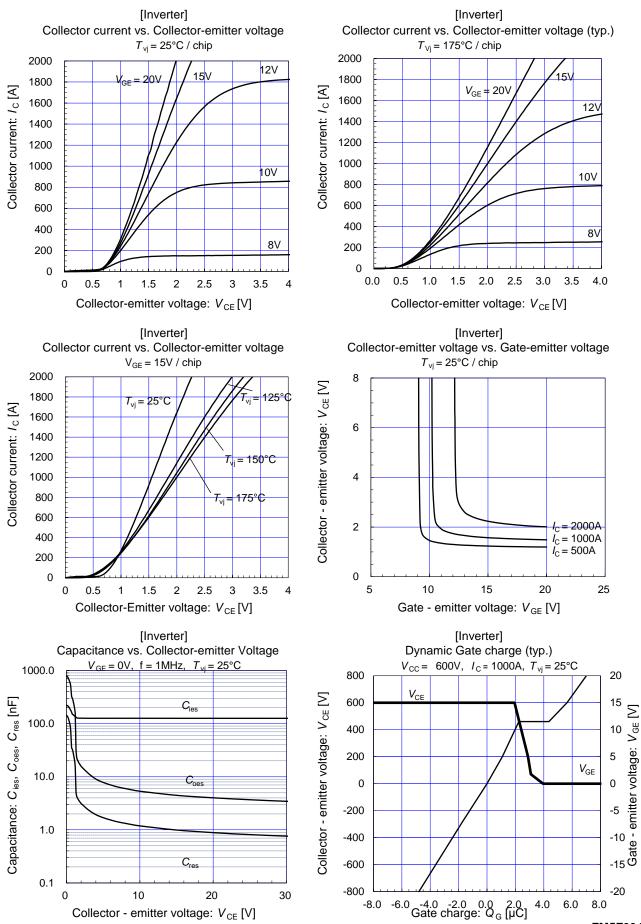
IGBT Modules

	ltomo	Symbolo	Conditions			Characteristics			Unito
	Items	Symbols				min.	typ.	max.	Units
			$V_{\rm CC} =$	600V	T _{vj} =25°C	-	75.7	-	
	Turn-on energy	E _{on}			T _{vj} =125°C	-	98.9	-]
	(per pulse)		$V_{\rm GE} =$	+15V / -15V	T _{vj} =150°C	-	103.5	-]
			$R_{\rm G} =$	0.5Ω	T _{vj} =175°C	-	110.5	-	
			$L_{\rm S} =$	35 nH	T _{vj} =25°C	-	106.6	-	
fer	Turn-off energy				T _{vj} =125°C	-	117.6	-	
nverter	(per pulse)	E _{off}			T _{vj} =150°C	-	125.3	-	mJ
Ē					<i>T</i> _{vj} =175°С	-	134.1	-	
]		T _{vj} =25°C	-	93.5	-]
	Forward recovery	E _{fr}			<i>T</i> _{vj} =125°C	-	124.7	-	1
	energy (per pulse)				<i>T</i> _{vj} =150°C	-	137.7	-	1
					<i>T</i> _{vj} =175°С	-	139.0	-	
tor	Resistance	R	<i>T</i> =	25°C	•	-	5000	-	Ω
nisi			<i>T</i> =	100°C		465	495	520	32
Thermistor	B value	В	T =	25/ 50°C		3305	3375	3450	К

■ Electrical characteristics (at *T*_{vj}= 25°C unless otherwise specified)

