1N3821 thru 1N3830 (SILICON) (1M3.3AZ10 thru 1M7.5AZ10) # 1N3016 thru 1N3051 SERIES (1M6.8Z thru 1M200Z) ## **Designers Data Sheet** #### 1.0 WATT METAL SILICON ZENER DIODES . . . a complete series of 1.0 Watt Zener Diodes with limits and operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, metal package offering protection in all common environmental conditions. - To 100 Watts Surge Rating @ 10 ms - Maximum Limits Guaranteed on Five Electrical Parameters - Power Capability to MIL-S-19500 Specifications #### Designer's Data for "Worst Case" Conditions The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves – representing boundaries on device characteristics – are given to facilitate "worst case" design. #### *MAXIMUM RATINGS | Rating | Symbol | Value | Unit | | |--|----------------------------------|-------------|----------------------------|--| | DC Power Dissipation @ T _A = 25°C
Derate above 25°C (See Figure 1) | PD | 1.0
6.67 | Watt
mW/ ^O C | | | Operating and Storage Junction
Temperature Range | T _J ,T _{stg} | -65 to +175 | °C | | Lead Temperature 230°C at a distance not less than 1/16" from the case for 10 seconds. # 1.0 WATT ZENER REGULATOR DIODES 3.3-200 VOLTS #### MECHANICAL CHARACTERISTICS CASE: Welded, hermetically sealed metal and glass. DIMENSIONS: See outline drawing. FINISH: All external surfaces are corrosion-resistant and leads are readily solderable POLARITY: Cathode connected to the case. When operated in zener mode, cathode will be positive with respect to anode. WEIGHT: 1.4 Grams (approx) MOUNTING POSITION: Any *Indicates JEDEC Registered Data. ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) VF = 1.5 V max @ IF = 200 mA for all types | JEDEC Type No. (Flangeless) (Note 1 & 2) *Nominal Zener Voltage Vz @ IzT Volts (Note 3) | Zener Voltage | e *Test
Current | *Max Zener Impedance
(Note 4) | | Max Reverse Current
(Note 5) | | *Max DC Zener | | | |--|---------------|----------------------------------|----------------------------------|--------------|---------------------------------|--------------------|-----------------|--------------------|------------| | | IZT ZZ | Z _{ZT} @I _{ZT} | ZZK @ IZK
Ohms | IZK
mA | IR Max
(μA) | V _{R1} 5% | V _{R2} | IZM mA
(Note 6) | | | 1N3821 | 3.3 | 76 | 10 | 400 | 1.0 | *100 | *1.0 | 1.0 | 276 | | 1N3822 | 3.6 | 69 | 10 | 400 | 1.0 | *100 | *1.0 | 1.0 | 252 | | 1N3823 | 3.9 | 64 | 9.0 | 400 | 1.0 | *50 | *1.0 | 1.0 | 238 | | 1N3824 | 4.3 | 58 | 9.0 | 400 | 1.0 | *10 | *1.0 | 1.0 | 213 | | 1N3825 | 4.7 | 53 | 8.0 | 500 | 1.0 | *10 | *1.0 | 1.0 | 194 | | 1N3826 | 5.1 | 49 | 7.0 | 550 | 1.0 | *10 | 1.0 | 1.0 | 178 | | 1N3827 | 5.6 | 45 | 5.0 | 600 | 1.0 | *10 | *2.0 | 2.0 | 162 | | 1N3828 | 6.2 | 41 | 2.0 | 700 | 1.0 | *10 | *3.0 | 3.0 | 146 | | 1N3829 | 6.81 | 37 | 1.5 | 500 | 1.0 | *10 | *3.0 | 3.0 | 133 | | 1N3830 | 7.5 | 34 | 1.5 | 250 | 1.0 | *10 | *3.0 | 3.0 | 121 | | 1N3016 | 6.8 | 37 | 3.5 | 700 | 1.0 | 10 | . 5.2 | 4.9 | . 