http://www.www.datasheet4u.com

900,000+ Datasheet PDF Search and Download

Datasheet4U offers most rated semiconductors datasheets pdf



Vishay Intertechnology Electronic Components Datasheet


71128

Simple Solution for Dynamically Programming the Output Voltage of DC-DC Converters


No Preview Available !

71128 pdf
AN731
Vishay Siliconix
Simple Solution for Dynamically Programming the
Output Voltage of DC-DC Converters
INTRODUCTION
Figure 1 shows a typical dc-to-dc converter configuration. As in
many PWM controllers, the non-inverting input of the voltage
feedback error amplifier is internally connected to the
reference voltage, Vr. The output voltage of the converter is set
by a resistor divider network R1 and R2. This configuration
enables a fixed output voltage that is equal to or greater than
the reference voltage. But in many power conversion designs,
it is useful to vary the output to a value lower than the reference
voltage and to dynamically adjust the output voltage. The
op-amp circuit shown in Figure 3 gives designers a simple way
to do this. Scaling the output voltage with respect to a control
voltage VC is totally flexible. This application note describes
how to use this simple solution and provides a step-by-step
design procedure to assist designers in calculating the specific
parameters required by their circuits.
DESIGN REQUIREMENT
Reference voltage, Vr
Control voltage: VC = VC1 to VC2
Output voltage: VO = VO1 at VC = VC1, VO = VO2 at VC = VC2,
and VO is linear for any value of VC in its range.
These design requirements are shown in Figure 2. The output
voltage is a linear function with respect to the control voltage.
The function crosses two end points A = (VC1, VO1) and B =
(VC2, VO2).
VIN Power Stage
VOUT
PWM
+
EA
PWM Controller
FB
Vr
R1
R2
FIGURE 1. Typical DC/DC Converter Configuration
VO (V)
B (VC2, VO2)
A (VC1, VO1)
VC (V)
FIGURE 2. Output Voltage vs Control Voltage Requirement
VIN
Document Number: 71128
28-Jan-00
Power Stage
VOUT
PWM
+
EA
PWM Controller
FB
Vr
R1
A
R2
VX
R3
LM358
B
+ Vr2
R4
Op-Amp Circuit
FIGURE 3. Op-Amp Circuit Offers Programmable Output Function
VC
www.vishay.com S FaxBack 408-970-5600
1



No Preview Available !

71128 pdf
AN731
Vishay Siliconix
CIRCUIT ANALYSIS
In a closed-loop power supply, node A will servo to attain a
voltage equal to VR. Node B will servo to attain a voltage equal
to Vr2. Assuming an ideal op-amp and using Kirchkorf’s current
law at node A and B, we have:
(Vo *
R1
Vr)
+
(Vr
* Vx)
R2
and
(Vx
* Vr2)
R3
+
(Vr2 *
R4
Vc)
(1)
Let:
M1
+
R2
R1
and
M2
+
R3
R4
Solve for VX,
Vx + (1 ) m1)Vr * m1Vo
and
Vx + (1 ) m2)Vr2 * m2Vc
(2)
(3)
Equate the above two equations and solve for VO:
ǒ Ǔ ǒ ǓVo +
1
m1
)
1
Vr *
1 ) m2
m1
Vr2
)
m2
m1
Vc
+
b ) aVc
Where:
(4)
a
+
m2
m1
and
ǒ Ǔ ǒ Ǔb +
1
m1
)
1
Vr
*
1 ) m2
m1
Vr2
(5)
So, VO is a linear function with respect to VC. The function has
slope a and y intercept b.
A curve-fitting technique is used to force the equation (4) to
follow the requirement. This is done in two steps:
Matching the slope:
a
+
Vo2
Vc2
*
*
Vo1
Vc1
+
m2
m1
Matching one point: Pick point B VO2 = b + aVC2
(6)
ǒ Ǔ ǒ Ǔ³ b + Vo2 * aVc2 +
1
m1
)
1
Vr *
1
m1
)
a
Vr2
Equate (4) and (5) and solve for m1
(7)
m1
+
Vo2
)
Vr * Vr2
a(Vr2 * Vc2)
*
Vr
(8)
Note:
m1
+
R2
R1
(9)
Since m1 is the ratio of 2 real resistors, it must be a positive
number. Furthermore, m1 should not be too small or too large
to have realistic resistor values for R1 and R2. There are two
valid scenarios:
1. Vr – Vr2 > 0 and Vo2 + a(Vr2 – Vc2)–Vr > 0 or,
2. Vr – Vr2 < 0 and Vo2 + a(Vr2 – Vc2)–Vr < 0
Both of these present a restricted range of values for Vr2 to give
a meaningful value of m1. Once Vr2 is chosen correctly, m1
and the rest of the parameter values can be determined.
DESIGN PROCEDURE AND EXAMPLE
Given:
A = (VC1, VO1) = (0.2 V, 0.4 V), B = (VC2, VO2) = (2.7 V, 3.4 V)
Vr = 1.3 V, R1 = 22.1 kW. Also, 1 V < VX < 3 V.
Calculate the slope, a:
a
+
Vo2
Vc2
*
*
Vo1
Vc1
+
3.4
2.7
*
*
0.4
0.2
+
1.2
Determine Vr2:
(10)
Choose a sensible value of Vr2 to satisfy either (1) or (2) above.
Since it is easier to derive a value for Vr2 that is smaller than Vr
(by using a simple resistor voltage divider), scenario (1) is used
here.
Vr–Vr2 u 0 å Vr2 t Vr + 1.3 V
and,
Vo2 ) a(Vr2–Vc2)–Vr u 0 å Vr2 u
Vr–Vo2
a
)
Vc2
+
1.3
V–3.4
1.2
V ) 2.7 +
0.95V
(11)
www.vishay.com S FaxBack 408-970-5600
2
Document Number: 71128
28-Jan-00



Part Number 71128
Description Simple Solution for Dynamically Programming the Output Voltage of DC-DC Converters
Maker Vishay Siliconix - Vishay Siliconix
Total Page 7 Pages
PDF Download
71128 pdf
Download PDF File
71128 pdf
View for Mobile




Featured Datasheets

Part Number Description Manufacturers PDF
71108 N-Channel 30-V (D-S) MOSFET 71108
Vishay Siliconix
PDF
7111 Common Mode EMI Inductors 7111
JW Miller
PDF
7111 Subminiature Hybrid Crystal Oscillators 7111
Spectrum
PDF
71117 SI9113 Demonstration Board 71117
Vishay Siliconix
PDF
71128 Simple Solution for Dynamically Programming the Output Voltage of DC-DC Converters 71128
Vishay Siliconix
PDF
711JTC Crystal Oscillators 711JTC
Toyocom
PDF


Part Number Start With

0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

site map

webmaste! click here

contact us

Buy Components