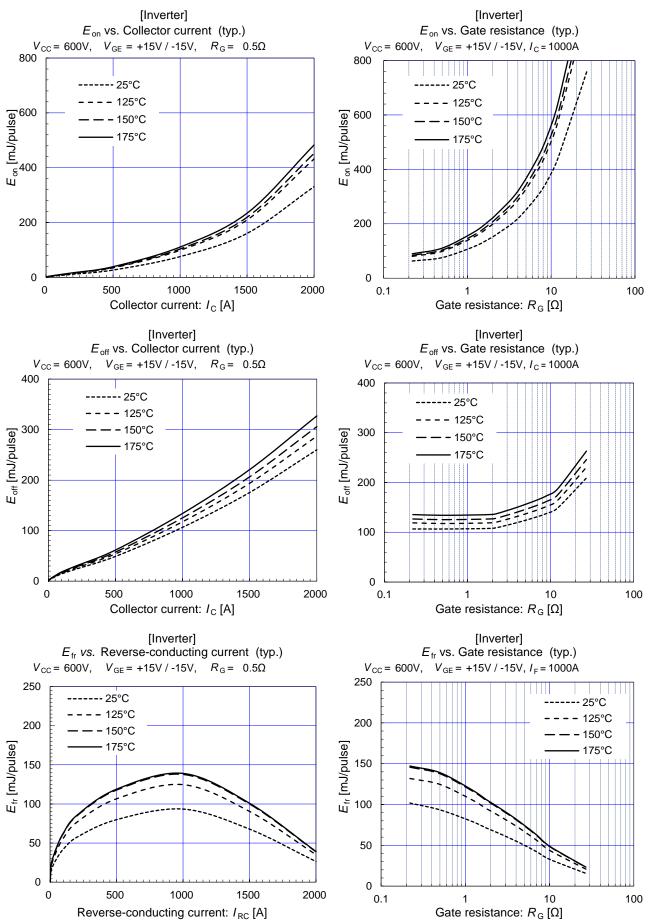
NOTICE:

The external gate resistance (R_G) shown above is one of our recommended value for the purpose of minimum switching loss. However the optimum R_G depends on circuit configuration and/or environment. We recommend that the R_G has to be carefully chosen based on consideration if IGBT module matches design criteria, for example, switching loss, EMC/EMI, spike voltage, surge current and no unexpected oscillation and so on.

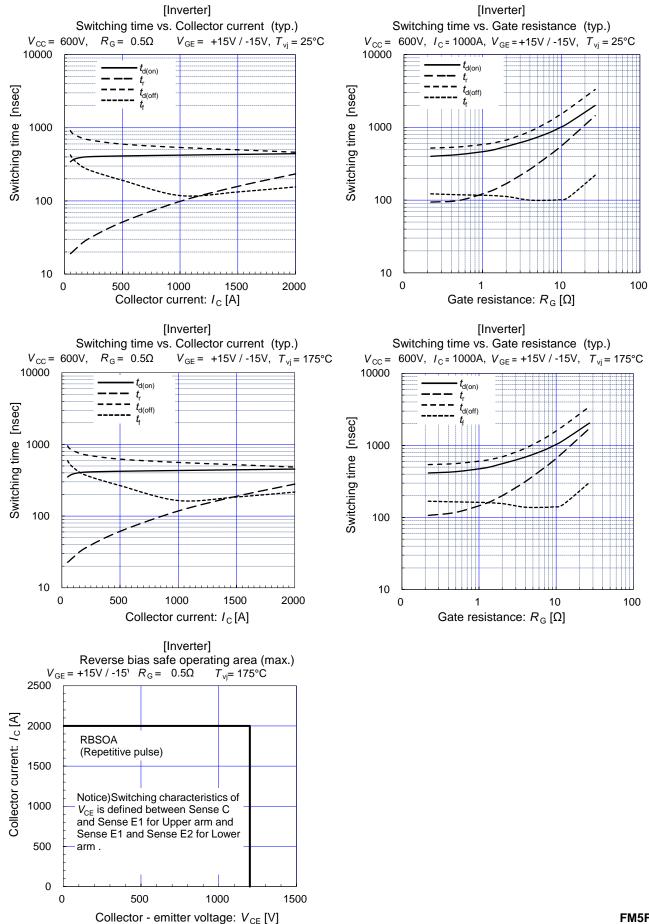

Thermal resistance characteristics

Items	Symbols	Conditions	Characteristics			Units
items	Symbols	Conditions	min.	typ.	max.	Units
Thermal resistance junction to case(1 device)	$R_{\mathrm{th(j-c)}}$	Inverter IGBT	-	-	0.018	
Thermal resistance case to heatsink(1 IGBT+1 FWD)(*1)	$R_{\mathrm{th(c-s)}}$	with 1 W/(m⋅K) thermal grease	-	0.0125	-	K/W

(*1) This is the value which is defined mounting on the additional hestsink with thermal grease.