140 | | 1N3017 | 7.5 | 34 | 4.0 | 700 | 0.5 | 10 | 5.7 | 5.4 | 125 | | 1N3018 | 8.2 | 31 | 4.5 | 700 | 0.5 | 10 | 6.2 | 5.9 | 115 | | 1N3019 | 9.1 | 28 | 5.0 | 700 | 0.5 | 7.5 | 6.9 | 6.6 | 105 | | 1N3020 | 10 | 25 | 7.0 | 700 | 0.25 | 5.0 | 7.6 | 7.2 | 95 | | 1N3021 | 11 | 23 | 8.0 | 700 | 0.25 | 5.0 | 8.4 | 8.0 | 85 | | 1N3022 | 12 | 21 | 9.0 | 700 | 0.25 | 2.0 | 9.1 | 8.6 | 80 | | 1N3023 | 13 | 19 | 10 | 700 | 0.25 | 1.0 | 9.9 | 9.4 | 74 | | 1N3024 | 15 | 17 | 14 | 700 | 0.25 | 1.0 | 11.4 | 10.8 | 63 | | 1N3025 | 16 | 15.5 | 16 | 700 | 0.25 | 1.0 | 12.2 | 11.5 | 60 | | 1N3026 | 18 | 14 | 20 | 750 | 0.25 | 0.5 | 13.7 | 13.0 | 52 | | 1N3027 | 20 | 12.5 | 22 | 750 | 0.25 | 0.5 | 15.2 | 14.4 | 47 | | 1N3028 | 22 | 11.5 | 23 | 750 | 0.25 | 0.5 | 16.7 | 15.8 | 43 | | 1N3029 | 24 | 10.5 | 25 | 750 | 0.25 | 0.5 | 18.2 | 17.3 | 40 | | 1N3030 | 27 | 9.5 | 35 | 750 | 0.25 | 0.5 | 20.6 | 19.4 | 34 | | 1N3031 | 30 | 8.5 | 40 | 1000 | 0.25 | 0.5 | 22.8 | 21.6 | 31 | | 1N3032 | 33 | 7.5 | 45 | 1000 | 0.25 | 0.5 | 25.1 | 23.8 | 28 | | 1N3033 | 36 | 7.0 | 50 | 1000 | 0.25 | 0.5 | 27.4 | 25.9 | 26 | | 1N3034 | 39 | 6.5 | 60 | 1000 | 0.25 | 0.5 | 29.7 | 28.1 | 23 | | 1N3035 | 43 | 6.0 | 70 | 1500 | 0.25 | 0.5 | 32.7 | 31.0 | 21 | | 1N3036 | 47 | 5.5 | 80 | 1500 | 0.25 | 0.5 | 35.8 | 33.8 | 19 | | 1N3037 | 51 | 5.0 | 95 | 1500 | 0.25 | 0.5 | 38.8 | 36.7 | 18 | | 1N3038 | 56 | 4.5 | 110 | 2000 | 0.25 | 0.5 | 42.6 | 40.3 | 17 | | 1N3039 | 62 | 4.0 | 125 | 2000 | 0.25 | 0.5 | 47.1 | 44.6 | 15 | | 1N3040 | 68 | 3.7 | 150 | 2000 | 0.25 | 0.5 | 51.7 | 49.0 | 14 | | 1N3041 | 75 | 3.3 | 175 | 2000 | 0.25 | 0.5 | 56.0 | 54.0 | 12 | | 1N3042 | 82 | 3.0 | 200 | 3000 | 0.25 | 0.5 | 62.2 | 59.0 | 11 | | 1N3043 | 91 | 2.8 | 250 | 3000 | 0.25 | 0.5 | 69.2 | 65.5 | 10 | | 1N3044 | 100 | 2.5 | 350 | 3000 | 0.25 | 0.5 | 76.0 | 72.0 | 9.0 | | 1N3045 | 110 | 2.3 | 450 | 4000 | 0.25 | 0.5
0.5 | 83.6 | 79.2 | 8.3 | | 1N3046 | 120 | 2.0 | 550 | 4500 | 0.25 | | 91.2 | 86.4 | 8.0 | | 1N3047 | 130 | 1.9 | 700 | 5000 | 0.25 | 0.5 | 98.8 | 93.6 | 6.9 | | 1N3048 | 150 | 1.7 | 1000 | 6000 | 0.25 | 0.5 | 114.0 | 108.0 | 5.7 | | 1N3049
1N3050 | 160
180 | 1.6 | 1100
1200 | 6500
7000 | 0.25
0.25 | 0.5 | 121.6
136.8 | 115.2
129.6 | 5.4
4.9 | | | | 1.4 | | | | 0.5 | | | | ^{*} JEDEC Registered Data on 1N3821 thru 1N3830 and 1N3016 thru 1N3051 #### NOTE 1 - TOLERANCE AND TYPE NUMBER DESIGNATION **1N3821** thru **1N3830** — The JEDEC type numbers shown have a standard tolerance for the nominal zener voltage of $\pm 10\%$. A standard tolerance of $\pm 5\%$ for individual units is also available and is indicated by adding suffix "A" to the standard type number. 1N3016 thru 1N3051 — The JEDEC type numbers shown have a standard tolerance of ±20% for the nominal zener voltage. Suffix "A" for ±10% units or "B" for ±5% units. #### NOTE 2 - SPECIALS AVAILABLE INCLUDE: (A) NOMINAL ZENER VOLTAGES BETWEEN THE VOLTAGES SHOWN AND TIGHTER VOLTAGE TOLER-ANCES: To designate units with zener voltages other than those assigned JEDEC numbers and/or tight voltage tolerances (±3%, ±2%, ±1%), the Motorola type number should be used. EXAMPLE 1M5.1AZ3 (B) MATCHED SETS: (Standard Tolerances are $\pm 5.0\%$, $\pm 2.0\%$, $\pm 1.0\%$). Zener diodes are available in sets consisting of two or more matched devices. The method for specifying matched sets is similar to the one described in (A) except that two additional suffixes are added to the code number described. These devices are marked with code letters to identify the matched sets and, in addition, each unit in a set is marked with the same serial number, which is different for each set ordered. EXAMPLE 1M51Z5B1 A - Not used $\mathsf{B}-\mathsf{Two}$ devices in series C – Three devices in seriesD – Four devices in series # 1N3821 thru 1N3830, 1N3016 thru 1N3051(continued) (C) ZENER CLIPPERS: (Standard Tolerance ±10% and ±5%). Special clipper diodes with opposing Zener junctions built into the device are available by using the following nomenclature: Example: 1M7.5AZZ10 #### NOTE 3 - ZENER VOLTAGE (VZ) MEASUREMENT Motorola guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature (T_l) at $30^{o}\text{C}\pm1^{o}\text{C},$ 3/8" from the diode body. #### NOTE 4 - ZENER IMPEDANCE (ZZ) DERIVATION The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{ZT} or I_{ZK}) is superimposed on I_{ZT} or I_{ZK} . #### NOTE 5 - REVERSE LEAKAGE CURRENT IR Reverse leakage currents are guaranteed only for 5% and 10% zener diodes and are measured at V_{R} as shown in the Electrical Characteristics Table. #### NOTE 6 - MAXIMUM ZENER CURRENT RATINGS (IZM) 1N3821 thru 1N3830 — Maximum zener current ratings are based on maximum voltage of 10% tolerance units. **1N3016 thru 1N3051** — Maximum zener current ratings are based on maximum voltage of 5% tolerance units. #### NOTE 7 - SURGE CURRENT (ir) Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a specified pulse width, PW. The data presented in Figures 8 and 9 may be used to find the maximum surge current for a square wave of any pulse width between 0.01 ms and 1000 ms. #### APPLICATION NOTE Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T_L, should be determined from: $$T_L = \theta_{LA} P_D + T_A$$ θ_{LA} is the lead-to-ambient thermal resistance ($^{\rm OC}/\rm W)$ and $\rm P_D$ is the power dissipation. The value for θ_{LA} will vary and depends on the device mounting method. θ_{LA} is generally 30-40 $^{\rm OC}/\rm W$ for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: $$T_J = T_L + \Delta T_{JL}$$ ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure 6 for a train of power pulses (L = 3/8 inch) or from Figure 7 for dc power. $$\Delta T_{JL} = \theta_{JL} P_{D}$$ For worst-case design, using expected limits of I_Z, limits of P_D and the extremes of T_J(Δ T_J) may be estimated. Changes in voltage, V_Z, can then be found from: $$\Delta V = \theta_{VZ} \Delta T_{J}$$ θ_{VZ} , the zener voltage temperature coefficient, is found from Figures 2 and 3. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 6 should not be used to compute surge capability. Surge limitations are given in Figure 8. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 8 be exceeded. ## 1N3821 thru 1N3830, 1N3016 thru 1N3051(continued) ## TEMPERATURE COEFFICIENTS AND VOLTAGE REGULATION (90% OF THE UNITS ARE IN THE RANGES INDICATED) #### FIGURE 4 - TYPICAL VOLTAGE REGULATION ∴VZ, CHANGE OF ZENER VOLTAGE (VOLTS) 7.0 5.0 = 0.1 IZM to 0.5 IZM 3.0 2.0 1.0 0.7 0.5 0.3 0.2 0. 3.0 5.0 50 100 200 VZ, ZENER VOLTAGE AT IZT (VOLTS) FIGURE 6 - TYPICAL THERMAL RESPONSE L, LEAD LENGTH = 3/8 INCH = 0.5 💢 D = 0.2D = 0.1 DUTY CYCLE, D = t_1/t_2 SINGLE PULSE $\Delta T_{JL} = \theta_{JL}(t)$ PPK REPETITIVE PULSES $\Delta T_{JL} = \theta_{JL}(t, D)$ PPK D = 0.05 D = 0.02 Below 0.1 Second, Thermal Response Curve is Applicable to any Lead Length (L). SINGLE PULSE 0.003 0.005 0.03 0.05 0.3 0.5 5.0 10 30 50 100 200 0.1 t, TIME (SECONDS) # 1N3821 thru 1N3830, 1N3016 thru 1N3051 (continued) FIGURE 9 - SURGE POWER FACTOR SQUARE WAVE PULSE WIDTH (ms) FIGURE 10 - TYPICAL CAPACITANCE