

RM12N650LD RM12N650IP

N-Channel Super Junction Power MOSFET III

General Description

The series of devices use advanced trench gate super junction technology and design to provide excellent R_{DS(ON)} with low gate charge. This super junction MOSFET fits the industry's AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.

Features

- New technology for high voltage device
- Low on-resistance and low conduction losses
- Small package
- Ultra Low Gate Charge cause
- 100% Avalanche Tested
- ROHS compliant

Application

- Power factor correction (PFC)
- Switched mode power supplies(SMPS)
- Uninterruptible Power Supply (UPS)

Package Marking And Ordering Information

Device	Device Package	Marking
RM12N650LD	TO-252	12N650
RM12N650IP	TO-251	12N650

V _{DS}	650	V
R _{DS(ON)TYP}	290	mΩ
ID	11.5	А

Schematic diagram

TO -252

TO -251

Table 1. Absolute Maximum Ratings (T_c=25°C)

Parameter	Symbol	Value	Unit
Drain-Source Voltage (V _{GS=0V})	Vds	650	V
Gate-Source Voltage (VDs=0V) AC (f>1 Hz)	Vgs	±30	V
Continuous Drain Current at T _C =25°C	I _{D (DC)}	11.5	А
Continuous Drain Current at T _C =100°C	I _{D (DC)}	7	А
Pulsed drain current (Note 1)	IDM (pluse)	46	А
Maximum Power Dissipation(T_c =25 $^\circ \! \mathrm{C}$)	PD	101	W
Derate above 25°C		0.97	W/°C
Single pulse avalanche energy (Note2)	Eas	144	mJ
Avalanche current ^(Note 1)	I _{AR}	6	А
Repetitive Avalanche energy , t_{AR} limited by T_{jmax} (Note 1)	E _{AR}	0.5	mJ

Parameter	Symbol	Value	Unit
Drain Source voltage slope, $V_{DS} \leqslant$ 480 V,	dv/dt	50	V/ns
Reverse diode dv/dt, $V_{DS} \leqslant 480 V, I_{SD} < I_D$	dv/dt	15	V/ns
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55+150	°C

Table 2. Thermal Characteristic

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Maximum)	R _{thJC}	1.24	°C /W
Thermal Resistance, Junction-to-Ambient (Maximum)	R _{thJA}	62	°C /W

Table 3. Electrical Characteristics (TA=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Мах	Unit
On/off states						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	650			V
Zero Gate Voltage Drain Current(Tc=25°C)	I _{DSS}	V _{DS} =650V,V _{GS} =0V			1	μA
Zero Gate Voltage Drain Current(Tc=125°C)	I _{DSS}	V_{DS} =650V, V_{GS} =0V			100	μA
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V			±100	nA
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_{D} =250µA	3	3.5	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =10V, I _D =7A		290	360	mΩ
Dynamic Characteristics						
Input Capacitance	C _{lss}	\/E0\/_\/0\/		870		pF
Output Capacitance	C _{oss}	$V_{DS}=50V, V_{GS}=0V,$ E=1 0MHz		54		pF
Reverse Transfer Capacitance	Crss	1 - 1.000112		1.8		pF
Total Gate Charge	Qg	\/		19		nC
Gate-Source Charge	Q _{gs}	$V_{DS} = 400 V, I_D = 11.5 A,$		6		nC
Gate-Drain Charge	Q_{gd}	VGS-10V		6.5		nC
Switching times						
Turn-on Delay Time	t _{d(on)}			11		nS
Turn-on Rise Time	tr	V _{DD} =380V,I _D =5.8A,		8		nS
Turn-Off Delay Time	$t_{d(off)}$	$R_G=3\Omega, V_{GS}=10V$		58	70	nS
Turn-Off Fall Time	t _f			9	14	nS
Source- Drain Diode Characteristics						
Source-drain current(Body Diode)	I _{SD}	T25°C			11.5	А
Pulsed Source-drain current(Body Diode)	I _{SDM}	16-25 6			46	А
Forward on voltage	V_{SD}	Tj=25°C,I _{SD} =11.5A,V _{GS} =0V		0.9	1.2	V
Reverse Recovery Time	t _{rr}			220		nS
Reverse Recovery Charge	Qrr	di/dt=1000/up		2.2		uC
Peak Reverse Recovery Current	I _{rrm}	αι/αι-τουΑ/μ5		19		А

Notes: 1.Repetitive Rating: Pulse width limited by maximum junction temperature

2. Tj=25°C,VDD=50V,VG=10V, R_G=25 Ω

RATING AND CHARACTERISTICS CURVES (RM12N650LD(IP))

10

Figure1. Safe operating area

10

10²

10¹

10⁰

10

10⁻²

Tc=25°C

Ip. Drain Current[A]

Figure2. Transient Thermal Impedance

V_{DS}, Drain-Source Voltage[V]

10

Figure4. Output characteristics

CRECTRON

RATING AND CHARACTERISTICS CURVES (RM12N650LD(IP))

Figure9. Maximum I_D vs Junction Temperature

Figure10. Gate charge waveforms

Figure11. Capacitance

CRECTRON —

Test circuit

1) Gate charge test circuit & Waveform

2) Switch Time Test Circuit:

3) Unclamped Inductive Switching Test Circuit & Waveforms

CRECTRON ·

TO-251 Package Information

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
А	2.100	2.500	0.083	0.099	
A1	0.850	1.150	0.034	0.045	
В	0.718	1.018	0.028	0.040	
b	0.700	0.900	0.028	0.036	
b1	0.700	1.000	0.028	0.040	
С	0.408	0.608	0.016	0.024	
c1	0.408	0.508	0.016	0.020	
D	6.400	6.800	0.253	0.269	
D1	5.180	5.480	0.205	0.217	
E	5.950	6.350	0.235	0.251	
е	2.286		0.0	090	
e1	2.286		0.0	090	
L	6.700	7.300	0.265	0.289	

TO-252 Package Information

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	2.200	2.400	0.056	0.061	
A1	0.970	1.17	0.025	0.030	
b	0.720	0.850	0.018	0.022	
b1	0.720	0.930	0.018	0.024	
b2	5.230	5.460	0.133	0.139	
b3	4.270	4.370	0.108	0.111	
С	0.470	0.580	0.012	0.015	
D	6.000	6.200	0.152	0.157	
D1	5.300 TYP.		0.135		
E	6.500	6.700	0.165	0.170	
E1	4.700	4.920	0.119	0.125	
e	2.286 TYP		0.058		
L	1.400	1.700	0.036	0.043	
L1	2.900 TYP.		0.074		
L2	0.510 TYP.		0.013		
L3	0.900	1.250	0.023	0.032	
L4	0.600	1.000	0.015	0.025	
L5	1.700	1.900	0.043	0.048	
L6	0	0.1223	0.000	0.003	

Marking on the body

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

