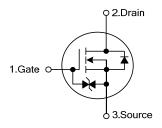
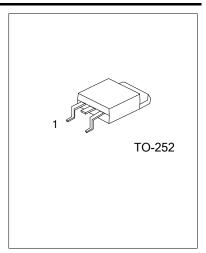


UNISONIC TECHNOLOGIES CO., LTD

12N06Z **Power MOSFET**

12A, 60V N-CHAN NEL POWER MOSFET

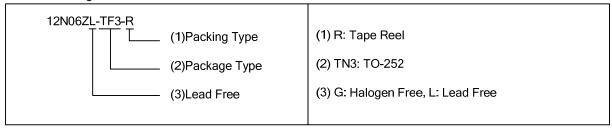

DESCRIPTION


The UTC 12N 06Z is an N-c hannel enhancement mode Power MOSFET using UT C's advanced technology to provide customers with a mi nimum on-state res istance, high switching speed and low gate charge.

FEATURES

- * 12A, 60V, $R_{DS(on)} < 0.10\Omega @V_{GS} = 10V$
- * High switching speed
- * Low gate charge
- * Halogen Free

SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Docking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
12N06ZL-TN3-R	12N06ZG-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

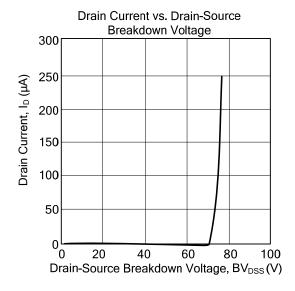
12N06Z Power MOSFET

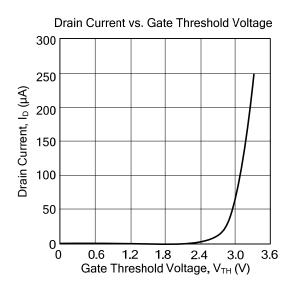
ABSOLUTE MAXIMUM RATINGS

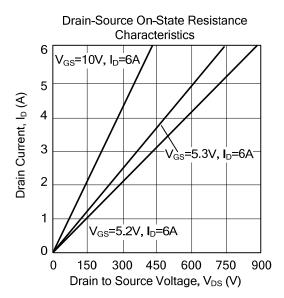
PARAMETER SYMBOL			RATINGS	UNIT
Drain-Source Voltage		V _{DSS} 60		V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current	Continuous T C = 25°C	I _D 12		Α
	Pulsed	I _{DM}	48	Α
Total Dissipation at T _C = 25°C		P _{TOT}	30	W
Peak Diode Recovery dv/o	ak Diode Recovery dv/dt dv/dt 15		15	V/ns
Avalanche Energy		E _{AS} 140		mJ
Junction Temperature		T」 -55~+175		°C
Storage Temperature Range		T _{STG}	-55~+175	°C

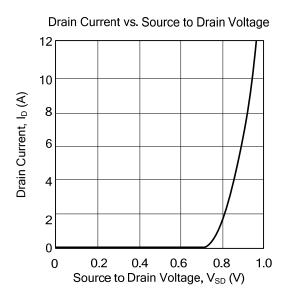
Notes: Absolute maximum ratings are those v alues be yond which the d evice could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS


PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient Max	θ_{JA}	100	°C/W
Junction to Case Max	θ _{JC} 5		°C/W


■ ELECTRICAL CHARACTERISTICS (T_{CASE}=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250 μ A	60			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V			1	μΑ		
Gate- Source Leakage Current Forward	I _{GSS}	V _{GS} =±20V			±10	μΑ		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1 3			V		
Static Drain-Source On-State Resistance	R _{DS(ON)}	V_{DS} =10V, I_{D} =6A		0.08	0.1	Ω		
On State Drain Current	I _{D(ON)}	V _{GS} =10V, V _{DS} =1V 5			30	Α		
DYNAMIC PARAMETERS								
Input Capacitance	C _{ISS}			350		pF		
Output Capacitance	Coss	V _{DS} =25V, f=1MHz, V _{GS} =0V		75		pF		
Reverse Transfer Capacitance	C _{RSS}			30		pF		
SWITCHING PARAMETERS								
Total Gate Charge	Q_G	V _{GS} =5V, I _D =12A, V _{DD} =48V	7.5		10	nC		
Gate to Source Charge	Q_GS			2.5		nC		
Gate to Drain Charge	Q_{GD}			3.0		nC		
Turn-ON Delay Time	t _{D(ON)}	V_{DD} =30V, I_{D} =6A, R_{G} =4.7 Ω ,		10		ns		
Rise Time	t _R			35		ns		
Turn-OFF Delay Time	t _{D(OFF)}	_V _{GS} =0~10V		20		ns		
Fall-Time	t _F			13		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous Current	Is				12	Α		
Maximum Body-Diode Pulsed Current	I _{SM}				48	Α		
Drain-Source Diode Forward Voltage	V_{SD}	I _S =12A			1.5	V		


12N06Z Power MOSFET

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.