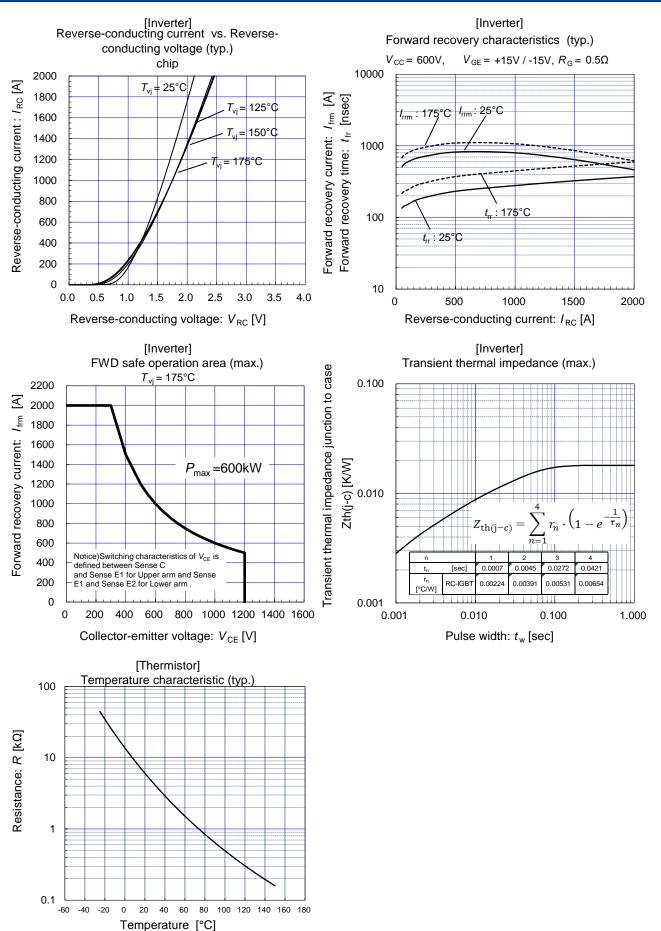

IGBT Modules

2MBI1000XRNE120-50


IGBT Modules

For Fuji Electric 2MBI1000XRNE120-50

IGBT Modules


Innovating Energy Technology

2MBI1000XRNE120-50

IGBT Modules

2MBI1000XRNE120-50

	Warnings
The contents	og contains the product specifications, characteristics, data, materials, and structures as of 6/2019. s are subject to change without notice for specification changes or other reasons. When using a product listed og, be sure to obtain the latest specifications.
either expres Co., Ltd. is (implied, relat	tions described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, ss or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or ting to the infringement or alleged infringement of other's intellectual property rights which may arise from the opplications described herein.
may become safety measu	Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products a faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate ures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become accommended to make your design fail-safe, flame retardant, and free of malfunction.
normal reliat	cts introduced in this Catalog are intended for use in the following electronic and electrical equipment which has bility requirements. •OA equipment •Communications equipment (terminal devices) •Measurement equipment ols •Audiovisual equipment •Electrical home appliances •Personal equipment •Industrial robots etc.
listed below, equipment, t product incol • Transportat • Traffic-signa	d to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such ake adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's rporated in the equipment becomes faulty. tion equipment (mounted on cars and ships) •Trunk communications equipment al control equipment •Gas leakage detectors with an auto-shut-off feature equipment for responding to disasters and anti-burglary devices •Safety devices •Medical equipment
strategic equ	e products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to upment (without limitation). pment ·Aeronautic equipment ·Nuclear control equipment ·Submarine repeater equipment
	(c)1996-2019 by Fuji Electric Co., Ltd. All rights reserved. is Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., L
product. Neit	e any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the ther Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in with instructions set forth herein.